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ABSTRACT 

Some of the main results of the Perron-Frobenius theory of square nonnegative 
matrices over the reals are extended to matrices with elements in a real closed field. 
We use the results to prove the existence of a fractional power series expansion for the 
Perron-Frobenius eigenvalue and normalized eigenvector of real, square, nonnegative, 
irreducible matrices which are obtained by perturbing a (possibly reducible) nonnega­
tive matrix. Further, we identify a system of equations and inequalities whose solution 
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yields the coefficients of these expansions. For irreducible matrices, our analysis 
assures that any solution of this system yields a fractional power series with a positive 
radius of convergence. 

1. INTRODUCTION 

In this paper we obtain convergent fractional power series expansions for 
the Perron-Frobenius eigenvalue and normalized eigenvector for real, square, 
nonnegative, irreducible matrices which are obtained by perturbing (not 
necessarily irreducible) nonnegative matrices. Further, we present a nonlin­
ear system of equations and inequalities whose solution yields the coefficients 
of these expansions (under linear perturbations), and show that any solution 
of this system yields a fractional power series with a positive radius of 
convergence. The main tool in our analysis is the extension of the Perron­
Frobenius theory to matrices with elements in the field of convergent Puiseux 
series which is a real closed field. In tum, these results are derived from an 
extension of the Perron-Frobenius theory to nonnegative matrices with 
elements in an arbitrary real closed field. 

Let P and B be two n X n real matrices such that for all suffiCiently 
small positive e, the matrix P + e B is nonnegative and irreducible. The 
Perron-Frobenius theory assures that for such e, the spectral radius of 
P + eB, which we denote p(P + eB), is a simple eigenvalue of P + eB 
having a corresponding positive eigenvector. Results of Kato (1966) show the 
existence of fractional power series expansions of eigenvalues of P + e B, 
suggesti ng that there is a fractional power series expansion for p( P + e B) of 
the form f.7=OPkek / l'. [n particular, once a normalization condition is 
determined, there is a unique eigenvector u(e) of P + e B corresponding to 
p(p + eB), and the results of Kato suggest that this eigenvector has a 
fractional power series expansion in fractional powers of e, say f.~ = 0 Uk e k / 1'. 

Here, we establish these expansions by using the Perron-Frobenius theory 
over the real closed field of real convergent Puiseux fractional power series 
with finite radius of convergence. We also identifY a nonlinear system of 
equations and inequalities over the reals which characterize the coefficients 
of such expansions. [n particular, we prove that every solution of this set of 
equations defines a fractional power series with a positive radius of conver­
gence. 

The Perron-Frobenius eigenvalue and normalized eigenvector yield im­
portant characteristics of dynamiC systems that are governed by nonnegative 
transition matrices; see the many examples in Berman and plemmons (1979). 
In particular, expansions of these characteristics for perturbed transition 
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matrices are useful for sensitivity analysis. For example, perturbed stochastic 
matrices were studied by Schweitzer (1986) and Meyer and Stewart (1988), 
and perturbations of general (not necessarily stochastic) nonnegative matrices 
were explored by Cohen (1978), Deutsch and Neumann (1984), and Haviv, 
Ritov, and Rothblum (1992) among others. All previous schemes for comput­
ing explicit expansions of the Perron-Frobenius eigenvalue and corresponding 
normalized eigenvector with which we are familiar are confined to regular 
power series, rather than fractional power series; see, for example, Schweitzer 
(1986) and H aviv , Ritov, and Rothblum (1992). 

It has long been observed that the Perron-Frobenius theory does not 
extend to arbitrary ordered fields and that ordered fields over which corre­
sponding results hold must satisfY extra structure; see Barker and Schneider 
(197,5). The main tool for proving our results about fractional power series 
expansions is the extension of the Perron-Frobenius theory to nonnegative 
square matrices over real closed fields, in particular, over the Puiseux field of 
fractional power series. This is done by observing that results of the Perron­
Frobenius theory can be expressed with closed formulae in the language of 
ordered fields and by applying the Tarski-Seidenberg principle, which asserts 
that the validity of a closed formula over all real closed fields follows from its 
validity over the reals. 

In Section 2 we summarize preliminaries about ordered fields, the 
corresponding predicate language, and the Tarski-Seidenberg principle. In 
Section 3, we extend some of the main results of the classical Perron­
Frobenius theory to nonnegative matrices over real closed fields. The results 
are applied in Section 4 to Puiseux fields of formal fractional power series 
over real closed fields. In Section ,5 we consider the real convergent Puiseux 
field, which is the real closed subfield of the formal Puiseux field over the 
reals consisting of power series with positive radius of convergence. The 
earlier results are then used to obtain expansions of the Perron-Frobenius 
eigenvalue and normalized eigenvector of a nonnegative, irreducible pertur­
bation of real matrices. In Section 6, we relate results of Barker and 
Schneider (1975) concerning the existence of Perron-Frobenius eigenvalues 
over ordered fields to the results of Section 3. Finally, we discuss our results 
and sonw possible extensions in Section 7. 

2. ORDERED FIELDS AND THE 
TARSKI-SEIDENBERG PRINCIPLE 

Essential to our development are ordered fields and closed formulae 
which are used to express certain facts about ordered fields. These concepts 
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are standard in mathematics, and we describe them here briefly; for a more 
complete development see MacLane and Birkhoff (1967) or Enderton (1970), 
for example. 

As usual, a field is a set F containing three distinct elements - 1 
(negative one), 0 (zero), and 1 (one) and two binary operations + (addition) 
and . (multiplication) defined over pairs of elements of F, where the 
follOwing conditions hold: 0 is the addition identity, 1 is the multiplication 
identity, -1 is the additive inverse of 1, addition and multiplication are both 
associative and commutative, multiplication is distributive over addition, all 
elements in F have an additive inverse, and all elements in F " {oJ have a 
multiplicative inverse. An ordered field is a field F with a binary relation > 
(bigger than) which is a total order and is preserved under addition and 
under multiplication by positive elements; that is, for a, b, and c in F with 
a > b one has that a + c > b + c and if c > 0 then ac > be. Throughout 
we use standard notation for fields and ordered fields; for example, the 
multiplicative inverse of an element c "* 0 is denoted c- 1. We identifY fields 
and ordered fields with their underlying sets. 

An atomic formula is an expression of the form p = q, p ~ q, p "* q, or 
p > q, where p and q are polynomials with integer coefficients. Formulae 
are expressions constructed by a finite number of steps from atomic formulae 
via the application of the connectives 1 (negation), 1\ (and), V (or), and the 
quantifiers 3 (there exists) and 'rJ (Jor every) as follows: all atomic formulae 
are formulae , and if ({J and Ij! are formulae , then so are 1 ({J, ({J V Ij! , ({J 1\ Ij!, 
3 x ({J, and 'rJ x ({J, where x is any variable. A variable x is free in a formula ({J 
if nowhere in the formula is it modified by a quantifier 3 or 'rJ. The free 
variables x of a formula ({J are sometimes displayed, and we write ({J(x) 
interchangeably with ({J . A closed formula is a formula with no free variables. 
For example, ({J defined by 

({J : ((y < 0) V (3x (X2 = y) 1\ (x ~ 0)))) (2.1) 

is a formula with free variable y, and we sometimes write ({J( y). Also, 

Ij! : Vy ((y < 0) V (3x (X2 = y) 1\ (x ~ 0)))) (2.2) 

is a closed formula. A formula is called quantifierlree if is has no quantifiers. 
To enhance readability, we use matrix and vector notation whenever 

convenient; for example, we refer to the formula 3 x (Ax = b), where A is a 
m X n array of variables and x and yare n X 1 and m X 1 arrays of 
variables, respectively. The number of elements in a vector y whose coordi-
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nates are variables or elements in a given field is denoted # y. Also, we use 
the connective -+ (implies). 

