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ABSTRACT 

Let P and E be two n X n complex matrices such that for sufficiently small 
positive e, P + eE is nonnegative and irreducible. It is known that the spectral radius 
of P + e E and corresponding (normalized) eigenvector have fractional power series 
expansions. The goal of the paper is to develop an algorithm for computing the 
coefficients of these expansions under two (restrictive) assumptions, namely that P 
has a Single Jordan block corresponding to its spectral radius and that the (unique up 
to scalar multiples) left and right eigenvectors of P corresponding to its spectral 
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radius, say v and w, satisfY vTEw "" O. Our approach is to consider an associated 
countable system of nonlinear equations and solve this system recursively. At each 
step, we consider the coefficients of the expansion of the spectral radius of p + e E as 
parameters and solve a related linear system parametrically. The next coefficient of 
the expansion of the spectral radius is then determined from feasibility considerations 
for a linear system. This solution method is novel and seems useful for computing 
coefficients of corresponding expansions when the two (restrictive) assumptions are 
relaxed. Also, interestingly, the coefficients we compute yield a preferred basis of 
the generalized eigenspace corresponding to the spectral radius of the unperturbed 
matrix P. © Elsevier Science Inc .. 1997 

1. INTRODUCTION 

A real matrix A is called nonnegative, written A ~ 0, if all entries are 
nonnegative; A is called positive, written A» 0, if all entries of A are 
positive; and A is called semipositive, written A > 0, if A ~ ° and A -=1= 0. 
Corresponding definitions apply to vectors. An n X n nonnegative matrix A 
is called irreducible if L7~o Ai » ° (note that this formulation excludes the 
1 X 1 zero matrix). The spectrum of an n X n matrix A will be denoted 
(1"( A), and its spectral radius will be denoted p( A), i.e., (1"( A) is the set of 
eigenvalues of A, and p( A) = max{1 AI: A E (1"( A)}. 

The Perrone-Frobenius theorem (e.g., Berman and Plemmons, 1979) 
asserts that if A is a square, nonnegative, irreducible matrix, the spectral 
radius p( A) is a simple eigenvalue of A. Further, if f is a semipositive vector 
in R n, then A has a unique right eigenvector u and a unique left eigenvector 
v corresponding to p( A) that satisfY fT u = fT V = 1. We denote these 
eigenvectors by u( A, f) and v( A, f), respectively; in particular, u( A, f) and 
v( A, f) are positive and span the sets of left and right eigenvectors of A 
corresponding to p( A), respectively. 

The spectral radius and corresponding normalized eigenvectors of matri
ces govern the evolution of dynamic systems, and hence they are important 
characteristics of such systems; see numerous examples in Berman and 
plemmons (1979). In particular, expansions of these characteristics for per
turbed transition matrices are useful for sensitivity analysis of such systems. 
For example, perturbed stochastic matrices were studied by Schweitzer 
(1986) and Meyer and Stewart (1988), and perturbations of general (not 
necessarily stochastic) nonnegative matrices were explored in Cohen (1978), 
Deutsch and Neumann (1984), and Haviv, Ritov, and Rothblum (1992), 
among others. Of particular interest are explicit expansions of the above 
characteristics for dynamic systems under small scalar linear perturbation of 
their transition matrices. 
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Throughout the remainder of this paper, we assume that P and E are two 
given matrices in R n x n having the property that for sufficiently small positive 
e, P + eE is nonnegative and irreducible. For e> 0, we then let p(e) == 
p(p + eE), and for each semipositive vector f, U(e,f) == u(F + eE,f) and 
V(e,f) == v(P + eE,f). 

Using algebraic methods, Eaves, Rothblum, and Schneider (1995) showed 
that p( e) has a fractional power series expansion in e of the form 
Lk~o Pk ek / q for some positive integer q; see also Kato [1966], where classic 
methods relying on the theory of functions of complex variables are used to 
establish the existence of such expansions for arbitrary eigenvalues. The 
expansion of p(e) combines with standard arguments about solvability of 
linear systems over ordered fields to show that there is an expansion 
e-P/qL~~oUkek/q of U(e,f). Eaves, Rothblum, and Schneider (1995) 
obtained an explicit system of (nonlinear) equations that characterizes the 
coefficients of these series. The purpose of the current paper is to describe a 
method for solving this system under two restrictive assumptions (described 
formally in Section 2); thus, under these assumptions, we get a method for 
computing the coefficients of the fractional power series expansions of p( e) 
and u( e, f). All previously obtained explicit expansions of the Perron
Frobenius eigenvalue and corresponding normalized eigenvector with which 
we are familiar considered cases where the expansions are in the form of 
regular power series, rather than fractional power series; see, for example, 
Schweitzer (1986) and Haviv, Ritov, and Rothblum (1992). For computational 
simplicity, we consider only the case where f is a left eigenvector of the 
matrix P, but the case with general vector f can be derived from the 
particular case we consider by scaling. 

We next outline the method we use for computing the coefficients of the 
expansions. Consider the equations defining p( e) and u( e, f), 

(P + eE)u(e,f) = p(e)U(e,f) and p'U(e,f) = 1. (1.1) 

By substituting formal fractional power series for p(e) = Lk~O Pkek/q and 
U(e,f) = e-P/qLk~oUkek/q and using Cauchy's formula for multiplying 
power series, one obtains a countable set of nonlinear equations for which 
the variables are p, q and the corresponding coefficients of the asserted 
expansions of p(e) and U(e,f); see Eaves, Rothblum, and Schneider (1995). 
We develop an iterative method for computing the general solution of the 
resulting system with the particular selection of q as the index of P for its 
spectral radius and with the selection of p as q - 1. We then show that one 
of the solutions yields the desired expansions of p( e) and u( e, f); in 
particular, we show that the corresponding fractional power series defined by 
this solution have positive radius of convergence. 
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The calculated coefficients of the expansion of the normalized Perron
Frobenius eigenvector u{ e, f) of the perturbed matrix P + e E correspond
ing to nonpositive powers tum out to form a basis of the generalized 
eigenspace of the unperturbed matrix P ; in fact, this basis has non negativity 
properties that qualify it to be a "preferred basis" as constructed in Rothblum 
(1975) and Richman and Schneider (1978) [see also the survey in Schneider 
(1986)]. The derivation of preferred basis in these references filled a gap in 
the theory of nonnegative matrices that had lasted for over half a century. 
Specifically, the classical results of Perron and Frobenius for irreducible 
matrices show the existence of a positive, unique (up to scalar multiples) 
eigenvector corresponding to the spectral radius. Perturbing each zero entry 
of a nonnegative matrix by replacing it by a positive element e, one 
concludes the existence of a positive eigenvector of the perturbed matrix for 
each such e. Normalizing these eigenvectors and using a continuity argument 
then yields the existence of a semi positive eigenvector for the unperturbed 
matrix that corresponds to its spectral radius. But the restriction of this 
conclusion to irreducible matrices does not yield the existence of a positive 
eigenvector, suggesting that more can be said than the mere existence of a 
semipositive eigenvector. Indeed, the derivation of the preferred basis filled 
this gap, as a preferred basis for irreducible matrices consists of the Single 
(normalized) positive eigenvector of the classical Perron-Frobenius theory for 
irreducible matrices. Our current results show that, under our two restricted 
assumptions, the preferred basis can be obtained from the Perron-Frobenius 
eigenvector of the perturbed matrix by truncating the positive powers of its 
power series expansion. In contrast, normalization and letting e ~ 0 yields 
the first term of the expansion, which is a single element of the preferred 
basis. Thus, our analysis points out useful information, namely the preferred 
basis, that is available in the Perron-Frobenius eigenvector of the perturbed 
matrix. The extra information is obtained from the coefficients of the nonpos
itive powers of the fractional power series expansion of the eigenvector; it is 
not available just from the first term of the expansion obtained by normalizing 
and taking corresponding limits. We are currently explOring the derivation of 
preferred basis from the expansion of the eigenvector of the perturbed matrix 
without the restricted assumptions imposed in the current paper. 

