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ABSTRACT

Let kAkp�q be the norm induced on the matrix A with n rows and m columns by the
H�older �p and �q norms on Rn and Rm �or Cn and Cm� respectively� It is easy to �nd an
upper bound for the ratio kAkr�s�kAkp�q� In this paper we study the classes of matrices
for which the upper bound is attained� We shall show that for �xed A� attainment of the
bound depends only on the signs of r � p and s � q� Various criteria depending on these
signs are obtained� For the special case p � q � �� the set of all matrices for which the
bound is attained is generated by means of singular value decompositions�

�� INTRODUCTION

Let A be a matrix with n rows and m columns� If A is considered as a complex
transformation� let �� and �� be norms on Cm� and let �� and �� be norms on Cn� If A
is real and is considered as a transformation from Rm to Rn� let the �i be norms on Rm

and the �i be norms on Rn� De�ne the induced norms

kAk�i� � max
x

�i�Ax��i�x

for i � � and �� where the maximum is taken over either Cm or Rm� as is appropriate� It
was shown in �SS� �see also �HJ� p�	�	� that

���� kAk��� � max
x

���x

���x
max
y

���y

���y
kAk����

and that equality is always attained for some A �� �� Here the maxima are taken over Cm

and Cn if A is thought of as a complex transformation� and over Rm and Rn if A is a real
and its action is con�ned to Rm�

In this work we shall be concerned with characterizing the set of all matrices A for
which equality is attained in ����� at least in some cases�

We shall show that this set can be described by the following property�
Theorem �� If equality holds in the inequality 
�
�� then every maximizer v of the

ratio ���Ax����x has the properties that
i� v is also a maximizer of the ratio ���x����x�
ii� Av is a maximizer of the ratio ���y����y� and
iii� v is also a maximizer of the ratio ���Ax����x�

Conversely� if there is one maximizer v of ���Ax����x which has the properties i�
and ii�� then equality holds in 
�
��

Theorem � can only provide useful information if the two maxima on the right and
the corresponding maximizers are known� Both of these conditions apply when the norms
involved are H�older norms� We denote the �p norm by k kp� For any p and q in the interval
����� we de�ne the induced norm

���� kAkp�q �� max
x

kAxkq
kxkp

�

�



The maximum of the ratio kxkr�kxkp and the corresponding maximizers are well
known� In order to state the result we recall that sgn�z is de�ned to be � if z � �� � if
z � �� and �� if z 	 �� and that �z�� is de�ned to be z if z � � and � if z � �� We also
de�ne the three subsets of a real or complex vector space of m�tuples or n�tuples�

���	

K� � fx � all components of x have equal absolute valuesg

K�� � fx � at most one component of x di�ers from �g

K� � the whole vector space�

The following result is found� e�g�� in �HLP� p� �
 ��
 and p� �������
Proposition ��

���� kxkr � m����r�����p��� kxkp for p� r � ������

Equality holds if and only if the m�vector x lies in Ksgn�p�r��

By inserting Proposition � into the inequality ���� and into Theorem �� we immedi�
ately obtain the following special case for the H�older spaces�

Proposition ��

���� kAkr�s � m����p�����r��� n����s�����q��� kAkp�q for p� q� r� s � ������

If equality holds in this inequality� then every maximizer v of the ratio kAxks�kxkr
has the properties
i� v � K�sgn�p�r��
ii� Av � Ksgn�q�s�� and
iii� v is a maximizer of the ratio kAxkq�kxkp�

Conversely� if there exists a maximizer v of the ratio kAxkq�kxkp which has the
properties i� and ii�� then equality holds in 
����

For the case m � n� q � p� s � r� the inequality ���� was pointed out by Higham �H�
p������

The inequality ���� simply states that for �xed s� kAkr�s is nondecreasing and
n��rkAkr�s is nonincreasing in r� and that for �xed r� n���skAkr�s is nondecreasing and
kAkr�s is nonincreasing in s�

The trivial observation that for �xed �p� q the only dependence on �r� s in Proposition
� is through the functions sgn�p � r and sgn�q � s immediately yields the following
statement�

