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Abstract 

Let G = (V,A,g) be a strongly connected weighted graph. We say that 
G is max-balanced if for every cut W, the maximum weight over arcs leaving 
W equals the maximum weight over arcs entering W. A subgraph H of G is 
max-sufficient if (or every cut W, the maximum weight over a.rcs of G leaving 
W is attained at some arc of H. A tower T = (CI,C., ... ,C,) is a sequence 
of arc-sets of G where C'+ I is a cycle all of whose weights are maximal in the 
graph formed by contracting the sets CI , C., ... , C; to a point. We show 
that G is max- balanced if and only if G contains a tower. A cycle caver for 
G is a collection of cycles V = {D. I a E A} such that arc a is the minimum 
weight arc of Do . We use the tower construction to show that the existence of 
a cycle cover chara.cterizes max-balanced graphs. We show that the graph H of 
a tower is max-sufficient , thereby showing that a max-balanced graph contains 
a max-sufficient subgraph with at most 2(1V1 - 1) arcs. Further , we use the 
tower construction to show that H has a cycle cover with at most IVI cycles. 

1 Introduction 

In this paper we study max-balanced weighted directed graphs, which were introduced 
in [4] and [5]. We define three concepts for such graphs G, namely a max-sufficient 
subgraph for G, a tower for G, and a cycle cover for G. We study connections between 
these concepts, and we prove characterizations of max-balanced graphs associated 
with them. A summary of our results is found in the abstract above, and we give 
further details in this introduction after some definitions and an explanation of the 
relation of our results to previous work. Further results on max-balanced graphs are 
contained in [3]. 

Let (V, A) be a (directed) graph with vertex set V and arc set A. For a E A, we 
will use the notat ion a ~ (u, v) to denote the arc a from vertex u to vertex v, and 
refer to the vertices u and v as the endpoints of a. Note, that a graph (V, A) may 
contain parallel arcs (i.e., two arcs a and at of the form a ~ (u,v) and at ~ (u,v)). 
We wi ll assume, however , that (V, A) does not contain loops (i.e., an arc a of the form 
a ~ (v, v)). 

A weight function for (V, A) is a real-valued function g defined on the arcs A. 
We will use the notation ga to denote the weight of a. A weighted graph is a triple 
G = (V, A,g) where (V , A) is a graph, and g is weight fu nction for (V, A). A cut fOT 
G is a nontrivial subset W of V (i.e., 0 eWe V). (We will use the symbols C and 

·Research supported in part by NSF grants DMS 85-21521 and ECS 87-18971 
'Research supported in part by NSF grant ECS 87-18971. 

CONGRESSUS NUMERANTIUM 73(1990), pp.159-170 



max-balanced if and only if it contains a tower. A tower is built up from arcs sets 
T = (CJ , C2 , •• • ,Cr ) where Ci+J is a cycle in the graph formed by contracting the 
cycles CJ , C2 , ••• , Ci to a point. We show that the subgraph 

which we call the graph of T, is max-sufficient for G. We show further that r < IVI 
and that H contains at most 2( IV I - 1) arcs. 

In Section 4, we defin e a cycle cover for G associated with a su bgraph H and in 
Theorem 6 we apply the tower construct ion to generate a cycle cover for G associated 
with the graph H of the tower. Further, we show in Corollary 7 that H has a cycle 
cover containing fewer than IVI cycles. Finally, in Corollary 8 we show that a weighted 
graph is max-balanced if and only if it has a cycle cover. This result is an analogue 
of a cycle decomposition for a circulation in a graph. 

In this paper, we use the framework for max-balanced graphs described in [4]. In 
particular, we use t he definition of contraction from [4J (rat her than [3J or [5]). The 
dennition used here is natural for describing our tower const ruction since it allows us 
to identify the arcs of a contracted graph with arcs in the original grap h. The results 
of [3J and [5J apply (with trivial modifications) to the sett ing of this paper. Similarly, 
the results in this paper apply to the setting of [3J and [5J. We consider only strongly 
connected graphs, although all of our results extend with minor modifications to 
graphs that are the disjoint union of strongly connected graphs. 