An extension of a field F is a field G which contains F where addition 
and multiplication ill F are, precisely, the restriction of those operators in G. 
In this case we also say that F is a sub field of G. Similarly, we use extensions 
of ordered fields and refer to ordered subfields and ordered field extensions. 
We note that every ordered field is an ordered field extension of an 
isomorphic copy of the rational ordered field Q. 

A dosed formula cp determines a mathematical statement over each 
ordered field F, with the interpretation that the variables take values in F. 
We say that cp is satisfied or is not satisfied over an ordered field F if the 
corresponding mathematical statement is, respectively, true or false over F. A 
closed formula can be satisfied over one ordered field but false over another. 
For example, the closed formula", defined by (2.2) is true over the reals but 
false over the rationals, and vice versa for 1", . Similarly, given a formula cp( y) 
and an assignment of the variables to elements of an ordered field F, we 
obtain a mathematical statement which has an interpretation over any given 
ordered field extension G of F. If under such an assignment the vector 
y = (y I ' ... ,Yn) of free variables of cp is aSSigned to the vector I] = 

(1]1 " '" I]n) E Fn, we say that cp(l]) is satisfied or is not satisfied over G if 
the corresponding mathematical statement over G is , respectively, true or 
false. We say that two formulae are eqUivalent over an ordered field F if they 
have the same set of free variables and if one is true under a corresponding 
assignment of variables to the elements of F if and only if the other is also. 

A field F is called algebraically closed if every polynomial with coeffi­
cients in F has a root. A real closed field is an ordered field F satisfying the 
follOwing two conditions: 

(1) every positive element in F has a square root, and 
(2) any polynomial of odd degree with coefficients in F has a root in F; 

see Jacobson (1964, pp. 273-277). For example, the real field R is a real 
closed field. 

Every field is contained in an algebraically closed field, and the smallest 
such field is called its algebraiC closure; see Jacobson (1964, pp. 142-145). 
Also, every ordered field has a real closed ordered field extension, and the 
smallest such extension is called its real closure; see Jacobson (1964, pp. 
284-286). A necessary and sufficient condition for an ordered field F to be 
real closed is that its extension by the square root of - 1, denoted t, results in 
an algebraically closed field, that is, if and only if F + tF is algebraically 
closed; see Jacobson (1964, Theorem 5 and 6, pp. 275- 276). 

Tarski (1951) constructed an algOrithm for deciding in a finite number of 
steps whether a closed formula is satisfied over the reals, that is , whether a 
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given closed formula is true when the variables appearing in it are thought of 
as real numbers. Tarski's algorithm eliminates from a formula all quantifiers 
3 and 'r/ and variables they quantity, while introducing no new variables. The 
elimination method leads to an equivalent quantifier-free formula. Tarski 
originally applied his decision method to the reals. Seidenberg (1954) ob­
selVed that the properties of the reals used in the decision method are 
properties of every real closed field. The following result follows from Tarski's 
algOrithm; see Tarski (1951) and Seidenberg (1954) for details. 

THEOREM 2.l. Let 'P be a formula. Then there exists a quantifierJree 
formula I/J which is eqUivalent to 'P over every real closed field, and I/J has 
the same free variables as 'P. 

The first two corollaries of Theorem 2.1 are commonly referred to as the 
Tarski-Seidenberg principle; see Seidenberg (1954) or Jacobson (1964, pp. 
307, 313, 314). 

COROLLARY 2.2. Let F be a real closed field, 'P( x) be a formula, and 
x E F#x. If 'P(x) is satisfied over one real closed extension of F, then 'P(x) is 
satisfied over all real closed extensions of F. 

Proof. By Theorem 2.1, 'P can be replaced by a quantifier-free formula 
I/J, and the conclusion of the corollary for such a formula is trivial, as the 
testing of whether or not I/J( x) is satisfied over any ordered field extension of 
F requires a finite number of tests of statements of the form a = b or a > b, 
where a and b are elements of F. • 

COROLLARY 2.3. Let 'P be a closed formula. Then 'P is true over one real 
closed field if and only if it is true over every real closed field. 

Corollary 2.2 shows that if 'P(x) is a formula and x E F#x, then 'P(x) is 
true over F if and only if 'P(x) is true over every real closed extension of F; 
in this case we say that 'P( X) is satisfied. Similarly, we say that a closed 
formula is satisfied if it is satisfied over the real closure of the rationals (the 
smallest real closed field). Given a formula 'P(x, y), a field F and a vector 
y E F#!I, we denote the set of vectors X E F #x for which 'P( x, y) is satisfied 
by X(F, 'P, y). 

COROLLARY 2.4 (INVARIANCE OF FINITE SOLUTION SETS). Let F be a real 
closed field, 'P(x, y) be a formula, and y E F#Y. If X(G, 'P, y) is finite for 
some real closed extension of F, then X(G, 'P, y) is invariant over all real 
closed extensions of F. 
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Proof. Let C and H be two real closed extensions of F. For each 
nonnegative integer k, the assertion that there are exactly k distinct vectors x 
for which cp(i , y) is true can be expressed by the formula !/Ik(Y) given by 

By Corollary 2.3, satisfiability of each !/Ik( y) over F, C , and H is the 
same, implying that the cardinalities of X(F, CP2...y), X(C , cp, ]), and X(H, 
cp, y) coincide. By Corollary 2.2, we have that X(C , cp, y) ;;:2 X(F , cp, y) and 
X(H , cp, y) ;;:2 X(F , cp, y). Combining these facts , we conclude that 
X(F , cp, y) = X(C , cp, y) = X(H, cp , y). • 

COROLLARY 2.5. Let F be a real closed field , cp( x, Y) be a quantifierlree 
formula, and Ij E F#Y. If X(H , cp, y) is finite for some real closed extension 
H of F, then X( C, cp , Ij) is a subset of X( F, cp, Ij) for every ordered field 
extension G or F. 

Proof. Suppose X(H, cp, Ij) is finite for some real closed extension H of 
F, and let G be an ordered field extension of F. By Jacobson (1964, pp. 
142-145), G has a real closed extension, say H' , and as cp is quantifier-free 
~(H', cp, Ij) ::::2JC, cp, y). By Corollary 2.4, X(F, cp , Ij) = X(H', cp, Ij); hence, 
X(F, cp, Ij) ;;:2 X(G, cp, y). • 

COROLLARY 2.6. Let F be a real closed field , G an ordered field extension 
of F, p( x, y) a polynomial with integer coefficients where #x = 1, and Ij a 
vector in F#Y. lfi in G satisfies p(i, y) = 0, then i is in F. 

