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ABSTRACT 

We use weighted directed graphs to introduce a class of nonnegative matrices 
which, under a simple condition, are inverse M-matrices. We call our class the 
generalized ultrametic matrices, since it contains the class of (symmetric) ultra­
metric matrices and some unsymmetric matrices. We show that a generalized 
ultrametric matrix is the inverse of a row and column diagonally dominant M­
matrix if and only if it contains no zero row and no two of its rows are identical. 
This theorem generalizes the known result that a (symmetric) strictly ultramet­
ric matrix is the inverse of a strictly diagonally dominant M-matrix. We also 
present inequalities and conditions for equality among the entries of the inverse 
of a row diagonally dominant M-matrix. Some of these inequalities and condi­
tions for equality generalize results of Stieltjes on inverses of symmetric diagonally 
dominant M-matrices. 

1. INTRODUCTION 

The difficulty of characterizing all nonnegative matrices whose inverses 
are M-matrices has led to the study of the general properties of inverse 
M-matrices and to the identification of particular classes of such matrices. 
Recently Martinez, Michon, and San Martin [8J showed that a certain class 
of nonnegative symmetric matrices, namely the strictly ultmmetric matri­
ces, are inverses of symmetric strictly diagonally dominant M-matrices. A 
matrix-theoretic proof of this result was given by Nabben and Varga [9], 
who analyzed this class further in [13J and broadened it in [14J . In this 
paper we introduce a class of matrices which we call the generalized ultra­
metric matrices. Our class is defined in terms of triangles in the weighted 
graph of the matrix, and it contains the ultrametric matrices as well as 
some unsymmetric matrices. We show that a generalized ultrametric ma­
trix is the inverse of a row diagonally dominant M-matrix if and only if 
it contains no zero row and no two of its rows are identical; see Section 4. 
The symmetric case of this theorem extends the known results referred 
to above. We develop proof techniques in terms of graphs which we call 
isosceles graphs and the corresponding form of the matrix under permuta­
tion similarity, which we call the nested block form. 

In 1887, in one of the earliest papers on M-matrices, Stieltjes [11] 
showed that the inverse of a nonsingular symmetric diagonally dominant 
M-matrix is a nonnegative matrix whose diagonal entries are greater than 
or equal to the off-diagonal entries in the corresponding column, and he 
gave necessary and sufficient conditions for the equality to hold. In this 
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paper we generalize Stieltjes's inequality to row diagonally dominant M­
matrices that may not be symmetric. We also generalize his conditions for 
equality to possibly unsymmetric row diagonally dominant M -matrices in 
terms of certain access relations of their graph; see Section 3. 

After we obtained some of the results in this paper, we learned that 
Nabben and Varga have considered similar classes of matrices and that 
they have obtained some overlapping results. 

2. DEFINITIONS 

We begin with some standard notation and definitions. 
Let X = [Xij] E ]Rnn. Let (n) = {l, ... ,n}. 
We let e denote the n x 1 all-ones vector, so that X e is the vector of 

row sums of X. We also let p(X) denote the spectral radius of X. 
We say X is 

positive(X » 0) if Xij > 0 for all i, j E (n); 

semipositive(X > 0) if Xij ~ 0 for all i,j E (n) and X =I 0; and 

nonnegative(X ~ 0) if Xij ~ 0 for all i,j E (n). 

We will write XT to represent the transpose of X. 
We will write min(X) = min{xij I i,j E (n)} and max(X) = max{xij I 

i, j E (n)}. 
We call X a Z-matrix if X = aI - P for some a E lR with P nonnegative. 

If in addition a ~ p(P), then we say X is an M-matrix. We sayan M­
matrix X is row diagonally dominant if X e ~ O. We say X is strictly row 
diagonally dominant if X e »0. Similarly, we say X is (strictly) column 
diagonally dominant if XT is (strictly) row diagonally dominant. 

Let a,{3 ~ (n). We will write Xa{3 to represent the submatrix of X 
whose rows are indexed by the elements of a and whose columns are indexed 
by the elements of {3. The set a' will be (n) \a. 