The two (restrictive) assumptions that we impose are described in Section 
2. In Section 3 we describe the target system (over the complex field) of 
countably many (nonlinear) equations. We then describe an algorithm that is 
shown to produce, with all (finitely many) inputs, all solutions of the target 
system (under our two assumptions). In Section 4, we briefly describe a 
construction of fields of formal fractional power series in an indeterminate 
symbol over an arbitrary field F. In Section 5, we use a representation of the 
given matrix perturbation P + e E as a nonnegative irreducible matrix over 
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the field Rl w J of formal fractional power series over the reals. We then use 
the Perron-Frobenius theorem over Rl w J to show that one of the solutions of 
the target system defines formal power series that yield its Perron-Frobenius 
eigenvalue and corresponding normalized eigenvector over Rl w j. Results 
developed elsewhere are used to show that the resulting formal fractional 
power series have a positive radius of convergence, and an elaborate argu
ment is used to show that expansions of the spectral radius and corresponding 
normalized eigenvector of the perturbed matrix are attainable from the 
algOrithm. Finally, in Section 6, we discuss our results and the extension of 
the methods we introduce to more general cases (where the imposed 
assumptions are relaxed). 

2. THE ASSUMPTIONS 

Recall that P and E are two given n X n real matrices where for 
sufficiently small positive e, P + eE is nonnegative and irreducible. In the 
current section we state the (restrictive) assumptions we impose on the 
matrices P and E. Under the first assumption, we identifY parameters which 
depend on P. These parameters are used to state the second assumption, and 
are further used in the forthcoming analysis. For convenience (and for 
consistency with notation used in the follOwing sections) we use underlining 
in denoting the parameters we identifY. 

Let p == pep), and let JJ be the index of P corresponding to p, i.e., 
JJ == minTk = 0,1, ... : nulJ[(p - pI)k+ 1] = nu1l[(p - pI)k]}. Recall that a 
generalized eigenvector of P corresponding to p is a solution of the system 
(p - pI)J x = 0 for some positive integer j. -

The first assumption we impose concerns the matrix P. It is introduced 
below: 

ASSUMPTION I. The matrix P has a unique Jordan chain corresponding 
to its Perron-Frobenius eigenvalue p. 

Results of Schneider (1956) yield necessary and sufficient conditions for 
Assumption I in terms of the class structure of the matrix P; see also 
Rothblum (1975) and Richman and Schneider (1978). We do not state these 
conditions here explicitly, because they are not used in our development. 

Haviv, Ritov, and Rothblum (1992) obtained power series expansions of 
the spectral radius and corresponding normalized eigenvector under the 
assumption that the matrix P is irreducible. Irreducibility is known to imply 
that the spectral radius of P is a simple eigenvalue, i.e., P has a single Jordan 
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chain of size 1, and that P has a positive eigenvector corresponding to p. As 
the results of Haviv, Ritov, and Rothblum (1992) easily extend to the general 
case where P has a unique Jordan chain of size 1, our case of interest under 
Assumption I is when the size of the unique Jordan chain of P is 2 or more. 

Assumption I, combined with results of Schneider (1956) [see also Roth
blum (1975) and Richman and Schneider (1978)], implies the existence of 
vectors g:o =1= 0, g:l' ... , g:v-I in R" satisfYing 

and 

( p - pI)w. = w · _ -J -J-I for j = 0, ... , v - 1 

w > 0 -J 
for j = 0, ... , v-I, 

(2.1) 

(2.2) 

where g: _I is defined to be the zero vector. Further, by considering the 
Jordan decomposition of P, Assumption I also implies that: 

(1) the right null space of P - pI is one-dimensional; hence, each right 
eigenvector of P corresponding to p is a scalar multiple of g:o; 

(2) the left null space of P - pI is one-dimensional; and 
(3) if v is a left eigenvector or P corresponding to p, then v T ~j = 0 for 

j = 0, ... , v - 2 and v T g:v- 1 =1= O. -

It follows (by scaling an arbitrarily selected le ft eigenvector of P correspond
ing to !!) that P has a unique eigenvector 12 corresponding to !! satisfYing 

further, 12 satisfies 

vTw = 0 - - } 

12T g:v-I = 1; (2.3) 

for j = 0, ... , v - 2. (2.4) 

As the Perron-Frobenius theorem assures that 12 is a scalar multiple of a 
semipositive vector, the nonnegativity of ~v- 1 combines with (2.3) to show 
that 

12 > O. (2 .5) 

We are now ready to state our second assnmption. 

ASSUMPTION II. The matrix E satisfies 12 7E~o > o. 

Assumption II is relaxed in Section 6 in the case where v = 1. When 
v ;;;. 2, (2.4) implies that !/Pillo = !!12 T

W o = O. Hence, the nonnegativity of 
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!2, of !Qo, and of P + 8E for sufficiently small positive 8 implies that for such 
8, 0 ~ 8- I !2 T(P + 8E)!Qo = !2TE!QO' So, when v ~ 2, Assumption II is 
equivalent to the assertion that !2 T E!Qo =F O. 

Throughout the remainder of the paper, unless stated otherwise (in the 
extensions and discussion of Section 6), it is assumed that Assumptions I and 
II are in force. 

