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Professor Bit-Shun Tam has pointed to us that the statement of Lemma 2 and
the proof of Lemma 1 in our paper which appeared in Vol. 32: 131-148, 1992, need
correction and augmentation, respectively. We begin with the correction:

LEMMA 2 Let A be a minus M-matrix as in (2.1) and let i and j be vertices in
R(A). Then Z@ED-D[{i, j}] > 0.

Proof First, by the Rothblum index theorem we have that d(i, ) = v(A4{i,j}).
Thus the result is a consequence of Lemma 1(i) and of the resolvent expansion
of A{i,j} which, in a sufficiently small punctured neighborhood of 0, satisfies that
(el — A{i,j}))1>0,Ve>0. n

Next, we wish to clarify the proof of the latter part of Lemma 1(i) in which we
claim that Z®)[(i, j)] = (A{i,j})kZA{i,j-}. First it is a simple consequence of the first
part of the claim that if g is any polynomial such that g(A4) = 0, then g(A{i,j}) =
0. Whence, for every complex z such that (zf — A)™! exists, (zI — 4A)7 [{i,j}] =
(zI — A{i,j})~!. We now express the resolvents of 4 and of A4{i,j} in terms of
the principal components corresponding to their eigenvalues A and we compare
coefficients of (z — A)~*. It follows that Z®)[(i, j)] = (A{i,j})kZA{i,j}.

The proof we give in the paper for Corollary 1 establishes the weaker result
below (and we do not know if Corollary 1 as stated originally is correct).

COROLLARY 1 Suppose A is a minus M-matrix given in form (2.1). If, for suffi-
ciently small € > 0, a basis can be extracted for the columns of J given in (3.7) which
satisfies (3.9), where ¢y ; > 0, k,j = 1,...,m, then (3.10) holds.

In fact, Corollary 1 as stated here can also be deduced from the more general
result proved in [6, Cor. (3.17)].

We have not found a counter-example to Corollary 1 as stated originally. How-
ever, in what follows we give here an example which shows that an arbitrary choice
of columns of J may yield a strongly combinatorial basis for the Perron space of A
which however is not a semi-preferred basis:
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Let
“1 1 0 00 0 O
1 -1 0 60 0 0
6 0 -1 100 0 0
0 0 1 -100 0 0
410 1 0 000 0 0
1 0 0 100 0 0
0o 0 0 011 -1 1
0 0 0 000 1 —1
Then, with € = 1/2,
8 8 0 0 0 00 0
8 8 0 0 0 000
0O 0 8 8 0 00 0
G| 0 08 8 0 000
282 3 0 016 0 0 0
36 28 28 36 0 16 0 0
142 142 63 79 36 36 8 8
114 114 51 63 28 28 8 8

Let B be the matrix obtained by choosing columns 1, 3, 5, 6, and 7 of J. Then the
columns of B form a strongly combinatorial basis (in the sense of the paper) for
the Perron space of A. However the matrix C which satisfies 4B = BC (and which
therefore contains the coefficients c; of (3.9)) is given by:

0 0 00O

0 0000
1/2 0000
12 1/2 0 0 0

0 -1/4 1 1 0

Since C has a negative entry, the basis given by B is not semi-preferred. Whereas,
on choosing columns 1, 4, 5, 6, and 7 the matrix C so obtained is

0 0000

0 0000
/200 0 0
172 1/2 0 0 0

0 1/4 1 1

Thus the columns of B are a semi-preferred basis for the Perron space of A.
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We have a iurther relevant comment. The mairix J depends on a choice of e
However, for any fixed choice of columns of J which form a basis B for the Per-
ron space of A, it can be shown that the induced matrix C satisfying AB = BC is
independent of €.

We are very grateful to Professor Tam for spotting the necessity for the above
corrections.