2 The Operation of Contraction 

Let G = (V, A, g) be a strongly connected weighted graph, and let II be a partition 
of V . We define the contraction of G with respect to IT, written G lIT, to be the 
weighted graph (II , A', g') such that there exists an embedding c/>: A' >-t A satisfying 
the following conditions: 

(i) If cf;(a' ) = a, where a' ~ (1,J) E A' and a ~ (u,v) E A, then u Eland 
v E J; 

(ii) If a' E A', then g~, = g¢>(a'). 

Contraction with respect to a partition IT can be described intuitively as follows: 
Given an element TV of IT, add a new vertex Vw to the graph G - TV (i.e., the graph 
formed by deleting TV and all arcs entering or leaving TV) and join to Vw an arc 
a' ~ (u, vw) for each arc a ~ (u, v) E A with v E ~V and an arc a' ~ (vw, u) for each 
arc a ~ (v,u) with v E TV. (See Fig 1.) Set the weight of each arc of the resulting 
graph to the weight of the corresponding arc of G. vVe will refer to this operation 
as contracting the set TV to a point. The graph G lIT is formed by contract ing each 
element of IT to a point. 

Let 1 and J be distinct elements of the partition IT . Note that the contracted 
graph G lIT contains an arc with endpoints 1 and J for each arc a ~ (u, v) for which 
u Eland v E J . In our definition of contraction, we do not identify resulting 
parallel arcs, and therefore Gill will , in general , contain parallel a rcs . For the tower 
construction described in t his paper, this is the natural definition of cont ract ion since 
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it allows us to identify the arcs of Gill with arcs of the graph G (under the mapping 

9) · 
In summaTY an arc a' in Gill corresponds in a natural way to a unique arc a of 

the origina l graph G. Since we identify the arcs a and ai, we will refer to a as an aTC 

of Gill. It is natural and int uitive to think of the arcs of Gill as those arcs of G 
which are not deleted by the contraction operation . In particular, we will identify a 
cycle C of Gill with the se t of arcs </>( C) of G and t hus refer to the set C C A as a 
cycle of Gill. It is easy to see that a cycle of Gill is a disjoint union of paths in G 
between elements of II. See Fig l. 

c:~ 

c: ....... 

Figure 1: Gill, where II = {{1,2, 3}, {4,5}, {6, 7,8 ,9} , {to}} 

\Ve will use the next two lemmas to prove some of our results . 

Lemma 1 L el G = (V, A , g) be a s trongly connected weighted graph. Then G is 
max-balanced if and only if Gill is max-balanced for every partition II of V. 

Proof. Let G be max- balanced, and let W' be a cut for Gill. Define W (a cut for 
G) by 

W = {v E V I v E [ for some I E W'} . 

Since G is max-balanced at W, it follows directly from the definition of contraction 
that Gi ll is max-balanced at W'. The converse follow s by letting IT be the disc rete 
partition of V. I 
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Lemma 2 Let G = (V,A,g) be max-balanced, and let b E A with gb = max (G). 
Then b is contained in a cycle G for G such that go = max (G) for all a E G. 

Proof. Suppose gb = max (G), b rv (u, v). It suffices to show that there exists a 
path P from v to u all of whose arcs have weight max (G). Let W be the set of 
vertices w such that there exists such a path from v to w. If u rt W, then since 
b rv (u, v) E 0- (W) it follows directly from the definition of W that 

0+ (W) < max (G) = 0- (W), 

which violates the definition of max-balanced graphs. Therefore u E Wand b rv (u, v) 
must lie on a cycle all of whose arcs have weight max (G). I 

3 Towers for G 

Let G = (V, A, g) be a weighted graph. We wish to define a construction that we will 
call a tower for G. We give an algorithm for computing a tower and show that G is 
max-balanced if and only if G contains a tower. 