Let r = (V, E) be a digraph, where V is a finite vertex set and E is an 
edge set. Let U ~ V and F = {(i,j) I i,j E U, (i,j) E E}. Then we call 
(U, F) the subgraph of r induced by U. A path from j to k in r is a sequence 
of vertices j = rl,T2, ... ,Tt = k with (Ti,Ti+t) E E for i = 1, ... ,t - l. 
A path for which the vertices are pairwise distinct is called a simple path. 
The empty path will be considered a simple path linking every vertex to 
itself. If there is a path from j to k, we say that j has access to k. If j 
has access to k and k has access to j, we say j and k communicate. The 
communication relation is an equivalence relation; hence we may partition 



V into equivalence classes, which we will refer to as the classes of r. If 
a ~ V and i,j E V, we say i has access to j through a if there is a path 
from i to j in r such that all intermediate vertices (if any) belong to a. 

Let r l = (VI,Ed and r2 = (V2,E2 ) be graphs. If Vi = V2 , then 
we define the union of the graphs to be r l U r 2 = (VI,EI U E2). We 
define the product of the graphs to be r Ir 2 = (V, E) where V = VI U V2 

and E = {(i , j) liE VI , j E V2 , and there exists k E VI n V2 such that 
(i, k) E EI and (k,j) E E2} . We say r l ~ r 2 if there exists a bijection 
cp such that cp(vd = V2 and (cp x cp)(Ed ~ E2 · We say r l = r 2 if there 
exists a bijection cp such that cp(Vd = V2 and (cp x cp)(Ed = E2. 

We define the digraph of X by C(X) = (V, E), where V = (n) and 
E = {(i,j) I Xij i- a}. 

We define the transitive closure of C(X) by C(X) = (V, E), where 
V = (n) and E = {(i,j) I i has access to j in C(X)}. 

Let a ~ (n). Let (3 = a l
. We write Co(X) = C(Xpp) . 

It is well known that X is permutation similar to a matrix in block lower 
triangular Frobenius normal form, with each diagonal block irreducible. 
The irreducible blocks of X correspond to the classes of C(X). If an irre­
ducible block is singular, we call the corresponding class a singular class. 
Similarly if an irreducible block is nonsingular, we call the corresponding 
class a nonsingular class. 

We call Dn = (V,E), where V = (n) and E = ((n) x (n))\{(i,i) liE 
(n)}, the complete (loop less) digraph on n vertices. 

Let a ~ (n) and {3 = a l
• Then C/Cao = CP/3 - C/3o(Coo)-ICa/3 is 

referred to as the Schur complement of C with respect to Caa. 
We say X is a ultrametric matrix if 

(i) X is symmetric with nonnegative entries, 
(ii) Xij ~ min{xik,Xkj} for all i,j,k E (n), 

(iii) Xii ~ max{Xik : k E (n)\i} for all i E (n). 

We say X is a strictly ultrametric matrix if the inequality in (iii) is strict 
for all i E (n). If n = 1 and X > 0, then X is considered to be strictly 
ultrametric. We note that ultrametric matrices are called pre-ultrametric 
matrices in [14J. In that paper matrices called ultrametric are required to 
be nonsingular. 

We introduce the following definitions. 

DEFINITION 2.1. Let C E ]Rnn. We define n(C) to be the complete 
digraph Dn , with each directed edge (i,j) weighted by the value Gij. For 
ease of representation, we represent a pair of directed weighted edges pic­
torially by 
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• • 
J 

where Cij is always written closer to i and Cji is written closer to j . 

DEFINITION 2.2. Let C E lRnn. Let {i, j , k} ~ (n) be distinct. We call 
the subgraph of O( C) induced by {i,j, k} a triangle and denote it by L:.ijk· 

DEFINITION 2.3. Let C E lRnn. Let {i, j, k} ~ (n) be distinct. We say 
i is a preferred element of {i, j, k} or a preferred vertex of L:.ijk if 

(i) Cij = Cik, 

(ii) Cji = Cki, 

(iii) mini Cjk, Ckj} :::: min{ Cji, Cij}, 

(iv) maX{Cjk,Ckj}:::: maX{Cji,Cij}. 

Notice that if i is a preferred vertex of L:.ijk! then L:.ijk has the following 
labeled pattern: 

i 

k ~ J 
f d 

where a = Cij = Cik! b = Cji == Cki , f = Ckj' d = Cjk, and min{f,d} > 
min{a,b} and max{j,d}:::: max{a,b}. 