Proof. Euclid's algorithm implies that there are only finitely many 
elements x in F for which p(i, y) = 0. The corollary now follows directly 
from Corollary 2.5. • 
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3. PERRON-FROB EN IUS THEORY OVER REAL CLOSED FIELDS 

In this section we extend some of the main results of the Perron-Frobenius 
theory to nonnegative matrices over real closed fields. Let F be a given 
ordered field. A vector a with elements in F is called nonnegative or 
positive, written a ~ 0 or a > 0, if all of its coordinates are nonnegative or 
positive, respectively. A vector a is called semipositive, written a > 0, if 
a ~ 0 and a -=1= O. Corresponding definitions apply to matrices. An n X n 
nonnegative matrix P is called irreducible if E?:lp i ~ O. We note that the 
1 X 1 zero matrix is nonnegative and irreducible; when we wish to exclude 
this case we refer to square, semipositive, irreducible matrices. 

Let F be a given real closed field, and let A E F" x n. We say that a pair 
of elements ( 0', (3) is a eigenvalue of A if there exist vectors v, w E F n such 
that 

Av = o'V - f3w and Aw = o'W + f3v, (3.1) 

and in this case we call the pair (v, w) an eigenvector of A corresponding to 
the eigenvalue (0', (3), or briefly an eigenvector of A. We observe that (3.1) 
is equivalent to the usual assertion that 0' + Lf3 and u + LV are standard 
eigenvalue and corresponding eigenvector of A in the algebraiC closure of F, 
namely, A(u + LV) = (0' + Lf3XU + LV). If 0' E F and (0',0) is an eigen­
value of A, we Simply say that 0' is a eigenvalue of A. In this case there is an 
eigenvector of A corresponding to (0', 0) having the form (v, 0) where 
v E Fn, and we refer to v as an eigenvector of A corresponding to 0'. 

THEOREM 3.1. Let F be a real closed field, let fin Fn be a semipositive 
vector, and let P in Fnxn be a semipositive, irreducible matrix. Then there 
exists a positive element p in F and a positive vector u in Fn such that p is an 
eigenvalue of P, and u is a corresponding eigenvector satisfying fT u = 1. 
Further: 

(a) p is the unique eigenvalue of P having a semipositive eigenvector, 
(b) u is the unique eigenvector of P corresponding to p that satisfies 

fTu = 1, and 
(c) for every eigenvalue (0', (3) of P, 0'2 + f32 .;;; p2. 

Proof. When F is the real field, the conclusions of our theorem are part 
of the classic Perron-Frobenius theory; see Berman and Plemmons (1979). 
Now, for a fixed positive integer n, the conclusion of our theorem is 
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expressible by the validity of the following closed formula: 

VP Vf « P > 0) 1\ (f> 0) 1\ (L7~~pi ~ 0)) 

~ (3p 3u ( p> 0) 1\ (u ~ 0) 1\ (Pu = pu) 1\ (ru = 1)) 

1\ (Va Vf3 (3v 3w«Pv = av - f3w) 1\ (Pw = aw + f3v) 
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I\(v > 0) 1\ (w = 0») 

~ « a = p) 1\ ( f3 = 0») 

1\ (Vu' (((Pu' = pu') 1\ (ru' = 1)) ~ (u = u'»)) 

1\ (Va Vf3 (3v 3w «Pv = av - f3w) 1\ (Pw = aw + f3v») 

~ ( a 2 + f3 2 ~ p2))). 

In particular, we conclude that this closed formula is true over the reals. 
By the Tarski-Seidenberg principle (Corollary 2.2), the validity of this closed 
formula over the reals implies its validity over all real closed fields, establish­
ing the conclusion of our theorem when F is an arbitrary real closed field. • 

Given a real closed field F and a square, nonnegative, irreducible matrix 
P and a semipositive vector f over F, conditions (a) and (b) of Theorem 3.1 
assert the existence and uniqueness of the scalar p and vector u. We shall 
refer to this scalar and this vector as the PF -eigenvalue and PF {-eigenvector 
of P and denote them by p(P) and u(P,f), respectively. We sometime omit 
the reference to f and simply refer to a nonnalized PF-eigenvector of P. The 
next result shows invariance of these entities over real closed extensions of a 
given real closed field. 

THEOREM 3.2. Let F and G be real closed fields where G is an extension 
of F, let fin Fn be a semipositive vector, and let P in F nX 

n be a semipositive, 
irreducible matrix. Then the PF-eigenvalue and PF{-eigenvector of P over F 
and over G coincide; in particular, the PF-eigenvalue of P and coordinates of 
the PF{-eigenvector over G are in F. 

Proof. The proof of Theorem 3.1 shows that the assertion that p and u 
are the PF-eigenvalue and PF{-eigenvector of P over F is expressible by a 
formula cp( x, y) where x represents p and u, and y represents f and P. 
For a particular realization of P and f, Theorem 3.1 shows that p and u are 
determined uniquely and are invariant over all real closed extensions of F. 
Hence, Corollary 2.4 implies that over each such extension, p and the 
coordinates of u are in F. • 
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The next two results adapt Theorems 3.1 and 3.2 to the case where the 
underlying matrix need not be irreducible. 

THEOREM 3.3. Let F be a real closed field, let fin F n be a positive 
vector, and let P in F n x n be a nonnegative matrix. Then there exists a 
nonnegative element p in F and a semipositive vector u in Fn such that p is 

an eigenvalue of P, and u is a corresponding eigenvector satisfying fT u = 1. 
Further, for every eigenvalue (a, (3) ofP, 0'2 + (32 < p2. 

Proof. The proof follows from the Tarski-Seidenberg principle by the 
arguments used to establish Theorem 3.1. Of course, a different closed 
formula is required. • 

Given a real closed field F and a square, nonnegative matrix P and 
positive vector f over F, Theorem 3.3 uniquely determines the asserted 
element p. We shall refer to this unique element as the PF-eigenvalue of P 
and denote it by pep). But the vector u need not be unique. The next result 
extends the invariance of the PF-eigenvalue over real closed extensions of an 
underlying ordered field to the cases where P is not irreducible. 

THEOREM 3.4. Let F and G be real closed fields where G is an extension 
of F, and let P in F 11 X n be a nonnegative matrix. Then the PF -eigenvalue of P 
over F and over G coincide; in particular, the PF-eigenvalue of P over G is in 
F. 

Proof. The proof follows the arguments in the proof of Theorem 3.2. • 

We observe that the Tarski-Seidenberg principle can be used to extend, 
to real closed fields, any result of the Perron-Frobenius theory that is 
expressible by formulae. 

4. PERRON-FROBENIUS THEORY OVER FORMAL 
PUISEUX FIELDS 

In this section we consider formal fractional power series in an infinitesi­
mal over ordered fields. When the underlying ordered field is real closed, 
these series form a real closed field. We characterize the PF-eigenvalue and 
normalized PF-eigenvector of square, nonnegative, irreducible matrices over 
this ordered field through a set of equations and inequalities in the original 
field. 
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Throughout, let F be a given ordered fleld, and let w be an indetermi­
nate symbol. Also, let Z be the ring of integers, Q the ordered field of 
rationals, and Z+ and Q + the positive elements in Z and Q, respectively. 
Define F * l w j to be the collection of all triplets (T, p , a) where T E Q +, 

p E Z, and a: Z -+ F where a i = 0 for all i « p. For(T, p, a) E F*lwj, we 
deflne T to be the exfactoT and p to be the base; also, with j == min {i E Z: 
(li =F O}, we define j to be the order and aj to be the order coefficient. If 
a = 0, the order and order coefficient are defined to be + 00 and 0, 
respectively. For convenience, we denote a triple (r, p, a) E F*lwj by the 
formal sum L7~p(l i Wir , or more briefly Lpaiwir. As w is an indeterminate 
symbol, we can recover (r , p, a) from the representation by a formal sum. If 
r = 1, we omit r in the formal sum. 