Proposition �� If equality holds in 
��� � if sgn�p� r��sgn�p � r� and if sgn�q �
s��sgn�q � s� then equality also holds in 
��� when the pair �r� s is replaced by �r�� s��

Remark� By using the inequality 
��� with r � p� and s � q�� one sees that
Proposition � also shows that equality in 
��� implies that the same equality when
�p� q� r� s is replaced by �p�� q�� r�� s�� provided sgn�p� � r� � sgn�p � p� � sgn�p � r
and sgn�q� � s� � sgn�q � q� � sgn�q � s�

When p � q � �� Proposition � enables us to give a characterization of all matrices
for which equality holds in the bound ����� As usual� we denote the Hermitian transpose
of a matrix A by A��

	



Theorem �� If r� s � ������ the equality

kAkr�s � m����������r��� n����s��������� kAk����

is valid if and only if A has a singular value decomposition

A � U�V �

in which
i� the �rst column of the unitary matrix U is in Ksgn���s��
ii� the �rst column of the unitary matrix V is in K�sgn���r�� and
iii� the 

� entry of the nonnegative diagonal matrix � is its maximal entry�

The �rst two theorems will be proved in Section ��
When p and q are not both �� Proposition � will still help to characterize those matrices

for which equality holds in the bound ����� Because of Proposition 	� the results will only
depend on the relative sizes of p and r and of q and s� Our most complete characterization
is for the case in which r 	 p and s � q� which is treated in Section 	�

Theorem �� Let 
 denote the largest absolute value of the entries of A� so that

 � kAk����

If � 	 p � q 	 �� then equality holds in 
��� for some and hence every� r 	 p and
s � q� if and only if A has the properties
i� every entry of A which has the absolute value 
 is the only nonzero element of its row

and of its column� and
ii� if C is the matrix obtained from A by replacing all elements of absolute value 
 by

zero� then kCkp�q � 
�
If p � q� then equality holds in 
��� for r 	 p and s � q if and only if A has at most

one nonzero entry�

Theorem 	� in Section 	 shows that the Property �i is su�cient for the existence of a
p � � and a q 	� such that equality holds in ���� for all r 	 p and s � q when p � � is
su�ciently small and q 	� is su�ciently large�

Section � deals with the cases in which r 	 p and s 	 q or r � p and s � q� We shall
establish the following results�

Theorem�� Let � denote the largest �� norm of the columns of A� so that � � kAk����
If equality holds in 
��� for some r 	 p and s 	 q� then A has the properties

i� the entries of any column whose �� norm is equal to � all have the same absolute value
n����

ii� every column with this property is orthogonal to all the other columns of A� and
iii� � � n�����q�kAkp�q�

Conversely� if the matrix A has a column all of whose entries have the absolute values
n���qkAkp�q� then equality holds in 
��� for all r 	 p and s 	 q�

If p � �� then equality holds in 
��� for r 	 p and s 	 q if and only if A has only one
nonzero column� and all the entries of this column have the same absolute value�

Theorem �� Let � denote the largest �� norm of the rows of A� so that � � kAk����
If equality holds in 
��� for some r � p and s � q� then A has the properties

�



i� the entries of any row whose �� norm is equal to � all have the same absolute value
m����

ii� every row with this property is orthogonal to all the other rows of A� and
iii� � �m��pkAkp�q�

Conversely� if the matrix A has a rows all of whose entries have the absolute values
m���p���kAkp�q� then equality holds in 
��� for all r � p and s � q�

If q 	 �� then equality holds in 
��� for all r � p and s � q if and only if A has only
one nonzero row� and all the entries of this row have the same absolute value�

Theorem �� in Section � shows that the Properties �i and �ii of Theorem � are
su�cient for the existence of p � � and q � � such that equality holds in ���� whenever
r 	 p and s 	 q� Theorem �� gives the analogous result for r � p � s � q�

Section � considers the case where r � p and s 	 q� The following result is obtained�
Theorem �� Equality holds in 
��� for r � p and s 	 q if and only if there is a

vector v with the properties
i� v is an eigenvector of the matrix A�A�
ii� all the entries of v have the absolute value 
�
iii� all the entries of Av have the same absolute value � � and
iv� � �m��pn���qkAkp�q�

In particular� equality holds in 
��� when p � q � �� r � �� and s 	 � if and only if
A�A has an eigenvector v with the properties ii� and iii� which corresponds to its largest
eigenvalue�

We observe that when the matrix A is real� one has a choice of de�ning the induced
norm kAkp�q with respect to either the real or the complex H�older spaces� and that these
two norms may di�er for some �p� q� Our results are valid for either choice�

Consider� for instance� the matrix A �

�
� �
�� �

�
� The last statement of Theorem 


with the complex eigenvector ��� i of A�A � �I� shows that when r � � � s the norm
kAkr�s on the complex vector space C� is equal to ����s�����r�������� On the other hand� a
simple computation shows that on the real vector spaces� kAk��� � � while kAk��� is still
����� Thus in the real norm� equality does not hold in ���� when p � q � �� r � �� and
s 	 �� Therefore the real norm kAkr�s is strictly less than ����s�����r�������� and hence less
than the complex norm� when r � � and s 	 ��

�� PROOFS OF THEOREMS � AND ��

We begin by proving Theorem ��
Proof of Theorem 
� We recall the derivation in �SS� of the inequality ����� For any

x �� 	 with Ax �� � we have

����
���Ax

���x
�

���x

���x

���Ax

���Ax

���Ax

���x
�

Because the maximum of a product is bounded by the product of the maxima� we obtain
the inequality �����
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Suppose there is a maximizer of the left�hand side of ����� which is not a maximizer
of one of the factors on the right� Since all the factors are bounded by their maxima and
one of them is strictly less than its maximum� the right�hand side of ���� is strictly greater
than the left�hand side� Therefore the condition of Proposition � is necessary for equality�

If there is a maximizer v of all three quotients on the right of ����� then the maximum
of the left�hand side is bounded below by the right�hand side of ����� Since we already
know that it is bounded above by the same quantity� we conclude that equality holds in
����� This establishes Theorem ��

Proof of Theorem �� We observe that a maximizer of the ratio kAvk��kvk� is an
eigenvector of the matrix A�A which corresponds to its largest eigenvalue� By Proposition
�� equality in ���� with p � q � � implies that a maximizer v of kAxkr�kxkq is such an
eigenvector� that it is in K�sgn���r�� and that the eigenvector Av of AA� is in Ksgn���s��

Thus we can construct �see� e�g�� the proof of Theorem ��	�� in �GvL� a singular value
decomposition A � U�V � in which the �rst column of the unitary matrix U is the vector
kAvk��

� Av � Ksgn���s� and the �rst row of the unitary matrix V is kvk��
� v � K�sgn���r��

The ��� element of the nonnegative diagonal matrix � is the square root of the largest
eigenvalue of A�A� which is the maximal element of ��

The converse follows from the fact that the �rst column of V is a maximizer of
kAxk��kxk� and the converse statement of Proposition �� so that Theorem � is proved�

Remark� If the matrix A is a scalar multiple of a unitary matrix and the absolute
values of all its entries are equal to a number 
� then A has a singular value decomposition
with U � n����
��A� � � n���
I� and V � I� and another singular value decomposition
with U � I� � � n���
I� and V � n����
��A�� Hence Theorem � shows that equality
holds in 
��� whenever p � q � � and r and s are either both bounded above by � or
bounded below by ��

Examples of such matrices include the Hadamard matrices� which are orthogonal
matrices whose entries have the values �� see �H� p� 
��� x	�
���� and the matrices which
represent the �nite Fourier transforms�

	� THE CASE r 	 p� s � q�

The following lemma will be used in the proofs of Theorems 	� �� and 
� We recall
the de�nition of the conjugate index p� � p��p � � of an index p� and the fact that A�

denotes the Hermitian transpose of the matrix A�
We also recall the identity

�	�� kA�kq��p� � kAkp�q�

which simply states that the norm of the adjoint of a transformation is equal to the norm
of the transformation�

Lemma ���� Suppose that a maximizer v of kAxkq�kxkp has the properties that
i� all its nonzero components have the same absolute value� and
ii� the same is true of Av�
If � 	 p 	 �� or p � � and v � K�� or p � � and v � K��� then v is an eigenvector of
the matrix A�A�






Proof� Because of the duality relation �	��� we have

kA�Avkp� � kAkp�qkAvkq�

� �kAvkq�kvkpkAvkq� �

It is easily seen from the property �ii that

kAvk�� � kAvkqkAvkq� �

Therefore

v 	A�Av � kAvkqkAvkq� � kvkpkA
�Avkp� �

This shows that equality holds in the H�older inequality for the bilinear form v 	A�Av in
�p
 �p�� If � 	 p 	�� this implies that the vector A�Av must be a multiple of the vector
with components kvkp��

p vj � �See� e�g�� �HLP p� �
����� By Property �i this vector is a
multiple of v� which proves the result for this case�

If p � � so that p �	�� and if v has no zero component� it is easily seen that equality
in H�older�s inequality implies that A�Av is proportional to the vector with components
jvj j��vj � and we reach the same conclusion� This is the case when p � � and v � K��

If p �� so that p� � �� one easily sees that equality in the H�older inequality implies
that A�Av has zero components where v does� Therefore�if v � K�� so that it has only
one nonzero component� A�Av is again proportional to v�

Thus the Lemma is proved in all cases�

Proof of Theorem �� Suppose that equality holds in ���� for some r 	 p and s � q� By
Proposition 	� equality holds for all r and s which satisfy this inequality� and in particular
for r � � and s � �� It is easily veri�ed that kAxk��kxk� � 
� the largest absolute
value of any entry of A� and that that this bound is attained when x is in the direction
of a coordinate which corresponds to a column in which an element of magnitude
 occurs�
Thus a unit vector v in such a coordinate direction is a maximizer of the ratio�

Thus Proposition � shows that if v is a unit vector in the direction of such a column� the
columnAv has exactly one nonzero element� and v is a maximizer of the ratio kAxkq�kxkp�
The �rst of these properties says that any column of A which contains an element of
magnitude 
 has but one nonzero element� while the second property implies that the
absolute value 
 of the nonzero element equals kAkp�q � kAk���� There may� of course� be
several maximizers� and therefore several columns with singleton elements of magnitude 
�

Since v and Av are both in coordinate directions and p � �� we can apply Lemma 	��
to show that v is an eigenvector of A�A� Therefore if x is a coordinate vector orthogonal to
v� it is also orthogonal to A�Av� which implies that Ax is orthogonal to Av� This means
that a column which contains a single nonzero element of magnitude 
 is orthogonal to
all the other columns of A� In other words� an element of magnitude 
 is also the only
nonzero element of its row as well as of its column� so that Property �i is established�

If we choose a trial vector x whose components in the directions of the columns with
elements of magnitude 
 are zero� then Ax � Cx where C is de�ned in the statement of
Theorem �� Therefore kCkp�q � kAkp�q � 
� This is Property �ii�

�



To prove the converse statement for p � q� we de�ne B � A�C� and decompose any
vector x into y� z� where the components of z are zero in the directions corresponding to
columns which contain elements of magnitude 
 and the components of y in the remaining
directions vanish� Then by Property �i and two applications of Proposition �

kAxkq � f�
kykq
q � kCzkqqg

��q

� f�
kykp
q � �kCkp�qkzkp

qg��q

� f�
kykp
p � �kCkp�qkzkp

pg��p

� maxf
� kCkp�qgkxkp�

That is�

�	�� kAkp�q � maxf
� kCkp�qg�

Thus Property �ii shows that kAkp�q � 
 � kAk���� and the proof of the converse state�
ment is complete�

To prove the last assertion of Theorem 	 assume that p � q and that equality holds
in ���� for r 	 p and s � q� Choose a trial vector x whose component in the direction a
column with a singleton element of magnitude 
 is one and which has one other nonzero
component � Let b be any entry of A in the column which corresponds to � Then
because p � q�

kAxkq
kxkp

�
�
q � jbjq��q

�� � jjp��p
� 
� ���p
��q jbjqjjq � o�jjq

for small � Because 
 � kAkp�q� the right�hand side must be bounded by 
� and we
conclude that b � �� Because b is an arbitrary element of any column other that that with
the entry of magnitude 
� we conclude that all other columns of A are zero� so that A has
only one nonzero entry�

Finally� a simple computation show that if A has only one nonzero entry� and if the
magnitude of this entry is 
� then kAkr�s � 
 for all r and s� so that equality holds for all
p� q� r� and s�

Thus all parts of Theorem 	 have been established�

Because it is di�cult to compute the p� q norm for most p and q� it is di�cult to verify
Property �ii of Theorem 	� We shall show that the easily veri�ed Property �i is su�cient
to assure the existence of some p � � and s 	 � such that equality holds in ���� when
r 	 p and s � q�

Theorem 	�� Let A have Property i� of Theorem �� Let C be the matrix obtained
from A by replacing all elements of absolute value 
 � kAk��� by �� so that kCk��� 	 
�
If p and q satisfy the inequalities p � q and

�	�� m�����p�n���q�kCk��� � 
�

then equality holds in 
��� for all r 	 p and s � q� The inequality ���� is satis�ed if p is
su�ciently close to � and q is su�ciently large�

�



Proof� Since ���� shows that

kCkp�q �m�����p�n��pkCk����

the inequality �	�� and the equation �	�� imply that kAkp�p � 
� That is� Property �ii
of Theorem 	 holds� the the equality follows�

�� THE CASES r 	 p� s 	 q AND r � p� s � q�

Proof of Theorem �� Proposition 	 shows that if equality holds in ���� for some r 	 p
and s 	 p� it holds for all such r and s� and in particular for r � s � �� The triangle
inequality shows that kAxk��kxk� � �� the largest �� norm of the columns of A� Moreover�
this bound is attained when x is in the direction of any coordinate whose corresponding
column has the �� norm �� Thus if v is a coordinate vector in such a direction� it is a
maximizer for the ratio�

Proposition � states that if v is a unit vector in one of these coordinate directions� the
elements of the corresponding column Av must have equal absolute values� and v must
also be a maximizer of kAxkq�kxkp� These two facts give the properties �i and �iii of
Theorem 	�

Since p � �� Lemma 	�� shows that v is an eigenvector of A�A� As in the proof
of Theorem 	� this implies that if x is a coordinate vector perpendicular to v� then it is
also perpendicular to A�Av� so that the column Ax is perpendicular to Av� This is the
property �ii

To prove the converse statement� we observe that if A has a column whose elements
have the absolute value n���qkAkp�q� then a unit vector v in the direction of this column is
a maximizer of the ratio kAxkq�kbfxkp� Therefore the converse statement of Proposition
� implies that equality holds in �����

To prove the last statement of Theorem 	� we suppose that equality holds in ���� for
r 	 p and s 	 q� Then there is at least one column c of A all of whose entries have the
absolute value n��� � n���qkAkp�q� Let c be one such column� let b be any other column
of A� and let  be a real parameter� The adjoint relation �	�� leads to the inequality

���� kA��c � bkp� � kAkp�qkc� bkq� � n������q��kc � bkq� �

We observe that for small 

jcj � bj j
q� � jcjj

q� � q� Re�jcj j
q��� �cjbj �O���

We sum on j and use the properties that the entries of c all have the absolute value n���
and that b is orthogonal to c to �nd that

���� kc � bkq
�

q� � n������q��� �O�� � n���q� �O���

Since c and b are orthogonal� the entry of A��c�b which corresponds to the column
c is n����� while the entry which corresponds to the column b is kbk��� We obtain a