DEFINITION 2.4. Let C E IRnn. We call C a generalized ultrametric 
matrix if 

(i) C is nonnegative, 
(ii) Cii :::: max{C;j,Cji} for all i,j E (n), 

(iii) n :S 2, or n > 2 and every subset of (n) with three distinct elements 
has a preferred element. 

DEFINITION 2.5. Let C E lRnn be nonnegative. We call O( C) an isosce­
les graph if n :S 2, or n ~ 3 and every triangle in O(C) has a preferred 
vertex. 
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REMARK 2.6. Observe that an isosceles graph must be transitive. This 
is easily proved by considering each of the following possibilities in the 
diagram preceding Definition 2.4: a = 0, or b = 0, or d = 0, or f = O. 

Clearly C is a generalized ultrametric matrix if and only if D(C) is an 
isosceles graph and Cii ;:::: max{cij,Cji} for all i,j E (n). 

REMARK 2.7. Notice that if C is an ultrametric matrix and {i,j, k} c:;;: 

(n) are distinct, then f::. i jk has the following labeled pattern: 

i 

d d 

where d ;:::: a. This shows that the ultrametric matrices are just the gener­
alized ultrametric matrices which are symmetric. 

We give an inductive definition of a matrix in nested block form. 

DEFINITION 2.8. Let C E lRnn be nonnegative. We define inductively 
what it means for C to be in nested block form: 

(i) If n = 1, then C is in nested block form. 
(ii) If n > 1 and nested block form has been defined for all k x k nonneg­

ative matrices with k < n, then C is in nested block form if 

where Cll and C22 are square matrices in nested block form , E12 and E21 

are all-ones matrices of the appropriate sizes, b12 2': b 21 , min { Cij , Cj i } ;:::: b21 

for all i,j E (n), and max{ci j,Cji} ;:::: b12 for all i,j E (n). 
In Section 5 we give examples of generalized ultrametric matrices in 

nested block form and illustrate the isosceles graph of one of the examples. 

REMARK 2.9. Let i, j E (n), i < j. If C is in nested block form, then 
Gij occurs in an off-diagonal block of a submatrix of C in nested block form, 
and hence Cij ;:::: Cji· Consequently, if i < j then Cij 2': b12 and Cji 2': b21. 

REMARK 2.10. It is readily seen that a matrix in nested block form 



INVERSE M-MATRIX INEQUALITIES 327 

can be decomposed into the sum of an ultrametric matrix and an upper 
triangular nilpotent nonnegative matrix. 

3. INVERSE M-MATRIX INEQUALITIES 

In this section we discuss inequalities for inverses of M -matrices. Ex­
amples illustrating the results of this section will be given in this section 
and in Section 5. 

We begin with a lemma and a theorem in which we partially re-prove 
known results, and then we provide additional information. 

Let A be a nonsingular M-matrix, 0: c:;; (n ), and B = A/AOtOt . It is well 
known that B is again an M-matrix (implied by [4, Lemma 1), or see e.g. 
[1, Exercise 5.8, p. 159]). Further , if A is a nonsingular row diagonally 
dominant M-matrix, then it is easy to see that B is again row diagonally 
dominant [stated in part (ii) of our lemma]. In fact, in part (ii) we prove 
a more precise version of this result. Part (iii) can be derived from [12, 
Lemma 2], [7, Lemma 2], or [10, Lemma 2.2]. 

LEMMA 3.1. Let A E ]Rnn be a nonsingular M -matrix with Ae = s . 
Let 0: ~ (n), {J = 0', and B = A/AOtOt . Then: 

(i) B is a nonsingular M -matrix. 
(ii) If s 2: 0, then Be/3 = r 2: 0, and for any i E (J, ri > 0 if and only if 

either Si > 0 or there exists j E 0: such that Sj > 0 and i has access 
to j through 0: in G(A) . 

(iii) For any i , j E (J , i i j, one has bij < 0 if and only if i has access to 
j through 0: in G( A) . 