We next introduce an equivalence relation :::: over F * l w 1. We say that 
elements Lpaiwir E F*lwj and Lqbjwf

< E F*lwj satisJY the relation, writ-
ten L"aiw ir :::: L'Ibjwf', if . 

(1) a i =F 0 implies that j = iris is an integer and hj = ai' and 
(2) bj =F 0 implies that i = js I r is an integer and a i = hj" 

It is easily seen that :::: is reflexive, symmetric, and transitive. We denote the 
collection of corresponding equivalence classes which partition F * l w j by 
Fl w 1. As usual, we routinely use elements of F * l w j to represent elements of 
FlwJ. 

The underlying ordered fleld F is embedded in F * l w J, where an 
element U E F is identified with the element (1,0, a) E F * l w J with ai = 0 
for all i =F 0 and ao = u. We shall identifY the elements of F with the 
corresponding elements of F * l w J, that is, we consider F to be a subset of 
F*lwJ. The element (r, l,a) E F*lwJ with ai = 0 for all i =F 1 and (ll = 1 
is denoted w r. If r = 1, we write w for WI. Also, if r = 11 q for some 
q E Z+, we write w k / q for W(l / q)k for each k E Z. 

The order and order coefficients are invariant over the elements of a 
common equivalence class in F * l w J; hence they are well defined for all 
elements in F l w J. But the exfactor and the base are not invariant over an 
equivalence class of F * l w J. In fact, we have the follOwing. 

LEMMA 4.1. Let Lpaiwir be in F*lwJ, Then: 

(a) for every integer q « p, Lpaiwir :::: Lqaiwir, and 

(b) if SEQ + is obtained by dividing r by a positive integer k , then 
Lpajwir:::: LqbjwjS, where q = kp and 

b = {aj / k 

j 0 
if j E {kp,k(p + l),k(p + 2), ... }, 

otherwise. 
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Lemma 4.1 shows that the base of a representation of an element in F l w J 
can be arbitrarily reduced and the exfactor can be divided by an arbitrary 
positive integer. It follows that every pair of element in F l w J have represen­
tations with common base and exfactors. By using such representations, we 
define addition and multiplication of the elements in Fl w 1; namely, for 
elements in FlwJ with representation Lpaiwir and LphiWir, we have 

p p p 

and 

It is easy to see that the outcome of addition and multiplication is indepen­
dent of the selected representations; hence, these operations are well defined 
on Flwj. We note that when Lpaiwir E FlwJ and the set I of indices i with 
ai *- 0 is finite, the formal sum Lp ai w

ir equals the finite power series 
Li E I ai( w r)i, where superscripts i denote powers. 

Addition and multiplication in F l w J are both commutative and associa­
tive, multiplication is distributive over addition, and the additive and multi­
plicative identities of F are respectively, additive and multiplicative identities 
in FlwJ. Also, for an element a in FlwJ with representation Lpaiwir E 

F * l w J, Lr< -a)wir is the additive inverse of a, and if a is nonzero and 
ap *- 0, then L_pCi w

ir with 

ifi<-p, 

ifi=-p, 

if i > -p 

is the multiplicative inverse of a. Hence, F l w J with the above definitions of 
addition and multiplication is a field, to which we refer as the formal Puiseux 
field. 

An order on FlwJ is obtained by defining a nonzero element Lpaiwir E 

FlwJ to be positive, written Lpaiwir > 0, if its order coefficient is positive. 
As the order coefficient is invariant over equivalence classes in F l w 1, the 
order in Fl w J is well defined. Given two elements a and /3 in F l w J, we say 
that a is greater than /3, written a > /3, if a - /3 > O. Trivially, the relation 
"greater than" is preserved under addition and under multiplication by 
positive elements. Hence, with the above definition of addition, multiplica­
tion, and order, FlwJ is an ordered field. Further, we have the following fact. 
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THEOREM 4.2. F is a real closed field if and only if Fl w J is a real closed 
field. 

Proof. We first establish a modified version of the theorem asserting 
that F is algebraically closed if and only if is Fl w J also. That fact that Fl w J 
is algebraically closed whenever F is algebraically closed is proved in Walker 
(1950, Theorem 3.1, p. 98). To establish the reverse implication, suppose 
Fl w J is algebraically closed, and let p( x) = L~= OCh xh be a nonzero polyno­
mial whose coefficients Co , .. . , CM are in F. Without loss of generality we 
assume that CM '1= O. As FlwJ is algebraically closed, it contains a root of 
pO, say a = Lpa j w jr

• We observe that the orde r j of a is not negative, for 
otherwise the order coefficient of L~= Ochah would be cM(a)M '1= 0, in 
contradiction to the assertion that L~= ocha h = O. Now, the coefficient of 
O - ,",M h ,",M ('"' ir)h d· t () . ,",M ()h - '-h=Ocha = '-h =Och '-pajw correspon mg 0 w IS '-h =OCh ao . 
As this coefficient (like all others) equals zero, we see that ao E F is a root of 
p(.), shOwing that p(.) has a root in F. 

We next recall that an ordered field C is real closed if and only if C + LC 
is algebraically closed, where L is the ~quare root of - 1. Also, we observe 
that (C + AC)l wJ is isomorphic to Cl wJ + Lcl wJ. These observations com­
bine with the established modified version of our theorem to show that for 
each ordered field F the following assertions are equivalent: 

(1) F is real closed. 
(2) F + LF is algebraically closed. 
(3) (F + LF)l w J is algebraically closed. 
(4) Fl w J + LFl w J is algebraically closed. 
(5) F l w J is real closed. • 

We say that a statement depending on a parameter e holds for all 
sufficiently small positive e if for some 'Y > 0 the statement holds for all 
o < e < 'Y. We say that such a statement holds for arbitrarily small positive 
e if for every 8 > 0 the statement holds for some 0 < e < 8. 

The following lemma characterizes non negativity and irreducibility over 
Fl w J via these properties over F. The proof is standard; see Eaves and 
Rothblum (1989, Lemma ,5.5, p. 518). 

LEMMA 4.3. Suppose P and B are matrices in F n x n. Then the following 
are equivalent: 

(a) P + e B is nonnegative and irreducible in F for sufficiently small 
positive e, 

(b) P + 8 B is nonnegative and irreducible in F for arbitrarily small 
positive e, and 

(c) P + w B is nonnegative and irreducible in F l w J. 
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We next explore the PF-eigenvalue and normalized PF-eigenvector over 
Fl w J of a nonnegative irreducible matrix of the form P + w B where P and 
B are square matrices over a given ordered field F. The key issue is the 
characterization of the coefficients of the fractional power series expansions 
by equations that are defined over F. 

THEOREM 4.4. Let f in F n be a semipositive vector, and let P and B be 
matrices in F n x n where P + w B is semipositive and irreducible over F l w J. 
Then the PF-eigenvalue and PF1-eigenvector of P + wB have representations 

and 

p(P + wB) = L,Pkwk /q 
o 

u(P+ wB,!) = w-t / q(L,Ukwk/q), 
o 

where t is a nonnegative integer and q is a positive integer. 