Let T = (Gl ,G2 , •.. ,GT ) be a sequence of subsets of A. Let Ho = (V,0), and 
define the subgraphs 

Hi+1 = Hi U Gi+l for i = 0, 1, . . . , r - l. (4) 

For i = 0, 1, ... , r, let lli be the partition of V induced by the strong components of 
Hi. Then the sequence T is called a tower for G if 

(i) Gi+l is a cycle of the contracted graph G/lli for i = 0,1 , ... , r - 1, 

(ii) go = max (G/lli) for a E Gi+1 and i = O,l, ... ,r -1, and 

(iii) Illrl = 1. 

o 

Figure 2: A Tower for G 

Note that since each subgraph Hi is spanning, condition (iii) is equivalent to requiring 
that HT is strongly connected. Note that the arc sets (Gl , G2 , . •• , GT ) are pairwise 
disjoint since the arcs of Gl , G2 , ••. , Gi are deleted when Hi is contracted to form 
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GIITi . We will call the subgraph 

Hr = C1 U C2 U ... U Cr 

the graph of the tower T. See Fig. 2 for an example of a tower for G. 

Theorem 3 Let G = (V,A,g) be a strongly connected weighted graph. Let T = 

(C1 , C2 , •.• ,Cr ) be a tower for G, and let H = (V, E) be the graph ofT. Th en the 
following are true: 

(i) H is max-sufficient for G ; 

(ii) G is max-balanced; 

(iii) r ~ lVI-I; 
(iv) lEI ~ 2(1V1- 1). 

Proof. (i) and (ii): Let T = (Cb C2 , ... ,Cr ) be a tower for G, and let W be any 
cut for G. Let j be the largest integer such that the partition ITj is finer than the two 
element partition {W, V\ W}. Note that 0 ~ j < r since ITo and ITr are, respectively, 
the discrete and the indiscrete partitions of V. Now define the cut W' for G/llj by 

W' = {I E ITj I I ~ W}. (5) 

1 1 1 

. 

1 

.:=B 
111 1 

Figure 3: r = IVI- 1 and lEI = 2(1V1- 1) 

It follows from the definition of j that Cj+1 must intersect both 8+ (W'; G IIT j ) and 
8- (W'; G Illj). Since the endpoints of each arc of 8+ (W; G) lie in distinct elements 
of the partition llj, it follows that 8+ (W; G) and 8+ (W'; G/llj) coincide. Because 
ga = max (G/llj) for each a E Cj +1 , it follows from the definition of contraction that 

max go·= max ga = max (G/llj) , 
aE6+(W;G) aE6-(W;G) 

(6) 

and furthermore both maxima in (6) must be attained at some arc of Cj +1 . This 
proves that H is max-sufficient for G, and that G is max-balanced. 

(iii): Since each cycle in a tower must have length at least 2 (recall, G and hence 
G/lli contains no loops), we must have IITi+11 < Illil, and therefore a tower can have 
length at most r ~ IVI - 1 

(iv): Since the vertices of Ci+1 (which are distinct) are identified to form ll'+l, we 
must have 

IITil = Illi+d + ICi+11- 1, for i = O,l, .. . ,r - l. 

Since Illol = IVI and IITrl = 1, we have 
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T 

lEI = 'LICil = 1V1-1 +1':::; 2(1V1-1). 
t=: 1 

This completes the proof. I 

The max-balanced graph given in Fig. 3 shows that the bounds in parts (iii) and 
(i v) of Theorem 3 are, in general, the best poss ible. 

It follows from Part (ii) of Theorem 3 that the existence of a tower is a sufficient 
condition for a weighted graph to be max-balanced. This condition is also necessary, 
aud the following algorithm shows how to compute a tower for a given max-ba.lanced 
graph. 

The Tower Algorithm 

Input: A strongly connected ma.x-balanced graph G = (V, A , g). 

Output: A tower (C], C2 , . .• , CT ) for G. 