Proof. Recall that 

(i): See the comments preceding the statement of the lemma. 
(ii): Let T = -A/3Ot(AOtOt )-l 2: o. Let j E 0:. Since by [10, Lemma 2.2], 

G(T) = G(A/3Ot)G(AOtOt), it follows that t'j > 0 if and only if i has access 
to j through 0: in G(A). Since 

[AOtOt AOt/3 ] e = [I 0] [AOta Aa/3] e = [I 0] [sa] , 
o B T I A/3a A/3/3 T I S/3 
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we see that 
r = TS a + S{3. 

Thus (as is known) r 2: O. Moreover, ri > 0 if and only if either Si > 0 or 
there is a vertex j E a such that S j > 0 and i has access to j through a in 
G(A). 

(iii): From [10, Lemma 2.2], 

and the result follows. • 
We now apply Lemma 3.1 to obtain inequalities and conditions for 

equality for the entries of the inverse of a row diagonally dominant M­
matrix. Theorem 3.2 below was proven for symmetric matrices by Stieltjes 
[11, pp. 396-399], who, in this case, proved inequality (i) and also stated 
necessary and sufficient conditions for the equality in (ii) in terms of direct 
summands of A'i" For general row diagonally dominant M-matrices in­
equality (i) can be found, for example, in [1, Chapter 9, Lemma 3.14]. The 
equality in (ii) generalizes the results of Stieltjes to the unsymmetric case. 

THEOREM 3.2. Let A E lRnn be a nonsingular row diagonally dominant 
M-matrix. Let C = A-I and Ae = s. Fix i E (n). Let 

Ii = {k E (n)\{i}1 

k does not have access in Gi(A) to any j for which Sj > O}. 

Then: 

(i) Cii 2: Cki for all k E (n). 
(ii) Cii = Ch if and only if k E Ii· 

Proof (i): Let k E (n)\{i}, and let (3 = {k,i},a = (3', and B = 
AI Aaa· It is well known (see e.g. [15]) that B = (C{3{3)-I, and using 
classical results about adjoints we see that 

1 . C ( B) [ Cii B = d C adJ {3{3 = det 
et {3{3 -Cik 

Using Lemma 3.1, we obtain (i). 
(ii): Observe that Cii = Cki is equivalent to rk = 0, where r = Be{3. 

Hence by Lemma 3.1, (ii) holds if and only if Sk = 0 and k does not have 
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access in G;(A) to a vertex j E 0: for which Sj > O. But this condition is 
easily seen to be equivalent to k E "ri. • 

REMARK 3.3. Note that the proof of Theorem 3.2 immediately yields 
a strict inequality in (i) when A is a strictly row diagonally dominant M­
matrix. This result can be found in Fiedler and Ptak [5] in the course of 
the proof of their result (3 , 5) on p. 427, and is also true for all real strictly 
diagonally dominant matrices (see [6 , Theorem 2.5.12]). 

EXAMPLE 3.4. The converse of Remark 3.3 need not hold. Consider 

A = [-~ 
-1 

-1 -1] 
3 - 1 , 

-1 3 

Notice that A is not strictly row diagonally dominant, but Cii > Cki for 
allii-k. 

COROLLARY 3.5. Let A be a nonsingular row diagonally dominant M­
matrix. Let C = A - 1. Then the following are equivalent: 

(i) Row i is the only row for which A has a nonzero row sum. 
(ii) Column i of C has all of its entries equal to Cii' 

Proof Follows from Theorem 3.2 . • 
Next we look at a theorem on the relationship between the sum of 

the entries of a nonsingular row diagonally dominant M-matrix and the 
minimum entry of each row of its inverse. 

THEOREM 3.6. Let A E ]Rnn be a nonsingular row diagonally dominant 
M-matrix. Let t = L:~j=l aij , C = A- 1

, J.L i = min{cij I j E (n)} , and 
J.L = min(C). Then: 

(i) J.Lit ::; 1 for all i E (n) , 
(ii) J.Lt = 1 if and only if C has a column whose entries are all equal to J.L. 
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Proof Let Ae = rand E = eeT . Then r 2: 0, C 2: 0, and 

. . . J.Ll] [J.LIt] .. . J.L2 J.L2 t 
r -

o - • • . . . . 
J.Ln J.Ln t 

Thus 1 2: J.Lit for all i E (n), establishing (i). 
If J.Lt = 1, then 

n n 

1 = I'>ijrj 2: .2:J.Lrj = J.Lt = 1, 
j=I j=1 

and hence equality must hold throughout. Moreover, since Cij - J.L 2: 0, it 
follows that c;'jrj = J.LTj for all i , j E (n). Since A is nonsingular, there 
exists i E (n) such that ri > O. Then Cii = J.L, and by Theorem 3.2(i), 
J.L S Cki S Cii = J.L for all k f.= i, and hence equality must hold. 