�



lower bound for the left�hand side of ���� by replacing all the other entries by zero� For
small  this lower bound takes the form

kA��c � bkp� � n���� � �p����n������p
�

kbk�p
�

� p� �O��p� �

where K � ��
By putting this and ���� into ����� we �nd the inequality

n���� � �p����n������p
�

kbk�p
�

� p� �O��p� � n���� �O���

We observe that p� 	 � because p � �� We cancel the �rst terms from the two sides� divide
by p�� and let  approach zero to see that kbk� � �� That is� every column other than c
is zero� This establishes the last statement of Theorem �� and the Theorem is proved�

Theorem � will follow easily from Theorem � and the following lemma�
Lemma ���� If equality holds in 
���� then equality also holds when A is replaced

by A�� the pair �r� s is replaced by �s�� r� and the pair �p� q is replaced by �q�� p��
Proof� We recall the adjoint equation �	��� namely kA�kq��p� � kAkp�q We also

note that in going from A to A� the dimensions m and n are interchanged� and that by
de�nition ���q�� ���s� � ���s� ���q and ���r�� ���p� � ���p� ���r� Therefore�
the replacements indicated in the Lemma leave both sides of ���� unchanged� which proves
the Lemma�

Proof of Theorem �� By Lemma ���� equality in ���� is equivalent to the equality
when A is replaced by A�� �p� q is replaced by �q�� p�� and �r� s is replaced by �s�� r��
Since s � q implies s� 	 q� and r � p implies r� 	 p�� the application of Theorem � to A�

with the above index replacements gives the statement of Theorem ��

As in the case of Theorem 	� it is di�cult to verify the last hypothesis of Theorems �
and �� We shall prove that the easily veri�ed Properties �i and �ii are su�cient to assure
the existence of p� q � ����� such that equality holds in ���� when r 	 p and s 	 q�

Theorem ��� Let A have the Properties i� and ii� of Theorem �� Let C be the
matrix obtained from A by replacing all columns with the �� norm � � kAk��� by zero� so
that kCk��� 	 �� If p satis�es the inequality

���	
��mn�����p����kCk�� � �������p� � ��

	 ��p�������p�n��
p���p������p���p��m���p�������p��kCk�����
�����p�� � ��

and q � p� then equality holds in 
��� for r 	 p and s 	 q� The inequality ���� is satis�ed
when p is su�ciently near 
�

Proof of Theorem ��� We recall that C is the matrix obtained from A by replacing
those columns whose �� norm is � by �� Thus kCk��� 	 �� Let B � A�C� so that all the
nonzero elements of B have the magnitude n���� and every column of B is orthogonal to
all other columns of A� To establish the Theorem� we only need to show that the inequality
���	 implies that kAkp�p � n������p�� � n������p�kAk����

Decompose an arbitrary vector x �� � into x � y � z� where z is obtained from x

by replacing those elements which correspond to the nonzero columns of B by zero� and
y � x � z�

��



We see from the conditions �i and �ii of Theorem � that for the above decomposition
x � y � z�

���� kBxk�� � n����kyk���

In particular� kBk��� � n������ so that B satis�es the conditions of Theorem 	 with
p � q � �� Therefore�

���� kBkr�s � n������s��

for all r and s in the interval ������ On the other hand� the inequality ���� shows that

���
 kCkr�s �m�����r�kCk����

for r� s � �� Therefore by the triangle inequality

���� kAxkp � n������p��kykp �m�����p�kCk���kzkp�

Proposition � shows that

���� kxkp � �kykpp � kzkpp
��p � �������p��kykp � kzkp�

We see from ���� and ���� that

����
kAxkp
kxkp

� n������p��

whenever

����� kykp �
�� ��mn�����p����kCk��

������p� � �
kzkp�

Thus the bound ���� is valid when the ratio kykp�kzkp is not too large� To obtain
this bound for larger values of this ratio� we note that

����� kAxkpp �
nX

j	�

�j�Byj j
� � �Re��Byj �Czj � � j�Czj j

�p���

Because p � �� the function wp�� is concave� so that for any positive d and w

wp�� � dp�� � �p��d�p������w � d�

We apply this inequality with d � n��kByk�� to each term of the sum on the right of �����
and use the fact that the range of C is orthogonal to the range of B to see that