3. A TARGET SYSTEM OF EQUATIONS AND ITS SOLUTION 

Let j be a semipositive vector in Rn. It is shown in Eaves, Rothblum, 
and Schneider (1995, Theorem 4.4) that for some 1 > 0 the spectral radius 
p( 8) of the perturbed matrix P + 8 E and the corresponding normalized 
eigenvector U(8,j) have representations through converging fractional power 
series 

and 

pCP + 8E) = L Pk 8k / q 

k~O 

U{P + 8E,!) = 8-P / Q L Uk8k/q 
k~O 

for 0 < 8 ~ 1 (3.1) 

for 0 < 8 ~ 1, (3.2) 

respectively, where p is a nonnegative integer and q is a positive integer; we 
note here that q can be selected with q ~ N (see Eaves and Rothblum, 
1995). Substituting these expressions into (1.1) and using the Cauchy formula 
for multiplying converging power series, it is observed in Eaves, Rothblum, 
and Schneider (1995, Theorem 4.6) that p, q, and the coefficients 
Po, PI' P2"'" Uo, u], ... of the above representations satisfY the following 
set of (nonlinear) equations: 

and 

s~o 

k-J 

L Pk-sU", - EU k _ q 
S~O 

for k =F p, 
for k = p. 

for 0 ~ k < q, 

(3.3) 

for q ~ k, 

(3.4) 
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The goal of the current section is to describe a recursive method for 
computing the general solution (over the complex field) of the target system 
(3.3)-(3.4) with Po = P, f = !2, q = v, and p = v - 1. Here and through
out. underlined symbOls denote particular selections of vectors and scalars. 
whereas un-underlined symbols are used to denote variables in equations we 
take on solving. We emphasize that our solution technique does not rely on 
convergence properties of corresponding power series, or on the asse rtion 
that solutions should provide representations of the spectral radius and 
corresponding normalized eigenvector of the perturbed matrix. 

The iterative procedure we are about to describe formally has the 
following structure. At the first stage, PI is determined as one of v potential 
values, and U o is determined in terms of Pl. At stage k ~ 2, the coefficients 
up to (but not including) uk_ I and Pk have been determined. These 
determined variables are then used to parametrically solve the subsystem 
consisting of equations k - 1 through k + v - 2 of (3.3). Next. feasibility of 
equation k + v-I of (3.3) together with (normalization) condition k + v -
1 of (3.4) is used to determine uk _ 1 and Pk. 

In order to distinguish between variables and substituted values, we shall 
use unde rbars to denote specific selection of vectors and scalars. In particu
lar, we continue to use the notation ~o,!f I' ... , !Qv- I' for the Jordan chain of 
P corresponding to its spectral radius. and continue to use the notation P and 
}! for the spectral radius of P and corresponding left eigenvector. Also , we 
continue to use the notation P, E, and v without underlines for the given 
matrices and for the index of P with respect to its spectral radius p. 

With f = }! and the selection Po = P. q = v. and p = v - 1,-(3.3) and 
(3.4) reduce to the follOwing system oC(nonlinear) equations with variables 

PI' P2. · ·· • ... and u o, U I .···: 

and 

k-I 

E Pk- s U , 
8= 0 

for 0.;;; k < v, 

k- J 

L Pk- s U , - EUk_" for IJ';;; k. 
8= 0 

for k *- v-I, 
for k = IJ - 1. 

(A) 

(B) 

For k = 0, 1, ... , we denote by (A.k) and (B.k) the equations of (A) and (B), 
respectively, that determine (p - Po I)u k and !2 T Uk. 
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The following lemma follows from standard results about solvability of 
linear systems. It is key for the forthcoming solution of (A)-(B). The lemma 
and its corollary are stated for arbitrary fields containing P and the entries of 
P, but only the real and the complex fields are of interest. 

LEMMA 3.l. Let F be a field that contains the entries of P and P, and let 
12 E F". Then the system (P - pI h = 12 is feasible over F if and only if 
1.:/12 = O. Further, if! E F n is a particular solution of the above system, then 
its general solution over F has the form x = ! + Y!f!o where Y is an arbitrary 
scalar in F. 

Standard results show that if F is a field which contains the entries of P 
and P, then all entries of the !f!/s and of !! are in F. Thus, we get from (2.I) 
the following corollary of Lemma 2.l. 

COROLLARY 3.2. Let F be a field that contains the entries of P and p. If 
0'0' 0'1"'" av~2 E F, then the system (P - plh = E~:~gs!Q, is feaiible, 
and its general solution is given by x = E~:~gs!f!s+ I + Y!f!o where Y is an 
arbitrary scalar in F. 

The next two lemmas show that truncations of (A)-(B) are feasible and 
allow for exactly v distinct values for PI; further, they identifY variables that 
are uniquely determined by such truncations when augmented by the re
quirement that PI takes anyone of its v feasible values. 

LEMMA 3.3. The system consisting of (A.O)-(A. v) and (B.O)-(B. v-I) is 
feasible over the complex field, and every solution of this system has PI as a 
(possibly complex) v-root of ]/E!f!. Further, if PI is any specific v-root of 
!!1'E!f!, then the system (A.O)-(A.v), (B.O)-(B.v-l) augmented with PI = PI' 
with free variables u o, u l ,···, u v , PI' P2"'" PV' is feasible, and u o- = 
(PI) ~ v + l!f!o =F 0 for every solution of this system. 

Proof. Evidently, (A.O) is feasible and its general solution has the 
representation U o = Yo!f!o for some scalar Yo' It follows that (A.I) reduces to 
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and Corollary 3.2 assures that if v ;;. 2 this equation is feasible and its general 
solution has the representation 

where 'Yl is an arbitrary scalar. Next, Equation (A.2) reduces to 

(p - pI)u2 = P2'YO!!:!'0 + Pl( PI 'YO!!:!. 1 + 'Yl!!:!.O) 

= (PI)2'Y0!!:!.1 + (P2'Y0 + PI'Yl)!!:!.O' 

and Corollary 3.2 implies that if v;;. 3, this equation is feasible and its 
general solution has the representation 

where 'Y2 is an arbitrary scalar. It follows from a simple inductive argument 
that for j = 0,1, ... , v - 1, (A.O)-(A.j) are jointly feasible and their general 
solution has PI' P2' ... , Pj arbitrary and 

i 

U i = L ait!!:!.t 
t=O 

for i = 0, 1, ... , j, (3.5) 

where each 8it is a polynomial in PI' P2"'" Pj and in arbitrary scalars 
'Yo, 'YI' ... , 'Yj; in particular, 

for i = 0, 1, ... , j. (3.6) 

The representation of the general solution of (A.O)-(A. v-1) given in (3.5)-(3.6) 
combines with (2.3)-(2.4) to show that (B.0)-(B.1I-2) are satisfied by all 
solutions of (A.O )-(A. v-1), while (B. v-1) is satisfied if and only if 

,,-1 

1 =!:2
T L, 8"-I,t1£t = 8"-1, ,,-I!:2T1£v_l = (Plr-l'YO' (3.7) 

1=0 

Also, by Lemma 3.1, (2.3)-(2.4), and (3.5)-(3.6), feasibility of (A. v) for the 
general solution of (A.O)-(A. v-1) is equivalent to the assertion 

o = !:2
T 

( Pvuo + Pv-lUI + ... + P2 u v-2 + pluv- 1 - Eu o) 