If all the entries in column i of C are equal to J.L, then by Corollary 3.5, 
ri > 0 and rj = 0 for all j f.= i. Then 

n 

1 = L Cijrj = Ciiri = J.Lt. 
j=I 

Hence J.Lt = 1. • 

The next two examples illustrate the significance of J.L = min( C) in 
Theorem 3.6(ii). 

EXAMPLE 3.7. Let 

Notice that if t and J.Li are as in Theorem 3.6, then tJ.LI = (2)(~) = 1, but 
C does not contain a column for which all the entries are equal. 

EXAMPLE 3.8. Let 

A~U 
0 -lj 1 -1 ; then A-I = C = 
1 3 

-2 2 
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Notice that if t, /-Li, and /-L are as in Theorem 3.6, then C contains a column 
of constants, but t/-L = t/.li = (~)(l) < 1 for all i E (3). 

We conclude this section by examining some relationships between the 
entries of the inverse of a nonsingular M -matrix which need not be row 
diagonally dominant. 

THEOREM 3.9. Let A be a nonsingular M-matrix. Let C = A -I, and 
let {i , j , k} t; (n) be distinct. Then: 

(i) Cjk = CjiCik / Cii whenever j does not have access to k in Gi(A), 
(ii) Cjk > CjiCik / Cii whenever j has access to k in Gi(A) . 

Proof. Let {3 = {i , j , k} and a = {31 . Let B = A/Aaa. It is well known 
(see e.g. [15]) that B = (C,6,6)-1 and B is an M-matrix. By Lemma 3.1 , 
bjk = 0 if and only if j does not have access to k in Gi(A) . Using classical 
theory about adjoints we see that 

o ~ bjk = -detBdet ' , [
Ci Ck] 
Cji Cjk 

= -(detB)(ciicjk - CjiCik). 

Since det B > 0, the result follows . • 
It is known that Cjk 2: CjiCik/Cii for all distinct i,j,k is a necessary 

condition for a nonnegative matrix C to be the inverse of an M-matrix (see 
Willoughby [16, Theorem 1]). Thus our results in Theorem 3.9 represent a 
sharpening and a graph-theoretical refinement of Willoughby's observation. 

In the symmetric diagonally dominant case, the following corollary is 
essentially due to Stieltjes [11, p. 399]. 

COROLLARY 3.10. Let A E lRnn be a nonsingular M-matrix, and let 
C = A-I. Let {i,j,k} t; (n) be distinct. 

(i) If Cii = Cji then: 

(a) Cjk = C'ik whenever j does not have access to k in Gi(A); 
(b) Cjk > Cik whenever j has access to k in Gi(A). 

(ii) If Cii = Cik then: 

(a) Cjk = Cji whenever j does not have access to k in Gi(A) ; 
(b) Cjk > Cji whenever J' has access to k in Gi(A) . 

Proof. Follows from Theorem 3.9. • 



4. GENERALIZED ULTRAMETRlC MATRlCES 

We begin this section by showing that a generalized ultrametric matrix 
can be represented by an isosceles graph and that it is permutation similar 
to a matrix in nested block form. 

LEMMA 4.1. Let C E Rnn be nonnegative. Then the following are 
equivalent: 

(i) C is a generalized ultrametric matrix. 
(ii) n(c) is an isosceles graph and eii 2: max{cij,cjd for all i,j E (n). 

(iii) C is permutation similar- to a matrix in nested block form. 

Proof (i) implies (ii): Follows easily from the definitions. 
(ii) implies (iii): If n S 2, then the result follows from the definitions. 
If n 2: 3, fix i,j E (n) so that eij 2: Cji and Cij + eji S Ckl + Clk for 

all k, I E (n). Let a = Cij and b = Cji' We now choose nonempty subsets 
0:, (3 ~ (n) so that 0: n (3 = 0, 0: U (3 = In), and moreover, 

(4.2) 

where Ea (3, E(3o. are all-ones matrices of appropriate sizes, and 

for all k, l E In). ( 4.3) 

Begin by putting i E 0: and j E (3. For each k E In), if i is a preferred 
vertex of {i, j, k} then put k E (3; otherwise put k E 0:. We now show that 
0: and (3 are index sets for which (4.2) and (4.3) above are satisfied. 

