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Abstract

Let G = (V, A, g) be a strongly connected weighted graph. We say that
G is maz-balanced if for every cut W, the maximum weight over arcs leaving
W equals the maximum weight over arcs entering W. A subgraph H of G is
maz-sufficient if for every cut W, the maximum weight over arcs of G leaving
W is attained at some arc of H. A tower T = (C1,Ca,...,C,) is a sequence
of arc-sets of G where C,4, is a cycle all of whose weights are maximal in the
graph formed by contracting the sets C1, Ca, ..., C, to a point. We show
that G is max-balanced if and only if G contains a tower. A cycle cover for
G is a collection of cycles D = {D, | a € A} such that arc @ is the minimum
weight arc of D,. We use the tower construction to show that the existence of
a cycle cover characterizes max-balanced graphs. We show that the graph H of
a tower is max-sufficient, thereby showing that a max-balanced graph contains
a max-sufficient subgraph with at most 2(|V| — 1) arcs. Further, we use the
tower construction to show that H has a cycle cover with at most |V| cycles.

1 Introduction

In this paper we study max-balanced weighted directed graphs, which were introduced
in [4] and [5]. We define three concepts for such graphs G, namely a max-sufficient
subgraph for GG, a tower for G, and a cycle cover for G. We study connections between
these concepts, and we prove characterizations of max-balanced graphs associated
with them. A summary of our results is found in the abstract above, and we give
further details in this introduction after some definitions and an explanation of the
relation of our results to previous work. Further results on max-balanced graphs are
contained in [3].

Let (V, A) be a (directed) graph with vertex set V and arc set A. For a € A, we
will use the notation a ~ (u,v) to denote the arc a from vertex u to vertex v, and
refer to the vertices u and v as the endpoints of a. Note, that a graph (V, A) may
contain parallel arcs (i.e., two arcs a and @’ of the form a ~ (u,v) and a’ ~ (u,v)).
We will assume, however, that (V, A) does not contain loops (i.e., an arc a of the form
a~ (v,v)).

A weight function for (V, A) is a real-valued function g defined on the arcs A.
We will use the notation g, to denote the weight of a. A weighted graph is a triple
G = (V, A,g) where (V, A) is a graph, and g is weight function for (V, A). A cut for
G is a nontrivial subset W of V (l.e., 8 C W C V). (We will use the symbols C and
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max-balanced if and only if it contains a tower. A tower is built up {rom arcs sets
T = (C),Cq...,C,) where Ciy,; is a cycle in the graph formed by contracting the
cycles Cy, Cy, ..., C; to a point. We show that the subgraph

H=CUCU - UG,

which we call the graph of 7, is max-sufficient for G. We show further that r < |V/|
and that H contains at most 2(|V| — 1) arcs.

[n Section 4, we define a cycle cover for G associated with a subgraph H and in
Theorem 6 we apply the tower construction to generate a cycle cover for (G associated
with the graph H of the tower. Further, we show in Corollary 7 that H has a cycle
cover containing fewer than |V| cycles. Finally, in Corollary 8 we show that a weighted
graph is max-balanced if and only if it has a cycle cover. This result is an analogue
of a cycle decomposition for a circulation in a graph.

In this paper, we use the framework for max-balanced graphs described in [4]. In
particular, we use the definition of contraction from [4] (rather than (3] or [5]). The
definition used here is natural for describing our tower construction since it allows us
to identify the arcs of a contracted graph with arcs in the original graph. The results
of [3] and [5] apply (with trivial modifications) to the setting of this paper. Similarly,
the results in this paper apply Lo the setting of [3] and [5]. We consider only strongly
connected graphs, although all of our results extend with minor modifications to
graphs that are the disjoint union of strongly connected graphs.

2 The Operation of Contraction

Let G = (V, A, g) be a strongly connected weighted graph, and let [I be a partition
of V. We define the contraction of G with respect to II, written G/II, to be the
weighted graph (II, A’, ¢’) such that there exists an embedding ¢: A’ — A4 satis{ying
the following conditions:

(1) If ¢(a’') = a, where o’ ~ (I, J) € A" and a ~ (u,v) € A, then u € [ and
veJ,

(i) If a' € A, then gir = gy(ar).

Contraction with respect to a partition Tl can be described intuitively as follows:
Given an element W of I1, add a new vertex vy to the graph G — W (i.e., the graph
formed by deleting W and all arcs entering or leaving W) and join to vw an arc
a’ ~ (u,vw) for each arc @ ~ (u,v) € A with v € IV and an arc @’ ~ (vw, u) for each
arc a ~ (v,u) with v € W. (See I'ig 1.) Set the weight of each arc of the resulting
graph to the weight of the corresponding arc of G. We will refer to this operation
as contracting the set W to a point. The graph G/II is formed by contracting each
element of T1 to a point.