����� kAxkpp � n���p���kBykp� � �p��n���p���kBykp��
� kCzk���

��



The equation ���� shows that the �rst term on the right is bounded by
n������p���kykpp� Therefore we see that the inequality ���� is valid when

����	 �p��n���p���kBykp��
� kCzk�� � np���pkzkpp�

We see from ���
 that kCzk� �m�����p�kCk���kzkp� and from ���� and ���� that

kByk� � n�����kyk� � n���p�kykp�

Therefore the inequality ����	� and hence also ����� is implied by

����� kykp � �p�������p�n��
p���p������p���p��m���p�������p��kCk�����
�����p�kzkp�

We now observe that the inequality ���	 states that the coe�cient on the right of
����� is no larger than that in ������ Therefore at least one of these inequalities inequal�
ities is satis�ed for every y and z� That is� the inequality ���� holds for all x� so that
kAkp�p � n�����p� � n�����pkAk���� Because ���� gives the inequality in the opposite
direction� we conclude that equality holds in ���� for r 	 p and s 	 q� Thus Theorem ��

is established�

By using Lemma ��� and applying Theorem �� to A�� we obtain the analogous result�
Theorem ��� Let A have the Properties i� and ii� of Theorem �� Let C be the

matrix obtained from A by replacing all rows with the �� norm � � kAk��� by zero� so that
kCk��� 	 �� If q satis�es the inequality
�����

��mn��q���kCk� � ����q � ��

	 ��q��������q
��n��
�q�����q�������q����q���m���q�������q�p��kCk�����

�����q��� � ��

and p � q� then equality holds in 
���� The inequality ��
�� is satis�ed when p is
su�ciently near 
�

�� THE CASE r � p� s 	 q�

Proof of Theorem 	� Suppose that Equality holds in ���� with r � p and s 	 q�
Proposition � shows that every maximizing vector v of the ratio kAxk��kxk� has the
properties �ii its components have equal absolute values� which we normalize to �� �iii
the components of Av have equal absolute values� which we call � � and �iv kAvkq�kvkp �
kAkp�q� Because p 	 �� Lemma 	�� shows that v is an eigenvector of A�A� which is
Property �i� Thus the �rst part of Theorem 
 is proved�

On the other hand� a vector v with the properties �ii� �iii� and �iv is a maximizer
of the ratio kAxkq�kxkp� so that Proposition � also establishes the converse statement�

The last statement of Theorem 
 clearly follows from the rest when p � q � �� so the
Theorem is proved�

We are unable to �nd an analog of Theorems 	�� ��� and �� for this case� We con�ne
ourselves to the following simple observations�

��



�� If we de�ne V to be the diagonal unitary matrix whose diagonal entries are the
components of v and D to be the diagonal� unitary matrix whose diagonal entries are the
components of the vector ���Av� the conditions of Theorem � imply that all the row sums
of the matrix DAV are � and that all its column sums are m��n� � Conversely� if one can
�nd two matrices D and V with these properties� then the vector v whose components are
the diagonal entries of V has the properties �i� �ii� and �iii of Theorem �� Thus equality
holds in ���� for r � p and s 	 q if and only if there are matrices D and V with these
properties and � �m��pn���qjAkp�q�

�� A su�cient condition for equality to hold in ���� when p � q � �� r � �� and
s 	 � is that there exist diagonal unitary matrices D and V such that the matrix DAV
has nonnegative entries� equal row sums� and equal column sums� When m � n� DAV is
a multiple of a doubly stochastic matrix�

	� The matrices with a single nonzero element which occur in the last statement of
Theorem 	 can be thought of as the tensor product of two vectors in K��� Similarly�
the matrices in the last statements of Theorems � and � are tensor products� It is easily
veri�ed that if A � c � b so that its entries have the form cibj � then kAkr�s � kbkr�kcks�
Then Proposition � shows that when A � c � b� equality holds in ���� if and only if
a � K�sgn�p�r� and c � Ksgn�q�s��

Theorem 
 and the fact that kAk�� � 
 show that equality holds in ���� for all
p� q� r� s with � � p 	 r � � and � � s 	 q � � if and only if A is the tensor product of
two vectors in K��
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