Let iI, i2 E 0:\ {i} and j 1, j2 E (3\ {j}. Since n (C) is an isosceles graph, 
every triangle has a preferred vertex. We now sketch the ideas used to 
deduce the weights for the triangles drawn in Figure 1. Note that this 
diagram only contains the edges which are used in the proof. The weights 
of I:!.ijh and I:!.ijh are determined by the choices of j1, 12 E (3, which imply 
that i is a preferred vertex in each case. The weights of i:l.ijil and i:l.iji2 

are determined by the choices of i 1, i2 E 0:, which imply that i is not 
a preferred vertex of either triangle, and the minimality of a + b, which 
implies that j must be the only preferred vertex in each case. We can 
complete the diagram by observing that j is a preferred vertex of i:l. jil i2 

and j1 is the only possible preferred vertex of i:l.iitil' Reading weights from 
the triangles in Figure 1 and using the condition that Ckk 2: max{ Ckl, cld 

for all k, l E (n), it is easy to verify that 0: and (3 are as desired. 
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] 

(/ 

11 

FIG. 1. Diagram for proof of Lemma 4.1. where 1m i' b or dm i' a fOT m "" t,2, 
max{/m,dm } ~ a and min{Jm , dm} ~ b fOT m = 1.2. and max{gm , hm} ~ Q and 
min{gm, hm } ~ b for m = 1, 2, 3,4 . 

Since D(Caa ) and D(CI3.8 ) are also isosceles graphs, 0: and {3 can be 
partitioned likewise. Thus C is permutation similar to a matrix in nested 
block form. 

(iii) implies (i): Let C satisfy (iii). Choose 0:, {3 <;;; (n) so that 

is in nested block form. If i E 0: , j E {3 , and k E {3, clearly i is a preferred 
element of {i,j, k}. If i E 0:, j E 0:, and k E {3, clearly k is a preferred 
element of {i,j, k}. Since Ca a and Cf3f3 are also in nested block form, a 
simple induction shows that if i, j, k E 0: or i, j, k E {3, then {i, j, k} has a 
preferred element. Thus every three-distinct-elernent subset of (n) has a 
preferred element. 

Since every off-diagonal entry of C must be in some off-diagonal block 
of a matrix in nested block form, it follows that Cii ~ maxi Cij, CjJ for all 
'i , j E (n) . • 
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Notice that, by Remark 2.10 and Lemma 4.1, any generalized ultramet­
ric matrix can be decomposed into the sum of an ultrametric matrix and 
a nilpotent nonnegative matrix. 

Notice also that it follows from Definition 2.4(ii) that a generalized 
ultrametric matrix C has a row all of whose entries are equal to min(C) 
if and only if it has a column all of whose entries are equal to min(C) . 
Using the nested block form of C and induction, it can be shown that a 
generalized ultrametric matrix has two rows the same if and only if it has 
two columns the same. 

In the following theorem, we show that if a generalized ultrametric ma­
trix does not contain a row of zeros and does not have two rows which are 
equal, then it is nonsingular, and moreover, it is the inverse of a row and 
column diagonally dominant M-matrix. We could also state part (ii) of our 
theorem using columns instead of rows. This generalizes the results of [8] 
and [13], where the authors show that the inverse of a strictly ultrametric 
matrix is a strictly row and column diagonally dominant M-matrix. A nec­
essary and sufficient condition for an ultrametric matrix to be nonsingular , 
stated in terms of a certain decomposition of the matrix, may be found in 
[14J . Recall that ultrametric and strictly ultrametric matrices are defined 
to be symmetric. 

THEOREM 4.4. Let C E JRnn be a generalized ultrametric matrix. Then 
the following are equivalent: 

(i) C is nonsingular. 
(ii) C does not contain a row of zeros, and no two rows of G are the 

same. 
(iii) C is nonsingular, and G-I is a row and column diagonally dominant 

M-matrix. 