T TE " T TE = Pl!:2 u v - l -!:2 U o = PI uv - I, v-l!:2 !!:!.v-l - 'Y0!:2 Wo 

(3.8) 
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Of course, (3.7)-(3.8) holds if and only if PI is a v-root of !/E!Q and 
'Yo = (p I) - v + I -=1= 0 (recall that !/ E!Q > 0 by Assumption 10. We conclude 
that the system consisting of (A.O)-(A. v) and (B.O)-(B. v-1) is feasible and 
each solution of this system must have PI as a v-root of !/E!Q, say PI' and Uo 
as go == (p)-V+I!QO -=1= 0 [obtained by selecting 'Yo as (pI)-v+I]. - • 

LEMMA 3.4. Let PI be a (possibly complex) v-root of !/E!Q, and let 
k = 0,1, .... Then there exist complex vectors go -=1= 0, gl' ... , gk and com
plex scalars P2' ... , Pk + I such that: 

(a) with the substitution of Uo = go, UI = gl' ... , Uk = gko PI = PI' 
P2 = P2' ... , Pk + I = PH I' the system consisting of (A.O )-(A.k + v) a-nd 
(B.O)-=(B.k + v-1) with the remaining free variables Uk+I""'UHv and 
PH 2' ... , PH v is feasible, and 

(b) every solution of the system consisting of (A.O)-(A.k + v), 

(B.O)-(B.k + v-1), and PI = PI has Uo = go, UI = gl"'" Uk = gko PI = PI' 
P2 = P2, ... , Pk + I = PH I' 

Further, if PI is real, then so are go, gl"" ,gko P2"'" PH I' 

Proof. We prove the lemma by induction on the integer k. The case 
where k = 0 follows directly from Lemma 3.3 with go == ( PI)- v+ I!QO' 
Suppose that for integer k = 1,2, ... , the conclusion of the lemma holds for 
the integer k - I replacing k, with determined vectors go -=1= 0, gl"'" gk-I 
and determined scalars p, P2' ... , Pko and we will establish the conclusion of 
the lemma with the integer k itself. Our method is to examine equations 
(A. k )-(A. k + v-1) in the remaining free variables uk,"', Uk + v- I and 
Pk + I' ... , Pk + v- I and determine the representation of the general (paramet
ric) solution of this system. We then show that each such solution must satisfy 
(B.k)-(B.k + v-2) and that Equation (B.k + v-1) together with feasibility of 
(A. k + v) determines uk and Pk + [. 

We next show, by a secondary inductive argument, that for each j = 

0, ... ,1, ... , v-I, the general solution of (A. k)-(A. k + j) with the substi
tution 

(3.9) 

has 

Pk+I' PH2' ... , Pk+j arbitrary (3.10) 
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t 

uk+i = g'k+i + L Dk + i ,t!!2t 
t~O 

for i = 0, 1, ... , j, (3.11) 

where each g'k + i is a specified (computable) vector and each Dk + i, t is a 
(scalar) polynomial in Pk + I' Pk + 2' ... , Pk + i and arbitrary scalars 
'Yk, 'Yk+l"'" 'Yk+j (which are independent of i and of t); in particular, 

We first consider Equation (A.k) under the substitution (3.9); in particu
lar, its only remaining free variable is Uk' and the equation reduces to 

where gj is defined to be zero for j < O. As our inductive assumption asserts 
that this equation is feasible, Lemma 3.1 implies that its general solution has 
the representation 

for some fixed vector g'k and arbitrary scalar 'Yk' So, for j = 0, the representa
tion (3.10)-(3.12) has been established for the solution of (A. k)-(A. k + j) 
under the substitution (3.9). 

Next assume that for some j E {O, ... , /J - 2}, the general solution of 
(A. k)-(A. k + j) with the substitution of (3.9) has the asserted representation 
(3.10)-(3.12). To establish the asserted representation with j + 1 replacing j, 
we recall equation (A. k + j + 1) (without any substitution) has the form: 

- EUk+j+l-V' (3.13) 

Substituting (3.9), the general expressions (3.10)-(3.12) for uk"",Uk+j 

asserted by the secondary inductive assumption, and the representation of 
uo, ... , U v - 1 given in (3.5)-(3.6), we see that (3.13) can be written as 

j 

(p - PI)U k+j+l =12"+j+l + L (Jk+j+l,t!Qt, 
t~O 

(3.14) 



NONLINEAR SYSTEM IN PERTURBATION THEORY 65 

where 

(3.15) 

and each (Jk+j+l.t is a polynomial in Pk+I,Pk+2,,,,,Pk+j+l, 

'Yk> 'Yk + I' ..• , 'Yk+ j; in particular, we have that 

As our primary inductive assumption asserts that (A.O )-(A. k + j + 1) is 
feasible, Lemma 3.1 and (2.1) imply that the general representation of the 
solution uk+j+ I of (3.13) has the form 

j 

uk+j+1 = ~'k+j+1 + L (Jk+j+l,t~t+1 
t=O 

j+l 

+ 'Yk+j+l!QO = ~k +j + 1 + L 8k+j+l,t~t 
t=O 

for corresponding 8k+j + I , /s; in particular, 8 k +j + l ,o = 'Yk+j+1 and 

This completes the secondary inductive argument, and verifies the represen
tation (3.10)-(3.12) of the general solution of (A. k)-(A. k + j) under the 
substitution (3.9) for each j = 0, 1, ... , v-I. 

We next observe that if j ~ v - 2, (2.4) implies that VTUk+j is constant 
for all vectors uk+ j having the representation (3.11). As our primary inductive 
assumption asserts that the joint system (A.O)-(A. k + v-I) and (B.O)-(B.k + 
v-2) with the substitution (3.9) is feasible, it follows from Lemma 3.1 and the 
established representation of the general solution of (A.O )-(A. k + v-2) under 
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the substitution (3.9) that all such solutions satisfy (B.k)-(B.k + v-2). Fur
ther, we obtained the following representation of Uk+ v - I in a general 
solution of (A. k )-(A. k + v-I) under the substitution (3.9): 

1'- I 

uk+v - J = !£k+v-l + L Dk + v- 1• t Y2t + Dk+v-l.v-lY2v-l 
t~O 

1'-2 

= !£k+v-I + L Dk + I ,- l . tY2t 
t~O 

As k + jI - 1 ;;. v, it follows from (2.3)-(2.4) that (B.k + v-I) is satisfied if 
and only if 

Next, the arguments used in the secondary inductive step to establish the 
reduction of (A. k + j + 1) to (3.14)-(3.15) for j E {O, ... , v - 2} can also be 
used to show that (A. k + v) with the substitutions of (3.9), with the general 
expressions (3.10)-(3.12) for Uk , "', Uk+ v- I' and with the representations of 
U o, ... ,U v - l given in (3.5)-(3.6) reduces to 

v-2 

(p - PI)Uk+v = lzk u + L 0k+v.t!:Qt 
t~O 

where lzk + v is a specified (computable) vector and each Ok + j + 1. t is a 
polynomial in Pk + 1> Pk + 2 ' ... , Ph v' 'Yk, 'Yk+ 1> ••• , 'Yk + v- J [the last term in 
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the right hand side of (3.17) was missing from (3.14), as EUH '+ 1- v was 
absorbed into the constant term Q~+j+l]. Lemma 3.1 and (2.3)-(2.4) imply 
that feasibility of (3.17) is equivalent to the assertion 

( 

v-2 

O=!:2
T Q~+v + L (Jk+v,t!Qt 

t=O 

Tb' () v-I =!:2 _k+ v + Vl'O!!1 PHI' (3.18) 

where the last equality follows from the assumption that PI is a v-root of 
!:2TE!Qo- Thus, (3.18) characterizes feasibility of (A. k + v) under the substitu
tion (3.9). 