(4.l ) 

( 4.2) 

Proof. By applying Theorem 3.1 to P + wB over the real closed field 
FlwJ we have that it has a PF-eigenvalue p(P + wB) and PF1-eigenvector 
u(p + wB,f). By part (b) of Lemma 4.1 , we may assume that the exfactor of 
the representation of p(P + wB) and u(P + wB,f) are reCiprocals of an 
integer q; thus, p(p + wB) and u(P + wB,f) have representations p(p + 
wB) = L.pPkwk/q and u(p + wB,f) = w-t / q(L.OUkWk / q) where p, t E Z, 
q E Z+, and Pp is a positive element in F. To obtain the representations 
(4.1) and (4.2), it remains to show that we may select p = 0 and t ~ O. 

To show that we can select p = 0 it suffices to show that Pk = 0 for all 
k < O. Let L == min{k ~ p: Pk >1= O} , and let H == min{k ~ 0: Uk *- a}; as 
p(P + wB) *- 0 and u(P + wB,f) *- 0, these minima are finite. As 

(P + wB)u(P + wB ,!) = p(P + wB)u(P + wB ,!) , 

we have that 

(P = w B ) w - t / q ( L, U k W k / q) = ( L, P k W k / q ) w - t / q ( L, uk W k / q ). (4.3) 
o p 0 
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By the multiplication rule in Fl w 1, the coefficient of W(L + H - t)/ q on the 
right hand side of (4.3) is PL u H * 0, and for each k < H, the coefficient of 
w(k-t)/q on the left hand side of (4.3) is zero. So L + H - t ~ H - t, 

implying that L ~ 0, that is, Pk = 0 for all k < O. 
We next show that t ~ O. As 

1 = Fu(p + wB,f), 

we have that 

1 = LfTuk w(k-t)/q = LfTuk+1 w k/ q. ( 4.4) 
o -( 

The coefficient of w 0/ q on the left hand side of (4.4) is 1, and the coefficient 
on w k / q on the right hand side of (4.4) is zero for each k < - t. Hence 
o ~ -t, that is, t ~ O. • 

We next obtain a slight addendum to Theorem 4.4. 

ADDENDUM TO THEOREM 4.4. If f ~ 0, then t = O. 

Proof. As f ~ 0, fTa > 0 for every semipositive vector a. Let H == 
min{k ~ 0: Uk * O}. Then the positivity of u(P + wB,f) implies that U H > 0 
and therefore fT U H > O. The normalization condition 

1 = fT( w- t / q LUkw k
/ q ) = LfTUk+tWk/q 

() -( 

then implies that H + t = 0, that is, t = - H ~ O. As we have seen in the 
original version of Theorem 4.4 that t ~ 0, we conclude that, indeed, t = O . 

• 
COROLLARY 4.5. Let f be a semipositive vector in F", let P and B be 

matrices in F"X" where P + wB is semipositive and irreducible over Flwl, 
and suppose p(P + wB) and u(P + wB,f) have representations given by 
(4.0 and (4.2). Then 
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and 

( 4.6) 

Proof. Substituting (4.1) and (4.2) into the equalities (P + wB)u(P + 
wB,f) = pep + wB)u(P + wB,f) and 1 = Fu(p + wB,f), we have that 

and 

(P + WB)( LUkw
k

/
q

) = (LPkWk/q)( LUkw
k

/
q

) 
000 

1 = w-t / q ( LfTukwk/q), 

o 

and (4.5) and (4.6) follow from the fact that the rules of addition and 
multiplication in Flwl allow one to replace in each occurrence of w in any 
given equality with w q

• • 

Our next result provides a characterization of the coefficients of the 
expansion of the PF-eigenvalue and normalized PF-eigenvector given in 
(4.1)-(4.2) via a system of equations/inequalities in F. 

THEOREM 4.6 (CHARACTERIZATION OF PF-EIGENVALUE AND NORMALIZED 

PFj-EIGENVECTOR OVER FlwD. Let f E F n be a semipositive vector, and 
let P and B be matrices in F n x n where P + w B is semipositive and irre­
ducible over Flwl. Further, let t E Z+ ufO}, q E Z+, Po, PI"" E F, and 
Uo, U I , .• · E F. Then the representations (4.1) and (4.2) of pep + wB) and 
u(p + wB,f) hold with the given t, q, Po, PI"" and Uo, UI,· .. if and only 
if they satisfy the following system of equations and inequalities: 

(

PkUO + Pk-IUI + Pk-Z U2 + ... +PZ u k-2 + PlUk-1 

for 0.;;; k < q, 

= PkUO + Pk-IUI + Pk-Z U2 + ... +P2 Uk-2 + PlUk-1 - BUk-t 

for q.;;; k, 

T {O f Uk = 1 
if k-=l=t, 

if k=t, 

( 4.7) 

(4.8) 
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and 

inFlwJ. ( 4.9) 
o 

Proof. First assume that p(P + wB) and u(P + wB,f) have represen­
tations given by (4.1) and (4.2). By Corollary 4.5, t, q, and the coefficients of 
the representations of p(P + wB) and u(P + wB,f) satisfY (4.5) and (4.6), 
from which (4.7) and (4.8) follow immediately by the rules of addition and 
multiplication in Fl w J. Also, (4.9) is part of the definition of the PF1-eigen­
vector; see Theorem 3.1. 

Next assume that t, q, Po, PI " " and un' u l , .. · satisfY (4.7)-(4.9). Let 
P == LoPk Wk / q and u == WP / 4LoUkwk / q. Then (4.9) implies that u> 0; 
further, by the multiplication and addition rules in F[wj, (4.7) and (4.8) 
imply, respectively, that (p + wB)u = pu and fTu = 1. So P is an eigen­
value with a semipositive eigenvector. By Theorem 3.1 it follows that P and u 
are the PF-eigenvalue and PF1-eigenvector of P + wB. • 

For k = 0,1, ... , we define (4.7.k) as the constraint of (4.7) determining 
(P - POI)uko similarly, we define (4.8.k) as the constraint 0[(4.8) specifYing 
the value of fT Uk' Also, we emphasize that for given q and t the system 
consisting of (4.7)-(4.8) is not linear. 

We next consider semipositive perturbations which are not necessarily 
irreducible. 

THEOREM 4.7. Let P and B be rruztrices in FnXn where P + wB is 
semipositive over Flwj. Then the PF-eigenvalue of P + wB has a representa­
tion of the form given in (4.1). Further, suppose f is a positive vector in Fn. 
Then (4.7)-(4.9) is satisfied by q, Po, PI"'" some t E Z+ U{O}, and some 
elements U o' u l , .•• in F. 