Let [ and J be distinct elements of the partition [I. Note that the contracted
graph G/II contains an arc with endpoints / and J for each arc ¢ ~ (u,v) for which
u € I and v € J. [n our definition of contraction, we do not identify resulting
parallel arcs, and therefore G/II will, in general, contain parallel arcs. Ior the tower
construction described in this paper, this is the natural definition of contraction since
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it allows us to identify the arcs of G/II with arcs of the graph G (under the mapping
9).

In summary an arc ¢’ in G/II corresponds in a natural way to a unique arc a of
the original graph G. Since we identify the arcs @ and o', we will refer to a as an are
of G/II. It is natural and intuitive to think of the arcs of G/II as those arcs of &
which are not deleted by the contraction operation. [n particular, we will identify a
cycle C of G/II with the set of arcs ¢(C) of G and thus refer to the set C C A as a
cycle of G/I1. Tt is easy to see that a cvele of G/II is a disjoint union of paths in G
between elements of Il. See Fig L.

C!

Figure 1: G/, where I = { {1,2,3}, {4.5},{6,7.8,9} , {10}}
We will use the next two lemmas to prove some of our results.

Lemma 1 Let G = (V. A,g) be a strongly connccted weighted graph. Then G is
maz-balanced if and only if G /11 is maz-balanced for every partition T of V.

Proof. Let G be max-balanced, and let W’ be a cut for G/II. Define W (a cut for
G) by
W={veV]vel forsome !¢ W'l

Since G is max-balanced at W, it follows directly from the definition of contraction
that G//T is max-balanced at W’. The converse follows by letting [T be the discrete
partition of V.
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Lemma 2 Let G = (V,A,g) be maz-balanced, and let b € A with g, = max(G).
Then b is contained in a cycle C for G such that g, = max (G) for alla € C.

Proof. Suppose g, = max(G), b ~ (u,v). It suffices to show that there exists a
path P from v to u all of whose arcs have weight max (G). Let W be the set of
vertices w such that there exists such a path from v to w. If u & W, then since
b~ (u,v) € 6~ (W) it follows directly from the definition of W that

5T (W) < max (G) = 6~ (W),

which violates the definition of max-balanced graphs. Therefore u € WV and b ~ (u,v)
must lie on a cycle all of whose arcs have weight max (G).

3 Towers for GG

Let G = (V, A, g) be a weighted graph. We wish to define a construction that we will
call a tower for . We give an algorithm for computing a tower and show that G is
max-balanced if and only if G contains a tower.

Let T = (C,,Cy,...,C,) be a sequence of subsets of A. Let Hy = (V,0), and
define the subgraphs

Hiyy, = H;UC;y, fori=0,1,...,r - 1. (4)

For 1 =0,1,...,r, let II; be the partition of V induced by the strong components of
H,. Then the sequence 7 is called a tower for G if

(i) Ciy1 is a cycle of the contracted graph G/II; for i = 0,1,...,r — 1,
(1) g, = max(G/1;) fora € Ciyy and : = 0,1,...,7r — 1, and
(1) |, ] = 1.

. o

Figure 2: A Tower for G

Note that since each subgraph H; is spanning, condition (iii) is equivalent to requiring
that H, is strongly connected. Note that the arc sets (Cy,Ca,...,C,) are pairwise
disjoint since the arcs of Cy,Cs,...,C; are deleted when H; is contracted to form
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G/1I;. We will call the subgraph
H. =C,UCu---UC:

the graph of the tower T. See Fig. 2 for an example of a tower for G.

Theorem 3 Let G = (V,A,g) be a strongly connected weighted graph. Let T =
(C1,Cay...,C,) be a tower for G, and let H = (V, E) be the graph of T. Then the
Jollowing are true:

(i) H is maz-sufficient for G;

(it) G is maz-balanced;

i) r<|Vi-1,

(1v) |E| £ 2(]V]=1).

Proof. (i) and (ii): Let T = (C,C4,...,C.) be a tower for G, and let W be any
cut for G. Let j be the largest integer such that the partition II; is finer than the two
element partition {W, VAW }. Note that 0 < j < r since Il and II, are, respectively,
the discrete and the indiscrete partitions of V. Now define the cut W' for G/II; by

W ={Iel;|ICW}. (5)
1 1 1 1
BRSO
ONOoNON

Figure 3: r = |V| =1 and |E| = 2(|V| - 1)

It follows from the definition of j that C;;; must intersect both 6+ (W'; G/1I;) and

&~ (W';G/11;). Since the endpoints of each arc of §* (W; () lie in distinct elements

of the partition II;, it follows that §* (W,;G) and &% (W’; G/II;) coincide. Because

go = max (G/IL,) for each a € Cj 4, it follows from the definition of contraction that

)9 By 9o = (G ©

and furthermore both maxima in (6) must be attained at some arc of C;;1. This
proves that H is max-sufficient for GG, and that G is max-balanced.