Proof (i) implies (ii) : If Gis nonsingular then (ii) must hold. 
(ii) implies (iii): We proceed by induction on the size of G. 
If n = 1, then (iii) holds trivially. 
If n ~ 2, then assume (ii) implies (iii) for all generalized ultrametric 

matrices of size k x k, where k < n . • 

By Lemma 4.1, we can assume without loss of generality that G is in 
nested block form, labeled as in Definition 2.8. Since (ii) holds for G, it is 
clear from the definition of nested block form that GIl and G22 also satisfy 
(ii), and so by the inductive hypothesis , Cll and G22 are nonsingular and 
their inverses are row and column diagonally dominant M-matrices. 
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If b 12 = b 21 = 0, then C is a block diagonal matrix and we are done. 
If not, then b12 > 0 (since in the definition of the nested block form we 
require b 12 2 b 21 ). 

Notice also that 

for m = 1,2. (4.5) 

Let tm be the sum of the entries in (Cmm)-l, m = 1,2. 

Proof The first inequality follows easily, since b21 :S b 12 . Since C is in 
nested block form, by Remark 2.9 we have b12 :S Cij for all i < j, and hence 
b12 :S the minimum entry in the first row of Cmm. The second inequality 
now follows from Theorem 3.6(i) applied to (Cmm )-l. • 

Claim 4.7 C j Cmm is a generalized ultrametric matrix satisfying con­
dition (ii) for m = 1,2. 

Proof Let I = 3 - m. Then 

By Claim 4.6, (4.5), and (4.8) it is easily checked that CjCmm satisfies the 
definition of a generalized ultrametric matrix. Moreover C jCmm does not 
have two equal rows; otherwise Cll and hence C would have two equal rows. 
It remains to show that C jCmm does not contain a row of zeros. Suppose 
it does. Then by (4.8) Cll has a row all of whose entries equal b21 b 12tm and 
hence, by Claim 4.6 and (4.5), 

If b21 = 0, then Cll and hence C would have a row of zeros. Thus b21 > 0 
and equality must hold throughout. Hence 

(4.9) 

and 
( 4.10) 

Since Cll has a row of entries equal to b21 , it has a diagonal entry equal to 
b 21 , and since the diagonal entry is greater than or equal to b12 , it follows 
that b21 = b 12 . Hence by (4.10), (4.5), and Theorem 3.6(i) applied to 
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Cmm , tm = 1/ min(Cmm ). By Theorem 3.6(ii) applied to [(Cmm)-l]T we 
now have that Cmm also has a row all of whose entries equal b21 . Hence our 
assumption that C /Cmm contains a row of zeros implies that C contains 
two rows all of whose entries equal b21 , a contradiction. This establishes 
the claim. • 

By Claim 4.7 and our inductive assumption, Cmm and C/Cmm , m = 
1, 2, are the inverses of row and column diagonally dominant M-matrices. 
Consequently, combining formulas from [2, (10) , p. 773] (see also [3]) and 
[15, (4) , p , 251]' A = C- J can be written as 

or 

-(C/C22)-lb12 E 12(C22)-1] (412) 
(C/Cl1 )-l . . 

We now show that A is a Z-matrix. Since the diagonal blocks of A in 
(4.11) are M-matrices, we need only show that Ami::; 0 for m = 1,2, l = 
3 - m . Let 8j ~ 0 and Tj ~ 0 denote the sums of the entries in column j 
of (C/Cmm)-l and in row j of (Cmm)-l , respectively. Then, by (4.11), 

AmI = -(Cmm)-lbmIEml(C/Cmm)-l 

[ :~~~ ::~~ ::: :P~~l 
- -b P - ml . . . .. . .. . 

81Tq S2Tq SpTq 

::; o. 

Next we show that A is row diagonally dominant. From (4.12) and 
Claim 4.6, if m = 1,2 and l = 3 - m, then 

Ammem + Amlel = (C/Cll)-lem - (C/Cll)-lbmIEml(Cll)-lel 

= (C/Cll)-lem - (C/Cll) - lbmltlem 
= (1- bmltl)(C/Cll)-lem ~ O. 