Proof. The conclusion of the theorem follows from the arguments used 
to prove Theorem 4.4 and 4.6, except that Theorem 3.3 is used rather than 
Theorem 3.1 and the eigenvector corresponding to the PF-eigenvalue of 
P + w B is not unique. • 

In Lemma 4.3, Theorems 4.4., 4.6, and 4.7, and Corollary 4.5 we explored 
linear, nonnegative, irreducible perturbations over F l w j of a matrix P E 

Fn Xn. We observe, without providing formal details, that the analysis we 
developed holds unchanged for polynomial perturbations of the form P + 
L~= I Bi Wi, but the analogs of (4.7)-(4.8) become much more complicated 
when these more general perturbations are considered. Further, we observe 
that Theorems 4.4, 4.6, and 4.7 and Corollary 4.5 extend to even more 
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general perturbations of the form P + Lp Bi Wi r E Fl w 1" x n. But in this case 
there is no analog of Lemma 4.3, and the obtained expansions cannot 
necessarily be used to determine the PF-eigenvalue and normalized PF-ei­
genvector of perturbations of matrices over F with respect to a sufficiently 
small value of a parameter. The next section allows for such perturbations by 
considering convergence. 

5. PERRON-FROBENIUS THEORY OVER REAL CONVERGENT 
PUISEUX FIELDS 

In this section we consider a real closed subfield of the formal Puiseux 
field over the reals consisting of the fractional power series with positive 
radius of convergence. We then use Theorem 3.2 to argue that the PF-eigen­
value and normalized PF-eigenvector of the matrices considered in Section 4 
are always in the smaller field, and conclude that PF-eigenvalue and normal­
ized PF-eigenvector of perturbed matrices over the Original field have power 
series expansions with positive radius of convergence. The main case of 
interest is where the underlying field is R, and we restrict attention to this 
case. Obstacles to the consideration of Puiseux series with positive radius of 
convergence over real closed fields that strictly contain the reals are discussed 
in Eaves and Rothblum (1985, revised 1987). 

Consider the subset R + l w J of R l w J consisting of those elements 
Lpakwk E RlwJ where the power series LakBk has a positive radius of 
convergence, that is, for all sufficiently small positive B the series Lr~pakBk 
converges absolutely, or eqUivalently, for all suffiCiently small positive B the 
series Lk ~ p a k B k ! 'I converges absolutely. Standard results show that R + l w J 
is closed under Rl w J-addition, under Rl w J-multiplication, under Rl w J-ad­
ditive inversion, and under Rl w J-multiplicative inversion. So R+ l w J is an 
ordered subfield of Rlwj, and we refer to R+lwJ as the convergent Puiseux 
field. 

We have the follOwing fact about R + l w]; see Picard (1905) or Bewley 
and Kohlberg (1976, Section 10). 

THEOREM 5.1. The ordered field R+ l w J is real closed. 

The follOwing lemma characterizes the relations > , ~ , < , .:;; , and "* 
in R+lwJ. 

LEMMA 5.2. Let a in Rl wJ have the representation Lpak wk/ q
• Then the 

follOWing are equivalent: 

(a) a is in R+lwJ and a> 0 in RlwJ, 
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(b) for all sufficiently s77Ulll positive B, the series L.~ ~ l' a k B k / 'I converges 
absolutely and L.~~pak Bkl<! > 0, and 

(c) for arbitrarily .S77Ulll positive B, the series L.~ ~ p ak B k / 'I converges 
absolutely and L.~ ~ I' ak Bk / 'I > O. 

Moreover. the above equivalences hold if > is replaced by ;;;., <, .;; , or 
=1=. 

Proof. The conclusions of the lemma follow from standard results in 
analysis; see Picard (1905) or Bewley and Kohlberg (1976). • 

We are now ready to present the expansions of the PF-eigenvalue and 
normalized PF-eigenvector of nonnegative, irreducible (linear) perturbations 
of a real matrix from the solution 0[(4.7)-(4.9). 

THEOREM 5.3. Let f be a semipositive vector in F", and let P and B be 
matrices in R" x" where P + B B is semipositive and irreducible for all 

suffiCiently small positive B. Suppose t E Z+U{O}, q E Z+, Po, PI"" E F, 
and Uo, u[, ... E F satisfy (4.7) and not all ui's are zero. Then for all 
sufficiently small positive B, thp series L.~ ~ 0 P k B k / 'I converges absolutely. 
Further, if (4.8) and (4.9) are satisfied, then for all sufficiently small positive 
B the series L.~ ~ OU k Bk / 'I converges absolutely, and L.~ ~o Pk Bk / 'I and 
B-t/If(L.;=,OUkBk/'1) arp the PF-eigenvalue and PF-f-eigenvector of P + BB. 

Proof. Suppose tEZ+U{O}, qEZ+. Po, PI,·.,EF, and UO,u l , 

... E F" satisfy (4.7). Then P == L.o Pk w k/ II E RlwJ and u == 
w-t/'I(L.OUk wk/'I) E FlwJ satisfY (p + wB)u = pu and U =1= 0; thus, P is 
an eigenvalue of P + w B. View the characteristic polynomial as a polynomial 
p( x, y) with integer coefficients, a scalar variable x, and n 2 variables 
represented by y that correspond to the elements of an n X n matrix. 
Standard arguments assure that p( p, P + wB) = O. As P + wB E 
R J w J n XII, R + l w J is real closed, and R l w J is a real closed extension of 
R J w J, we conclude from Corollary 2.6 that P E Rt-l w J, that is, for all 
suffiCiently small positive B, the series L.~~ l' Pk Bk / 'I converges absolutely. 

Next assume that, in addition, (4.8) and (4.9) are satisfied. Then (4.9) 
implies that 11 > 0, and, by Lemma 4.3, P + wB is semipositive and irrp­
ducible in RlwJnxn. Further, by (4.8), fJ'u = 1. So, by Theorem 4.6, P and 
u are the PF-eigenvalue and PF-f-eigenvector of P + wB over RlwJ. 
Obviously, P + wB E R+lwJ"X"; hence, Theorem 3.2 implies that the coor­
dinates of u are in the ordered subfield R + l w J of Rl w J, that is, for all 
sufficiently small positive B, the series L.~ ~ 0 U k B k / 'I converges absolutely. 
For relevant B, denote the converging sums of the series L.~ ~ ° Pk B k / 'I and 
L.~==OUkBk/q by p(B) and U(B), respectively. As (p + wB)u = pu and 
fT u = 1, it follows from the definition of addition and multiplication in Rl w J 
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and standard rules for multiplying and adding converging real power series 
that for all sufficiently small positive B, (P + BB)u(B) = p(B)U(B) and 
fT u( B) = 1. Further, as U > 0, Lemma 5.2 implies that for all sufficiently 
small positive B, U( B) > O. So, for all sufficiently small positive B, we have 
p(B) E R, U(B) E W, (P + BB)u(B) = p(B)U(B), fTu(B) = 1, and U(B) 
> O. By Theorem 3.1, for such B, the scalar and vector p(B) and U(B) are 
the PF-eigenvalue and PFj-eigenvector of P + BB. • 

We obtain the follOwing corollary of Theorem 5.3, which asserts that the 
PF-eigenvalue and normalized PF-eigenvector of nonnegative, irreducible 
(linear) perturbations of a square matrix have fractional power series expan­
sions. 

COROLLARY 5.4. Let f be a semipositive vector in Rn. Suppose P and B 
are matrices in R n x n where for all sufficiently small positive B, the matrix 
P + BB is semipositive and irreducible. Then for all sufficiently small positive 
B, the PF-eigenvalue and PFj-eigenvector of P + BB have representations 
through the converging series 

and 

pCP + BB) = E Pk Bk j q 

k=O 
(5.1) 

(5.2) 

where t E Z+U{O} and q E Z+. In particular, t , q, and the coefficients of 
these representations satisfy (4.7)-(4.9). 