(111): Since each cycle in a tower must have length at least 2 (recall, G and hence
G/11; contains no loops), we must have |I1;4,] < |II;|, and therefore a tower can have
length at most » < |V| -1

(iv): Since the vertices of Ciyq (which are distinct) are identified to form Ty, we
must have

|]:|.f|=|HI+1|+|Ci+1|_1a fori=0,1,...,r-1.
Since |Ilg| = |V| and |II,| = 1, we have
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r

|El=2_

=1

C;

=|V|-1+»<2(]V]—1).
This completes the proof. J

The max-balanced graph given in Fig. 3 shows that the bounds in parts (ii1) and
(iv) of Theorem 3 are, in general, the best possible.

It [ollows from Part (ii) of Theorem 3 that the existence of a tower is a sufficient
condition for a weighted graph to be max-balanced. This condition is also necessary,
and the following algorithm shows how to compute a tower for a given max-balanced
graph.

The Tower Algorithm

Input: A strongly connected max-balanced graph G = (V, A, g).

Output: A tower (C,C,,...,C;) for G.
Step 0: Set Ho = (V,0) and : = 0.

Step 1: If II; is strongly connected, set » = ¢, return the sequence (C,,Cs,,....C;),
and STOP.

Step 2: Let II, be the partition of V induced by the strong components of H,, and
let Ciy1 be a cycle of G/IN; satisfying

9o = max (G/I1,) fora€ Citr. (7)
Step 3: Let Hiyy = H;UCijy:set 1 =74 1 and return to Step (1).

It follows from Lemma 1 that the graph G/Il; in Step 2 is max-balanced, and
therefore by Lemma 2 it contains a cycle Cyyy satisfying (7). It follows directly {rom
Steps 1 and 2 that the output satisfies conditions (ii) and (iii) in the definition of a
tower. Since |IT;;,| < I1;], for all 7 in Step 3, we have the [ollowing result:
Theorem 4 Let G = (V, A, g) be a sirongly connecled weighted max-balanced graph.
Then the tower algorithm terminates in at most |V| — 1 iterations with a tower

(CnCoye Gy Jor G

As a consequence of Theorems 3 and 4, we have the following characterization of
max-balanced graphs.

Theorem 5 Let G = (V. A, y) be a strongly connecled weighted graph. Then G is
maz-balanced if and only if GG contains a tower.

4 Cycle Covers for ¢

In this section, we deline the notion of a cycle cover for G. We show that G is max-
balanced if and only il GG has a cycle cover (sce [3] for an alternative prool of this
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result) and use a tower for G to construct a cycle cover. As a consequence, we derive
for max-balanced graphs a result that is an analogue of a cycle decomposition for a
circulation in a graph.

Let G = (V, A,g) be max-balanced, and let T = (C},Cy,...,C;) be a tower for
G. For ¢ = 0,1,...,r, let [{; be defined by (4) and let II; be the partition of V
determined by the strong components of H;. Define A; by

Ai =max(G/I,o) =g, forallaeC;. (8)
[t follows directly from the definition of C; that

M2 A2 2 AL (9)

Each set C; (since it is a cycle of G/II,_,) is a disjoint union of paths in G between
the strong components of H;_,. Thus each C; can be extended to a cycle C! of G by
traversing arcs in C, UC; U-- U C;_;. It follows from (9) that the resulting cycle C}
satisfies

A < g, foraeC!, and

10
go = M foraeC. (10)

Let G = (V, A, g) be a weighted graph, and let H be a subgraph for G. A cycle
cover for GG associated with H is a collection D = {D, | a € A} of (not necessarily
distinct) cycles of G such that for each b € A

(i) b€ Dy,
(i1) Dy\{b} is contained in H, and
(ii1) ¢ < g, for a € Dy.

If H equals G, then we will refer to D as a cycle cover for G.
We make three observations on the relation between towers and cycle covers.

1. Equivalently, we may define a cycle cover for G = (V, 4, g) as a sequence of
cycles (D), Dq,...,D,) for G such that there exist numbers (u;, 2, ..., tts) 50
that for alla € A

= < 11
Yo = I2x 4 (11)

D

. If D is a cycle cover for G associated with H and H € H' € G, then D is a
cycle cover for (G associated with H'.