We have show that the system consisting of (A.O )-(A. k + v) and 
(B.O)-(B.k + v-I) with the substitution of (3.9) is feasible whenever (3.16) 
and (3.18) are satisfied. Further, the induction assumption shows that each 
solution of (A.O)-(A.k + v) and (B.O)-(B.k + v-I) satisfies (3.9), and the 
above two paragraphs imply that each such solution must also satisfY (3.16) 
and (3.18). As (3.16) and (3.18) consist of two (linear) equations 

and 

(3.17') 

which uniquely determine Pk+ 1 and 'Yk and unique determination of 'Yk 

uniquely determines Uk' the proof of the primary inductive step is complete. 
We finally observe that if PI is real, the inductive argument can be 

extended to assert that the coefficients of (3.16')-(3.17') are real; conse
quently, so are the uniquely determined values of PH l' 'Yk' and Uk· • 
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Note that the unique solution of the (linear) system (3.16')-(3.17') is 
given by 

T , 
:!2 ~k+v-l 

[(v - 1)]OPk+d 

PI 

(3.19) 

(3.20) 

As Assumption II asserts that !/E.!!:Z > 0, there is a unique selection of PI 
in Lemma 3.4 as a positive element. Hence, we have the following corollary 
of Lemma 3.4. 

COROLLARY 3.5. Let PI be the positive v-root of :!2TE.!!:Z, and let k = 

0,1, .... Then there exist -real vectors ~o *- 0, ~1' .•• , ~k and real scalars 

P2' ... , Pk + 1 such that: 

(a) with the substitution of U o = ~o, U1 = ~1"'" Uk = ~k' PI = PI' 
P2 = P2' ... , Pk + 1 = Pk + l' the system consisting of (A.O )-(A. k + v) and 
(B.O)=(B.k + v-1) with the remaining free variables uk+ 1"'" Uk+ v and 
Pk+ 2' ... , PH v is feasible, and 

(b) every solution of the system consisting of (A.O)-(A.k + v), (B.O)-

(B.k + v-1) with PI > 0 has Uo = ~o, U1 = ~1"'" Uk = ~k' PI = PI' P2 = 

P2' ... , Pk + 1 = PH I' 

Proof. By Lemma 3.3 every solution of (A.O )-(A. v) and (B.O)-(B. v-1) 
has PI as a v-root of :!2TE.!!:Z. As it is assumed that :!2TE.!!:Z > 0, there is exactly 
one such root which is positive. The remainder of the corollary now follows 
directly from Lemma 3.4. • 

The proofs of Lemmas 3.3 and 3.4 are constructive; hence, they yield an 
algorithm that will generate the ~/s and p/s. For a formal description of a 
corresponding algorithm we recall the following standard fact about solvabil
ity of linear systems. 
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LEMMA 3.6. There exists a matrix H g such that for every vector 12 for 
which the linear system (P - pIh = 12 is feasible, the vector H g12 is a 
particular solution of that system. 

The matrix H g asserted in Lemma 3.6 is not unique. Such matrices 
belong to the class of generalized inverses of P - pI; a description of 
algorithms that compute them and further details are available in Campbell 
and Meyer (1979), for example. 

We are now ready to present an algorithm that summarizes the inductive 
construction within the proofs of Lemmas 3.3 and 3.4. The presentation uses 
the solution of (3.16')-(3.17') given in (3.19)-(3.20). We note that the 
matrices P and E remain ftxed and given. 

ALGORITHM. 

Input: j!l-a (possibly complex) v-root of !/E!Qo. 

Step 0: 

Set 
j!j = 0 for all integers j < 0, 
!!:j = 0 for all integers j < 0, 
10 = (tJI)-dl , and 

!!:o = 10!Qo' 

Step k for k = 1, 2, .. . : 

Set 

b~ = Pk!!:O + Pk - I!!:I + ... + P2!!:k-2 + PI!!:k-1 - E!!:k_ v' and 
!!:k = H gb~ . - --

For j = 0,1, ... , v - 2, set 

12k+j+1 = j!k!!:j+1 + ... +j!j+2!!:k-1 + j!j+l!!:k + '.' +j!I!!:k+j
E!!:k+j+l-v, and !!:k+j +1 = Hgbk+j +l · 

Set 

The next result summarizes properties of the output of the Algorithm. 
The proof is immediate from the proofs of Lemma 3.3 and 3.4 and Corollary 
3.5. 
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THEOREM 3.7. 

(a) The Algorithm has exactly v distinct inputs. The v outputs they 
determine are distinct. 

(b) For each input, the output of the Algorithm is a solution of (A)-(B). 
(c) For each solution of (A)-(B), there is an input of the Algorithm such 

that the resulting output is the given solution. 
(d) If the input of the Algorithm is the positive v-root of !:?EWo, then the 

output is the unique solution of (A)-(B) with PI > O. 

We emphasize that though H g is not unique, the generated output of the 
Algorithm with any given input is unique; see Lemmas 3.3 and 3.4. 

The next two corollaries are immediate from Theorem 3.7. The first 
shows that each of v v-roots of J2.1'Eg: determines a unique solution of 
(A)-(B). The second spectralizes this observation to the selection of the 
positive v-root of J2.'fEg:. 

COROLLARY 3.8. Each solution of (A)-(B) has PI as a (possibly com
plex) v-root of J2.1'Eg:. Further, under each selection of PI as a v-root of 
J2.1'Eg:, the system (A)-(B) augmented with PI = PI has a unique solution. 

COROLLARY 3.9. The system (A)-(B) augmented with PI > 0 has a 
unique solution. 

4. FRACTIONAL POWER SERIES OVER FIELDS 

In the next section we prove that when the input of the Algorithm (as 
described at the end of the previous section) is the positive v-root of J2. TEg:, 
the output yields converging power series representations of the spectral 
radius and corresponding normalized eigenvector of the perturbed matrices 
P + e E for sufficiently small positive e. Convergence of the power series 
generated by outputs of the AlgOrithm turns out to follow directly from 
(algebraic) transfer prinCiples identified in Eaves, Rothblum, and Schneider 
(1995, Section 5) (see the last paragraph of the next section). More effort is 
devoted to demonstrating that the output of the algorithm with the particular 
(positive) input generates the spectral radius and corresponding normalized 
eigenvector. Here we find ourselves relying on results of Eaves and Roth
blum (1996) to show that, with all v inputs, the power series generated by 
the Algorithm yield all the eigenvalues of the perturbed matrices. 
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In order to use to the above references and carry through our analysis, we 
have to refer to the formal ordered field of fractional power series over an 
arbitrary given (ordered) field F, and this section is devoted to the descrip
tion of a construction of this field. I Our description concerns an arbitrary 
(ordered) field F, but in the forthcoming development only the cases where 
F is the field C of complex numbers or the ordered field R of the reals are 
used. Also, we let Z denote the ring of integers, Q denote the ordered field 
of rationals, and Z + and Q + denote the positive elements in Z and Q, 
respectively. 