Proof. By Lemma 4.3, P + wB is semipositive and irreducible in 
RlwJnxn. Thus, Theorem 4.4 implies that the PF-eigenvalue p(P + wB) 
and PFj-eigenvector u(P + wB,f) over RlwJ have representations P == 
Lo Pk w kj q and U == w-tjq(Louk wkjq ), where t E Z+ u{O}, q E Z+, 
Po, PI'··· E R, and Uo, U I , ... ERn satiSfy (4.7)-(4.9). The representations 
(5.0 and (5.2) for p(P + BB,f) and u(P + BB,f) now follow directly from 
Theorem 5.3. • 

We obselVe that if the requirement f> 0 in Corollary 5.4 is tightened to 
f". 0, then we can require t = 0; see the Addendum to Theorem 4.4. 

Theorem 5.3 and Corollary 5.4 suggest that the solution of (4.7)-(4.9) is 
important. We emphasize that t and q are unknown in this system and their 



PERRON-FROBENIUS THEORY 143 

determination is part of the task of solving the system. Further, even after t 
and q are determined, the system remains nonlinear and complicated. The 
difficulty in solving (4.7)-(4.8) is demonstrated in Rothblum and Schneider 
(1995), where the system is solved under restrictive assumptions. 

We next consider semipositive perturbations which are not necessarily 
irreducible. 

THEOREM 5.5. Let P and B be mntrices in R n xn where P + eB is 

semipositive for all sufficiently smnll positive e. Suppose t E Z + U to}' q E Z +, 
Po, PI" " E F, and U o, u l , ••• E F m satisfy (4.7) and not all u/s are zero. 
Then for all sufficiently smnll positive e , the series ~ = 0 Pk e k ! q converges 
absolutely. 

Proof. The conclusion of the theorem follows directly from the argu-
ment used to prove the first part of Theorem .5.3. • 

COROLLARY 5.6. Suppose P and B aremntrices in Rn X n where for all 
sufficiently smnll positive e, the mntrix P + eB is semipositive. Then for all 
sufficiently smnll positive e, the PF -eigenvalue of P + e B has a representa­
tion through a converging series 

p(P + eB) (.5 .3) 

where q E Z+. Further, for each positive vector fin F" , there exist t E Z + 
and U o, u l , ... E F such that t, q, Po, PI"" and u o, u l , .•• satisfy (4.7)­
(4.9). 

Proof. As in Lemma 4.3, P + wB is semipositive in Rl wJ" x ". Thus, by 
Theorem 4.7, the PF-eigenvalue pep + wB) over RlwJ has a representation 
P == Lo Pkwk (q where q E Z + and Po, PI"" E R satisfy (4.7)-(4.9). The 
representation (5.1) for p( P + e B,f) now follows directly from Theorem 
~5. • 

In Lemma 5.2, Theorem .5.3, Corollary 5.4, Theorem 5.5, and Corollary 
5.6 we considered linear perturbations. Without providing formal details, we 
extend the observation made at the end of Section 4 and note that the 
analysis we developed holds unchanged for arbitrary absolutely convergent 
perturbations of the form P + L;=oBie i

, but the analogs of (4.7)-(4.8) 
become even more complicated. 
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6. REAL CLOSURE AND THE 
BARKER-SCHNEIDER CONDITION 

Barker and Schneider (1975) identified a condition which implies the 
existence of a PF-eigenvalue and normalized PF-eigenvector for square, 
nonnegative, irreducible matrices with elements in ordered fields that are not 
necessarily real closed. Here, we relate their condition to the assumption that 
the underlying ordered field is real closed. 

Suppose F is an ordered field. For a subset S of F, the infimum of S over 
F, denote inf F(S), is defined as an element (T in F having the property that 
S contains no element (T' < (T and for every element (T' > (T there exists an 
element (T" E S where (T" < (T'. Of course, not every subset of F has an 
infimum. If S has an infimum over F and the infimum is in S, we call it the 
minimum of S over F and denote it min / S). 

Let F be an ordered field, and let P in F" x n be semipositive and 
irreducible. Barker and Schneider show that P has a PF-eigenvalue and a 
normalized PF-eigenvector under the assumption that the set 

T == {x E F: pz ~ xz for some vector z E W satisfying z > O} (6.1) 

has a minimum over F. It is shown in the Appendix that if T has an infimum 
over F, then the infimum is in T, that is, T then has a minimum over F. 

Let F be an ordered field. A subset S of F is called algebraic if there is a 
formula cp(x, y) with #x = 1, such that for some ij in F#Y, S = (x E F: 
cp( x, ij) is satisfied over F}. If cp( x, y) is a quantifier-free formula, we call S 
a quantifierfree algebraic set, and if cp(x, y) is a formula having the form 
r.:I~oyjxj ~ 0, we call S a simple algebraic set. 

Part, possibly all, of the next result is known. 

THEOREM 6.1. Let F be an ordered field. Then the follOWing conditions 
are equivalent: 

(a) F is real closed, 
(b) every nonempty simple algebraic set that is bounded from below has 

an infimum, 
(c) every nonempty quantifierfree algebraic set that is bounded from 

below has an infimum, and 
(d) every nonempty algebraic set that is bounded from below has an 

infimum. 

Proof. (d) = (c) = (b): These implications are trivial. 



PERRON-FROBENIUS THEORY 145 

(b) = (a): Assume that (b) holds. A polynomial over F in a single variable 
x has a representation p(x, y) = Yo + Ylx + ... +Yn_IX,,-1 + Ynx" where 
Yo , Yl ,"" Yn are elements in F and Yn * o. Suppose n is odd; we will show 
that p( x * , Y) = 0 for some x* E F. By poSSibly dividing the polynomial by 
-1 we may assume Yn > O. The set 5 ;: (x E F: p(x, Y) ;;. O} is a simple 
algebraic set. Further, as n is odd, there exists a element K in F such that 
very ~ > K is in S and no ~ < - K is in 5. Thus, S is nonempty and 
bounded from below, and condition (b) assures that it has an infimum, say 
x*. We next argue that p( x*, Y) = O. Indeed, we cannot have p( x*) > 0, 
for then p( x* - e) > 0 for all suffiCiently small positive e, contradicting the 
assumption that S contains no element x' < x*. Similarly, we cannot have 
that p( x *) < 0, for then p( x * + e) > 0 for all suffiCiently small positive e, 
contradicting the assumption that for every element x' > x* there exists an 
element x" E S where x* < x" < x'. 

Next, assume that Y E F is positive, and consider the polynomial (with 
coefficients in F) given by p(x, y) = Y - x 2

• Then 5 ;: (x E F: p(x, y) ;;. 
O} is a simple algebraiC set. It is nonempty, as 0 E 5, and it is obviously 
bounded from below. Thus, by condition (b), 5 has an infimum, say x*, and 
the above arguments show that p(x*, Y) = O. So y has a square root. 

(a) = (d): Suppose F is real closed and 5 is a nonempty algebraic set that 
is bounded from below. Let 'P be a formula that defines 5. We consider the 
closed formula IjJ given by 

IjJ :Vy «(3x 'P(x, y)) 1\ (3 z Vx' ('P(x' , y) ~ (x' ;;. ;::)))) 

~ (3 x* ( 'P( x* , y)) 1\ (V x" ( 'P( x", y) ~ (x" ;;. x*))) )). 