3. Let T = (C),C2,...,Cy) be atower for G, and let G = C1UC,U---UC, be the
graph of 7. Let D = {C!|i=1,2,...,r} be the extended cycles constructed
above. Since C! is contained in C; UC, U ---U (C,, it follows directly from (10)
that g, = MaX (et} M. Therefore, it foliows {rom Observation 1 that D is a

cycle cover for G,

Theorem 6 Let G be a maz-balanced graph, and let T = (C,Cs....,C,) be a tower
for G. Then there erists a cycle cover for G associated with the graph of T .

Proof. Let H = (V,E) be the graph of the tower 7. We will define a collection of
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cycles D = {D, | b€ A} for G (not all distinct) and show that D is a cycle cover for
G associated with H. I"irst, let b € E be an arc of 7 contained in cycle Cj. It follows
from Observation 3 that D, = C} (where C} is the extension of C; described above)
satisfies the required conditions.

Next, let b be an arc not contained in H, and let II;, : = 0,1,...,r, be the
partitions determined by H; defined in (4). It is intuitively obvious that the graph
G/I1; is formed by sequentially contracting the cycles Cy,Cy, ..., C; (see [4] for a
careful proof of this). The arcs of G/II;_; that are deleted by contracting C; to a
point are precisely those arcs with both endpoints in C;. Let j be the integer such
that & is deleted when C; is contracted to a point. It follows that b has both endpoints
in the extended cycle C;. Thus we can form D, by concatenating b and the path in C}
between the endpoints of b in the direction of . This proves that Dy\{b} is contained
in H.

Since b is an arc of G /II;_, it follows that ¢, < A;. Further, since Dj is contained
in C}, it follows directly from (10) that gy < g, for a € Dy. This proves that D is a
cycle cover for G associated with H.

We remark that there is an analogy between the graph H of a tower for a max-
balanced graph and a spanning tree for an undirected graph in the sense that every
arc b not in H is contained in a cycle all of whose arcs except b are contained in H.

We have the following corollary of Theorem 3.

Corollary 7 Let G = (V, A,g) be a strongly connected maz-balanced graph. Then
there exists a maz-sufficient subgraph H for G that has a cycle cover containing fewer
that |V cycles.

Proof. Let 7 be a tower for G, and let H be the graph of 7. It follows from
Theorem 3 that H is max-sufficient for G, and by Observation 3 the set D =
{Cili=1,2,...,r} is a cycle cover for H. Furthermore, r < |V| by part (iii) of
Theorem 3. §

As a consequence of Theorems 3 and 6 we have the following charactlerization of
max-halanced graphs.

Corollary 8 Let G = (V, A, g) be a strongly connected weighted graph. Then G is
maz-balanced if and only if G has a cycle cover.

Proof. Let G be max-balanced. Then by Theorem 3, G has a tower 7. It follows
from Theorem 6 that G has a cycle cover associated with the graph of 7, which by
Observation 2 is a cycle cover for G (associated with G).

Conversely, let D be a cycle cover for GG, and let W be a cut for &. Then for each
b e & (1) there exists a cycle D € D such that g, < g, for @ € D. Since D must
also mtersect 8§~ (1V) there exists some arc ¢ € 6~ (1V) such that g, < g.. Thus we
have sliow that

NaX ¢ < max  ge. 12
ac-r5+(W)g _a€5‘f]i}v)g (12)

A similar argument shows that the reverse inequality in (12) is also satisfied. This
proves that G is max-balanced. g
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Figure 4: A Max-Balanced Graph

Corollary 8 is an analogue of a cycle decomposition for a circulation in a graph.
Specifically, it is easy to prove that a weight function g is a circulation for a graph
(V, A) if and only if there exist cycles Dy, D,,..., D, and positive numbers iy, po,

.., ps such that
Jo = Z i, forace A
{tla€D,}
Given a circulation g it is easy to construct such a cycle decomposition: Lel D, be a
cycle for (V, A) such that g, > 0 fora € D,. Let p = max {g, | @ € D,}, and subtract
u from each weight ¢,, @ € D, and repeat this operation on the resulting circulation.
Continuing in this fashion, we can easily construct the desired cycle decomposition.
The tower algorithm is, in a sense, an analogue of this algorithm for decomposing
circulations.

5 Examples

We conclude the paper by providing examples of max-balanced graphs. \We proved in
Theorem 5 that G is max-balanced if and only if G contains a tower. Thus every max-
balanced has the structure of a tower together with appropriately weighted chords.
Every max-balanced graph contains a cycle all of whose weights are maximal. If a
weighted graph G contains such a cycle that is also Hamiltonian, then G is max-
balanced. See Fig. 4.

More complicated examples can be built by contracting the maximal cycle to a
poiut and repeating this construction. See Fig. (9).

Figure 5: A Max-Balanced Graph
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