Throughout, let w denote an indeterminate symbol. Define F 'l w j to be 
the collection of all triplets (r, p, a) where r E Q +, P E Z, and a: Z ~ F 
where a i = 0 for all i ~ p. For (r, p, a) E F 'lwl, we define r to be the 
exfactor and p to be the base; also, with j := min{i E Z: ai i= OJ, we define 
rj to be the order and aj to be the order coefficient. If a := 0, the order and 
order coefficient are defined to be + 00 and 0, respectively; in all other cases, 
the order is finite and the order coefficient is nonzero. For the sake of 
convenience, we denote a triple (r, p, a) E F 'l w j by the formal sum 
L7~paiW;r, or briefly Lpa;W;r, where w is an indeterminate symbol, and for 
i = ... , - 1,0,1,... we refer to the element a; as the ir-coefficient of 
(r, p,a). 

Wenext introduce a relation "". over FlwJ. For elements Lpa;W;r and 
Lqb;w lS in F 'lwl, we write Lpa;wlr "" Lqb;w lS if a; = hj for every pair of 
integers i and j with ir = js. It is easily seen that "" is an equivalence 
relation. We denote the collection of corresponding equivalence classes which 
partition F'l w j by Fl w j. It is easy to verifY that the order, order coefficient, 
and O-coefficient are invariant over equivalence classes in F 'l w j. Conse
quently, the order, order coefficient, and O-coefficient are well defined for an 
element a in Flwl, and we denote them by order{a), ordercoefKa), and 
a o, respectively. 

It is easily observed that the exfactor and the base are not invariant within 
equivalence classes of F 'lwl, in fact, if LpaiW;r E F 'lwl, then: 

(1) if q E Z+ and q ~ p, then Lpa;W;r "" Lqa;W;r, and 
(2) if s = r/k where k E Z+, then Lpa;w'" "" Lqh;w lS

, where q = kp 
and 

b = {a;lk 
! 0 

for i = kp, k ( p + 1), k ( p + 2), ... , 

otherwise. 

lThe construction described herein borrows from Eaves, RothbJum, and Schneider (1995) 
and Eaves and Rothblum (1996). 
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So the exfactor and the base for elements in F l w j are not uniquely defined. 
Still, given a E Fl w l, we say that r E Q + is an exfactor of a if r is the 
exfactor of some representative of a. Similarly, we say that p E Z is a base 
of a if p is the base of some representative of a. The above observation 
demonstrates that the base of an element in F l w j can be arbitrarily reduced 
and its exfactor can be divided by an arbitrary positive integer. 

Consider a pair of elements a and {3 in F l w J with representations 
Lpa;wir and Lqb;w;s, respectively. As rand s are positive rationals there 
exist e,f, g, h E Z + such that r = elf and s = glh. It then follows that 
both a and {3 have representations with exfactor l/jh and base 
min{ peh, qfg}. Thus, every pair of elements in Fl w J have representations 
with common base and exfactor. We define addition and multiplication of 
elements in Fl w J by using such representations, namely, if a and {3 are 
elements in FlwJ with representations Ll'a;w ir and Lpb;wir , respectively, 
we let a + {3 and a{3 be the equivalence classes in Flwj of Lp(a; + b;)w;r 
and L2 (L;.:j,ajb;_)w;r, respectively. It is easy to verifY that these defini
tions of addition and multiplication in Fl w j are well defined, that is, the 
outcome of these operations is independent of the selected representations. 

The underlying field F is embedded in FlwJ where an element u E F is 
identified with the equivalence class of the element (1,0, a) E F'lwJ with 
a i = 0 for all i i= 0 and ao = u. We shall identifY the elements of F with the 
corresponding elements of Flwl, i.e., we consider F to be a subset of FlwJ. 
In particular, the additive identity of F (zero) and the multiplicative identity 
of F (one) are considered to be elements of F l w j. The equivalence class of 
the element (r, 1, a) E F'l wJ with a i = 0 for all i i= 1 and a l = 1 is denoted 
w r

, and if r = 1, we write w for wI. 
For r E Q, we use the notation O( w r) for an element in F l w j of order r 

or higher. Observing that for a, (3 E F l w j we have order{ a + (3) = 

min{order{ a), order{ (3)} and order{ a (3) = order{ a) + order{ (3) [see Eaves 
and Rothblum (1995, Section 3)], it follows that for r, r' E Q 

O( w r ) + O( w r') = O( wmin(r.r'l) and O( wr)o( w r') = O( wr+r'). 

( 4.1) 

N ext consider the case where F is an ordered field. In this case we define 
an order on F l w j by saying that a nonzero element a E F l w J is positive, 
written a > 0, if its order coefficient is positive. It may be verified that 
addition and multiplication preserve positivity in Fl w J. 

We refer to F l w j as the formal field of fractional power series over F. 
The name is justified by the next theorem. 
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THEOREM 4.1. Fl wJ is a field with F as a sub field. If F is an ordered 
field, F l w J is an ordered field with F as a subordered field. 

We next tum our attention to the case where the underlying field is either 
the complex field e or the real field R. Let LEe be a square root of - 1. 
We observe that the representation e = R + LR extends to elwJ and we 
have that elwJ = RlwJ + LRlwJ. 

An eigenvalue of a matrix A Eel w J n x n is an element A Eel w J for 
which there is a nonzero vector u E el wJn such that Au = Au. In this case 
we say that u is an eigenvector of A corresponding to A. Of course, A Eel w J 
is an eigenvalue of A E el WJnxn if and only if A is a root of the characteris
tic polynomial xi X) == det{ xl - A), which is a polynomial with a coeffi
cients in elwJ. If A E RlwJnxn, A = a + L{3, and u = v + LW, we have 
that A is an eigenvalue of A with corresponding eigenvector u if and only if 
either v '* 0 or W '* 0 and 

Av = a v - {3 wand Aw = a w + {3 v. 

5. SOLUTION OF THE TARGET SYSTEM AND EXPANSIONS 
OF THE SPECTRAL RADIUS AND CORRESPONDING 
EIGENVECTOR OF THE PERTURBED MATRICES 

In the current section we relate outputs of the Algorithm to eigenvalues 
and corresponding normalized eigenvectors of the matrix P + wE whose 
elements are in the field RlwJ. Using the Perron-Frobenius theorem over 
Rl w 1, we further show that the output corresponding to the (unique) positive 
input defines converging power series that yield the spectral radius and 
normalized eigenvector of the perturbed matrices P + f: E for sufficiently 
small positive f:. 