By the Weierstrass theorem, every non empty set over the reals that is 
bounded from below has an infimum, implying that IjJ is true over the reals. 
Hence, by the Tarski-Seidenberg prinCiple (Corollary 2.2) IjJ is true over the 
real closed field F. • 

Let P be a square, nonnegative, irreducible matrix over an ordered field 
F, and consider the set T defined by (6.1). The set T is an algebraiC set. It is 
nonempty, as it contains 0, and it is bounded from below by zero. Hence, 
Theorem 6.1 implies that if F is real closed, then T has an infimum. By 
Theorem A.l of the Appendix, it then follows that T has a minimum. Thus, 
the assumptions of Barker and Schneider (1975) are implied by the assump­
tion that the underlying ordered field is real closed. 
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7. DISCUSSION AND EXTENSIONS 

In Rothblum and Schneider (199S), the problem (4.7)-(4.9) is solved 
under restrictive assumptions which assert, among other things, that the 
matrix P has a unique Jordan chain corresponding to its PF-eigenvalue. The 
obtained solution has q = /I and t = /I - 1, where /I is the index of P 
corresponding to p( P). Also, in Haviv, Ritov, and Rothblum (992), the 
problem (4.7)-(4.8) is solved when the matrix P is in some class of matrices 
with index 1 that contains the class of irreducible matrices. The obtained 
solution has q = 1 and t = O. The following example demonstrates that 
(4.7)-(4.9) may have a solution with q < /I. Yet, we still conjecture that there 
exists a finite algorithm that can determine q and t for which (4.7)-(4.9) has 
a solution. 

EXAMPLE 7.1. Let 

1 
O.S 
o 

and 
( 

-1 

B = ~ 
o 

-1 
1 

~) . 
-1 

Then the index of P corresponding to p( p) = 1 is 2. Also, P + e B is 
nonnegative and irreducible for all 0 < e < 0.5, its characteristic polynomial 
is 0 - e - x)[O - e - xXO .. 5 - e - x) - 2e], and its eigenvalues are 1 -
e, 1 + Z(e)I' and 1 + Z(e)2' where Z(e)1 and Z(e)2 are the roots of the 
quadratic equation z2 + (2e + 0.5)z + e 2 

- 1.5e = O. In particular, 

p(P + eB) = 2 - (2e + 0.5) + [(2e + 0.5)2 - 4(e 2 
- l.Se)f/ 2 

= 2 - (2e + 0.5) + (8e + 0.25)1/ 2. 

As (8e + 0.25)1/ 2 has a power series expansion in integer powers of e, 
p( P + e B) does also. It follows from the analysis of Section 5 that p( P + w B) 
has a representation with unit exfactor. As the elements in Rl w J with unit 
exfactor form an ordered subfield of Rl w J, standard arguments about solv­
ability of linear systems over ordered fields (e.g., Eaves and Rothblum, 
(993)) show that for every semipositive vector f E Fn, the coordinates of 
u(p + wB, f) have representations with unit exfactor. Thus, Theorem 4.4 
implies that (4.7)-(4.8) has a solution with q = 1 and L.a U k W k / q > O. 

In the solutions of (4.7)-(4.9) obtained in Rothblum and Schneider 
(995) and in Haviv, Ritov, and Rothblum (1992), the coefficients of the 
fractional power series of the normalized PF-eigenvector tum out to yield a 
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"preferred basis" of the generalized eigenspace corresponding to the PF-ei­
genvalue of P; see Rothblum (1975), Richman and Schneider (1978), and 
Schneider (1986) for formal definitions. Though this phenomenon does not 
occur in general, there seems to be considerable spectral information in the 
coefficients of the fractional power series expansions of the normalized 
PF-eigenvector for perturbed nonnegative matrices. 

APPENDIX 

Let F be an ordered field, and let P in F n x n be semipositive and 
irreducible. We observe that the set T defined by (6.1) has an equivalent 
representation 

T == {X E F: Pa ~ xz for some vector z E Fn 

(A .1) 

The purpose of this appendix is to establish that T defined by (A.1) has an 
infimum over F then the infimum is in T. 

Throughout this appendix let II II", denote the I", norm in F n and the 
corresponding matrix norm in F"x,,; that is, for a in F", let Ilall", = max{a i : 

i = 1, ... ,n}, and for a matrix A in F"x" , let II All", = max{r,j'=lA;i i = 

1, . . . , n}. 
Given that T has an infimum x* over F, we prove that x* is in T. In this 

case, for arbitrarily small positive e, x* + e is in T , that is , the (linear) 
system 

[p - (X* + e)I]z ~ 0, z~O (A.2) 

is feasible where eT = (1, ... ,1) E Fri. By adding slack variables, (A.2) can 
be cast in the form 

(A + F-E)w = b, w ~ 0, (A .3) 

where 

E = (~ ~ ), and b = (~). 
(A .4) 
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For e ~ 1 and i = 1, ... , n, (A.2) implies that I Zi I ~ 1 and ISj I ~ II pll", + x* 
+ 1; hence, with K == max{l, II plloo + x* + I}, every solution y of (A.3) 
satisfied Ilwll", ~ K. We also observe that the rows of the matrix A defined 
through (AA) are linearly independent. The next result implies that (A.2) is 
feasible for e = 0, that is, i* E T. 

THEOREM A.I. Let F be an orderedfield, KEF, b E Fill, and A, E E 

Fin x". Suppose: 

(I) the rows of A are linearly independent , 
(II) for arbitrarily small positive e, (A.3) has a solution in F, and 

(III) for all sufficiently small positive e, every solution of (A.3) has 
Ilyl\", ~ K. 

Then (A.3) has a solution for e = O. 

Proof. Standard results about linear inequalities show that if assumption 
(I) holds and if (A.3) has a solution for a given e, then it has a solution ye 
having the form 

(A.5) 

where a is a subset of {l, ... , n}, a C = {l, ... , n} " a , and subscripts are 
used to denote corresponding sub matrices and subvectors. As the number of 
subsets of {l , ... , n} is finite, assumptions (I) and (II) imply that for some 
subset a , ye has the representation (A.5) for arbitrarily small positive e. It 
now follows from Cramer's rule that there exist polynomials Po ' PI " '" PI! 
such that for all sufficiently small positive e 

for j = 1, ... , n , (A.6) 

and pi/e) =F O. 
Standard results show that zero is a root of a polynomial if and only if the 

polynomial is divisible by a positive power of e (Euclid's algOrithm is used to 
prove one direction). For j = 0, 1, . ", n, let kj be the maximal power of s 
that divides pie); in particular, pie) = skjq/ s ) for all s E F for some 
polynomial qj where qiO) =F O. Now, assumption 011) implies that for 
sufficiently small positive s 

for j = 1, ... , n. 
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It is easy to show that these inequalities imply that kj ~ ko for j = 1, ... , n. 
Hence, in the representation of the coordinates of y E: through (A.6), it is 
possible to cancel the common factor ekl) in all the polynomials Pj' So, 
without loss of generality, we may assume that ko = 0, that is, Po(O) *- O. 
Consider the vector yO defined coordinatewise by 

for j = 1, .... n. 

It follows that yO satisfies (A.3) with e = O. So (A.3) with e = 0 is feasible, 
proving the conclusion of our theorem. -
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