Similarly, from (4.11) and Claim 4.6, A is column diagonally dominant 
because 
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(iii) implies (i): Follows trivially. • 
COROLLARY 4.13. Let C be a nonsingular generalized ultrametric ma­

tri:I; which is in nested block form (labeled as in Definition 2.8). Then 
Cll , C22, and the Schur complements CICll and CIC22 are nonsingular 
generalized ultrametric matrices. 

Proof. Follows from Theorem 4.4 and Claim 4.7. • 
We remark here that not all Schur complements of generalized ultra­

metric matrices are generalized ultrametric matrices (see Section 5). 

5. ILLUSTRATIVE EXAMPLES 

EXAMPLE 5.1. Consider the following generalized ultrametric matrix 
in nested block form: 

2 2 2 2 2 
1 3 2 2 2 

C= 1 5 4 3 
1 1 1 5 3 
1 1 1 1 3 

Consider the representation O(C) shown in Figure 2. Notice that every 
triangle has a preferred vertex; hence O( C) is an isosceles graph, as required 
by Lemma 4.1. 

Observe that we can write C as a sum of an ultrametric matrix and a 
nonnegative nilpotent matrix as follows: 

2 1 1 1 1 0 1 1 1 1 
1 3 1 1 1 0 0 1 1 1 

C= 1 1 5 1 1 + 0 0 0 3 2 
1 1 1 5 1 0 0 0 0 2 
1 1 1 1 3 0 0 0 0 0 
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<) 

'2 
4 

'2 

'2 3 

4 

:3 3 

'2 

2 '2 5 

FIG . 2. 

Let a = {I, 2} and /3 = a', and consider the Schur complements 

[
4 3 2] 

C / Crj.Q: = a 4 2 , 
a a 2 

1 [4 4] 
C/CPP=3 1 7 ' 

which are also generalized ultrametric matrices, as required by Corol­
lary 4.13. However, observe that if a = {I, 3}, then 

is not a generalized ultrametric matrix. Hence a Schur complement of 
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a generalized ultrametric matrix need not be a generalized ultrametric 
matrix. 

Consider 

28 -16 -4 -1 -3 

A = C- 1 = ~ 
-4 16 -4 -1 -3 

0 0 8 -6 -2 
32 

0 0 8 -8 0 
-8 0 0 0 16 

and let 

e = [1 1 1 1 I]T. 

Then 

r = Ae = HI 1 0 0 2jT, 

and 

Thus A is an M -matrix which is both row and column diagonally dominant, 
as predicted by Theorem 4.4. Moreover, the sum of the entries of A is 
~ < 1 = min(C), as required by Theorem 3.6. 

Note that row 1 of C has all its entries equal to Cll, and Si = 0 for all 
i =f. 1, as required by Corollary 3.5 applied to AT. 

Let Ii be defined as in Theorem 3.2. Notice that r3 = r4 = 0, while 
rl > 0 and r2 > O. Vertices 3 and 4 do not access vertices 1 and 2 in 
G5 (A). Hence 15 = {3,4}. We also note that C55 = C45 = C35, as required 
by Theorem 3.2 applied to A. Further, as required by Corollary 3.10, since 
4 does not have access to 3 in G5 (A), C43 = C53. Since 3 has access to 4 in 
G5 (A), C34 > C54. Since 3 and 4 do not have access to 1 and 2 in G5 (A), it 
follows that C31 = C41 = C51 and C32 = C42 = CW· 

EXAMPLE 5.2. An example of a nonsingular (symmetric) ultrametric 
matrix which is not strictly diagonally dominant is given by 

C = [2 1]. 
1 1 

EXAMPLE 5.3. Note that Definition 2.3 allows min{J, d} ::::: max{ a, b}. 
For example, the following matrix is a nonsingular generalized ultrametric 
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matrix whose inverse is a strictly diagonally dominant M-matrix: 

However, the matrix 

with 

[

14 

B- 1 = ~ 1 
39 -3 

-3 

1 

14 

-3 
-3 

-9 
-9 
14 
1 

-9] -9 
1 ' 

14 

shows that if we remove the condition that max{ c, d} ?': max{ a, b} from 
Definition 2.3, the inverse need not be an M-matrix. 

We acknowledge with thanks some conversations and a useful exchange 
of information with Reinhard Nabben and Richard Varga, which have helped 
improve our paper. We also thank Kelly Wieand for her careful reading of 
our manuscript and for useful comments. 
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