We start by observing that solutions of (A)-(B) correspond to eigenvalues 
and corresponding normalized eigenvectors of P + wE. We conclude that 
outputs of the Algorithm generate such eigenvalues and corresponding nor
malized eigenvectors. 

LEMMA 5.1. Suppose PI' P2' ... are complex scalars and go> gl' ... are 
vectors in en. Then (A)-(By is-satisfied by PI' P2'.·.' go> gl' ... if and only 
if !! + ~ I !!k W k / v is an eigenvalue of -P + wE with eigenvector 
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W-(V-l)/V(LO!!kWk/v) that satisfies the normalization condition 

(5.1) 

Proof. Let Po = p. The mles for executing arithmetic operations in 
C l w j directly imply that (A) is equivalent to the equation (over C l w 1) 

(P + WE)[ W-(V-I)/V( ~!!kwk/V)] 

= (~EkWk/V)[w-(V-I)/V(~!!kWk/V)], (5.2) 

and (B) is equivalent to (5.n. • 

COROLLARY 5.2. Let PI be an input of the Algorithm (that is, PI is a 
v-root of !/E~), and let- PI' P2"" and Yoo, YoI"" be the corresp-onding 
output. Then P + LI Pk w k7v is an eigenvalue of P + wE with eigenvector 
w-(v-l)/V(Lo~kWk/vr that satisfies (5.n. Further, eigenvalues correspond
ing to distinct inputs are distinct. 

Proof. By Theorem 3.7, the output PI, P2"" and !!o, !!l"" of the 
Algorithm is a solution of (A)-(B); hence, by Lemma 5.1, P + Ll Pk wk/v is 
an eigenvalue of P + wE with eigenvector w-(V-l)/V(Lo!!~wk/v)-that satis
fies (5.l). Of course, the eigenvalues generated by distinct inputs of the 
Algorithm are distinct, as their (selected) (1/ v)-coefficients are distinct. • 

The assumption that P + e E is nonnegative and irreducible for suffi
ciently small positive e implies (in fact, is equivalent to) the assertion that 
P + wE is nonnegative and irreducible as a matrix in Rlwj"x". By Eaves, 
Rothblum, and Schneider (1995), Rl w j is a real closed field (the formal 
definition is given therein), and (consequently) the Perron-Frobenius theo
rem holds over Rl w j. The next proposition summarizes resulting properties 
of P + wE. 

PROPOSITION 5.3. There exists a positive element P in Rl w j and a 
positive vector u in Rlwjn such that: 

(a) P is the unique eigenvalue of P + wE having a semipositive eigenvec-
tor, 
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(b) u is the unique eigenvector of P + wE corresponding to P that 
satisfies !:2 T U = 1, 

(c) order{u) ~ 0, and 
(d) for every eigenvalue A Eel w J of P + wE with representatoin A = 

ex + t{3 we have that ex 2 + {32 ~ p2. 

Proof. AS!:2 is a semipositive vector in R" <;;;:: Rl wr and P + wE is a 
semipositive, irreducible matrix in Rl w J" x n, the conclusions of the proposi
tion follow directly from Eaves, Rothblum, and Schneider (1995, Theorems 
3.1,4.2, and 4.6). • 

The (unique) positive element pERl w J and vector u E Rl w 1" identi
fied in Proposition 5.1 will be denoted p(P + wE) and u(p + wE, !:2), 
respectively (consistently with the notation used for real nonnegative matri
ces). 

We next show that the outputs of the Algorithm with the (unique) positive 
input generates p(P + wE) and u(P + wE, !:2). The analysis we need for this 
task is surprisingly elaborate. 

THEOREM 5.4. Let PI be the positive II-root of!:2TE~, and let PI ' P2"" 
and go, gl "" be the Output of the Algorithm with input Pl ' Then P + 
LlPk wk /v = p(P + wE) and W-(V-l)/ vLogk wk / v = u(P + wE, !:2). -

Proof. Let Q == P + wE E RlwJ" x ". We make four observations about 
the characte ristic polynomials XQ(x) of Q and X/x) of P: 

(1) XQ(x) can be written as XQ(x) = Xp(x) + p(x) where all the coeffi
cients of p( x) have positive order, 

(2) XQ( x) has degree II , 
(3) the leading coeffici ent of XQ( x) (namely, the coefficient of x V) is 1, 

and 
(4) P is a root of X/x) of multiplicity II. 

These observations combine with the results of Eaves and Rothblum (1995. 
Section 6) to show that, allOwing for multiplicities , XQ( x) has exactly II roots 
whose O-coefficient is p, that is, allOwing for multiplicities, Q has exactly II 
eigenvalues whose O-coefficient is p. Now, the AlgOrithm has exactly II inputs 
(namely, the II complex roots of '!lE!!:!), and by Corollary 5.2, the outputs 
corresponding to these inputs generate v distinct eige nvalues of Q. It follows 
that all eigenvalues of Q with O-coefficient p are generated by the Algorithm. 

We next argue that p(Q) is generated 'by the AlgOrithm. As p(Q) is an 
eigenvalue of Q, it suffices (by the conclusion of the above paragraph) to 
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show that the O-coefficient of p(Q), say c, equals p. We first observe that as 
order{ p(Q)] ?> 0 and p(Q) > 0 (Proposition ,5.3f we have that c ?> 0, and 
p(Q) can be written as p(Q) = c + O( wt)t > 0 where t == order{ p(Q) - c]. 
We also observe that c is a root of Xr< x) [e.g., Eaves and Rothblum 0996, 
Lemma 3.3)], that is, c is an eigenvalue of P: hence, c 2 ~ p2. Next, consider 
the output of the Algorithm with the selection of PI as the positive v-root of 
!/E!:Q, and let A be the resulting eigenvalue of Q (see Lemma 5.n. Then 
A E Rl wJ and A = p + O(w l /"). Further, part (d) of Proposition 5.3 assures 

that [p(Q)]2 ?> A2; hence, 

implying that c 2 ?> p2. So c 2 
= p2. As both c and p are nonnegative, it 

follows that c = p. - - -

We next argUe that p(Q) is generated by the selection of PI as the 
positive v-root of !/E!:Q. Suppose AI, ... , A" be a list of all the eigenvalues of 
Q with O-coefficient p, that is (by our earlier conclusion), all the eigenvalues 
of Q that are generated by the Algorithm; in particular, p(Q) is in this list. 
Evidently, for each k = 1, ... , v, the order of (Ak 

- p) is l/v, and its order 
coefficient, say gk, is the v-root of !/E!:Q that determines Ak. Let a k + tb k 

be the representation of gk where ak and b k are elements in R, and let 
a k + tf3k be the representation Ak where a k and 13 k are elements in 
Rl w J. We then have that 

and 

It immediately follows that (a k)2 + ( 13 k)2 is uniquely maximized over k 
when Ak is generated through the selection of PI as the positive v-root of 
!/E!:Q; hence, by part (d) of Proposition 5.3, this eigenvalue is the spectral 
radius p(Q) of Q. It now follows from the uniqueness conclusion of part (b) 
of Proposition 5.3 that the generated normalized eigenvector corresponding 
to this eigenvalue is u(Q). • 

THEOREM 5.5. Let PI' P2"" and !!co' !!cl"" be the output of the 
Algorithm with input PI), 0-: Then for all sufficiently small positive e the 
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power series Lk~IPkek/q and Lk~oy.kek/q converge absolutely, andIor 
such e, pCP + eE) P + Lk~1 Pkek/q and u(P + eE,!2) = 

e -p/q~oc u e k / q -
L..k~o_k . 

Proof. As PI' P2"'" Y.o, Y.I'··' form a solution of (3.3) with Po = P, 
I = !2, q = v, and p = v-I where not all the y./s are zero (Theorem 3.1), 
the first part of Eaves, Rothblum, and Schneider (1995, Theorem 5.3) 
(directly) assures that Lk~ I Pk e k/ q converges absolutely for all sufficiently 
small positive e. Further, -as the Y.i'S satisfY (3.4) with I = £ and, by 
Theorems 5.4 and 5.2, LoY.kWk/q = u(p + wE,f)>> 0 (positive in RlwJ), 
the remaining conclusions of the theorem follow (directly) from the second 
part of Eaves, Rothblum, and Schneider (1995, Theorem 5.3). • 

Eaves, Rothblum, and Schneider (1995, Theorem 5.3) implies that for 
every solution of (A)-(B) we have that the power series Lk~ I Pk e k/ q has a 
positive radius of convergence. Further, the proof of Theorem 5.5 implies 
that each of the v eigenvalues of P + e E generated by the AlgOrithm is 
simple; thus, each has a single eigenvector satisfYing the normalization 
condition (5.1). Consider the field C + l w J of fractional power series over the 
complex numbers that have positive radius of convergence. Of course, C + l w J 
is a subfield of clwJ, P + wE E (C+lwJ)Tlxn, and the above argument 
shows that every eigenvalue determined by an execution of the Algorithm is 
in C + l w J. As unique solvability of a linear system is invariant over any 
selected extension of the field containing the coefficients, we conclude that 
the unique eigenvectors corresponding to the determined eigenvalues are 
vectors with coefficients in C + l w J. Thus, all eigenvalues and corresponding 
eigenvectors of P + wE over C l w J that are determined by the Algorithm 
yield complex power series with positive radius of convergence. This fact is 
not stated and derived formally, as our interest here is restricted to the 
spectral radii and corresponding normalized eigenvectors. 

6. DISCUSSION AND EXTENSIONS 

Herein, (3.3)-(3.4) with I =!2 is solved under restrictive assumptions 
which assert, among other things, that the matrix P has a unique Jordan 
chain corresponding to its Perron-Frobenius eigenvalue. In particular, the 
obtained solution has q = v and p = v-I, where v is the index of P 
corresponding to the Perron-Frobenius eigenvalue of P. We recall that in 
Haviv, Ritov, and Rothblum (1992), (3.3)-(3.4) is solved under the assump
tion that P is belongs to a class of matrices with index 1 that contains the 
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class of irreducible matrices. The obtained solution has q = 1 and p = O. 
But the following example demonstrates that in general, q and p do not have 
such simple representation in terms of the index. Let 

1 
1 
o 

o 
o 
1 

The index of P is 3, but the spectral radius of P + 8 E is 1 + 12 8, implying 
that (3.3)-(3.4) does not have a solution with q = 3. Still, we conjecture that 
there exists a combinatorial/algebraic algorithm that computes corresponding 
integers q and p when Assumptions I and II are relaxed. In fact, we believe 
that ideas of the solution method developed in the restrictive case we 
consider can be modified and applied to producing a solution of (3.3)-(3.4) in 
the general case. 

We also note that in the solutions of (3.3)-(3.4) obtained herein and in 
Haviv, Ritov, and Rothblum (1992), the coefficients of the fractional power 
series of the Perron-Frobenius normalized eigenvector tum out to yield a 
"preferred basis" of the generalized eigenspace corresponding to the Perron
Frobenius eigenvalue of P; see Rothblum (1975), Richman and Schneider 
(1978), and Schneider (1986) for formal definitions, and see the introduction 
for a discussion of this property. Though this interesting phenomenon does 
not extend in general (note the above example), there seems to much spectral 
information in the coefficients of the fractional power series expansions of the 
Perron-Frobenius eigenvector of the perturbation of a given nonnegative 
matrix. 

We next discuss the need of the restrictive assumptions for our analysis. 
First, Assumption I is used to verify the existence of a solution to the 
(recursive) system (P - pI)x = f!k+j+l' While a matrix Hg satisfying the 
conclusion of Lemma 3.6 can be identified when Assumption I fails to hold, 
its application to f!k + j + I will not produce a solution to (P - pI)x = f!k + j + I 

when the system is infeasible. Also, Assumption II asserting that !/E!:Q *- 0 
assures that the Algorithm has jJ distinct input and thereby generates jJ 

eigenvalues of P - 81. 
When jJ = 1, our analysis does carry through even if Assumption II is 

relaxed. It is easily verified that in this particular case Lemmas 3.3 is valid 
with the modification that we let !!o = !:Qo [that is, ( PI Y- I is defined to be 1 
even if PI = 0 (which occurs when vTEw = 0) ]. The remaining results of 
Section 3 then remain unchanged. In particular, we get a single solution of 
(A)-(B), and the analysis of Section 5 implies that this solution yields the 
expansions of the spectral radius of P and corresponding eigenvector. We 
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note that Assumption I together with the assumption that v = 1 yields a 
special instance of the situation studied and solved in Haviv, Ritov, and 
Rothblum (1992). 

Our analysis focused on nonnegative irreducible linear perturbations of a 
given matrix P, i.e., perturbations of the form P + eE for sufficiently small 
positive e. But, we next argue that the methods we develop generalize to 
polynomial perturbation of the form P( e) == P + E;: lei Ei • First, Assump
tion I remains unchanged, and Assumption II translates to the condition that 
for some i, !/EiY:! ~ O. Proposition 5.3 extends to the more general context, 
asserting the existence of the spectral radius of P + E;:IWiEi in RlwJ. The 
resulting system of equations for the coefficients is obviously more compli
cated than (3.3)-(3.4), and so is the resulting variant of (A)-(B) obtained by 
letting Po = p(P), q = v, and p = v-I. Still, our solution method can be 
modified to find the general solution of the variant of (A)-(B), and one of the 
solutions will yield an expansion of the spectral radius and corresponding 
normalized eigenvector of the perturbed matrices P( e). Further, any solu
tion of the modification of (A)-(B) defines a fractional power series with a 
positive radius of convergence; see the paragraph following Theorem 5.5. 
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