Step 0: Set Ho = (V, 0) and i = O. 

Step 1: If lJi is strongly connected, set l' = i, return the sequence (Cl , C2 , ... , CT), 
and STOP. 

Step 2: Let TI, be the partition of V induced by the strong components of H" and 
let Ci+ 1 be a cycle of G ITIi satisfying 

ga = max (G/TIi) for a E Ci+l . (7) 

Step 3: Let Hi+! = Hi U Ci+1 ; set i = i + 1 and return to Step (1). 

It follows from Lemma 1 t hat the graph GITIi in Step 2 is max-balanced, and 
therefore by Lemma 2 it contains a cycle Ci+1 satisfying (7). It follows directly from 
Steps 1 and 2 that the output satisfies conditions (ii) and (iii) in the definition of a 
tower. Since ITIi+11 < ITId, for all i in Step 3, we have the following result: 

Theorem 4 Let G = (V, A,g) be a s trongly connected weighted max-balanced graph. 

Th en the towel' algorithm terminates in at most IVI - 1 it erat ions with a towel' 
(Ct , C2 , •.• , CT ) for G. 

As a consequence of Theorems 3 and 4, we have the following characteri zation of 
max-balanced graphs. 

Them'em 5 Lei G = (V, A, g) be a st1"Ongiy connated weighted graph. Then G is 
TIla2'-balanc ed if and only if G contains a towel' . 

4 Cycle Covers for G 

In this section, we define the notion of a cycle cover for G. \Ve show that G is max­
balanced if and only if G has a cycle cover (see [3J for an alternative proof of this 
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result) and use a tower for G to construct a cycle cover. As a consequen ce, we deri ve 

for max-balanced graphs a resul t that is an analogue of a cycle decomposition for a 
circulation in a graph. 

Let G = (V, A, g) be max- balanced, and let T = (C1 , C2 , ... , Cr ) be a tOllU for 
G. For i = 0,1, .. . , 1', let Hi be defined by (4) and let IIi be the partition of \I 
determined by the strong components of Hi. Define Ai by 

Ai = max (GjIIi-d = ga for all a E Ci . (8) 

It follows directly from the definition of Ci that 

(9) 

Each set Cj (since it is a cycle of GjIIi-d is a disjoint union of paths in G between 
the strong components of Hi-I' Thus each Ci can be extended to a cycle C; of G by 
traversing arcs in CI U C2 u··· U Cj _ l . It follows from (9) that the resulting cycle C; 
sat isfies 

for a E Ci, 

for a E Cj . 

and 
(1 0) 

Let G = (V,A ,g) be a weighted graph, and let H be a subgraph for G. A cycle 
COVEl' for G associated with H is a collection 1) = {Do I a E A} of (not necessarily 
distinct) cycles of G such that for each b E A 

(i) bEDb, 

(ii ) Db\{b} is contained in H, and 

(iii) gb :S go for a E Db' 

If H equals G, then we will refer to 1) as a cycle covel' for G. 
\Ve make t hree observations on the relation between towers and cycle covers. 

l. Equivalently, we may define a cycle cover for G = (V, A, g) as a sequence of 
cycles (D I , D2, ... , D s) for G such that there exist numbers (J1.I, 1!2 , ... , J1.s) so 
that for all a E A 

go = max I!i· 
{ijaED.} 

(11 ) 

2. If 1) is a cycle cover for G .associated with Hand H <; H' <; G, then 1) is a 
cycle cover for G associated with H' . 

3. Let T = (CI , C2 , ... , Cr ) be a tower for G, and let G' = C j uC2 u ·· ,uCr be the 
graph of T. Let 1) = {C; I i = 1,2, ... , r} be the extended cycles constructed 
ab ove. Since C; is cont.ained in C j U C2 u ·· · U Ci , it follows direct. ly from (10) 
that go = max{ijaEC:} A" Therefore, it follows from Observation 1 t.hat 1) is a 

cycle cover for G'. 

Theorem 6 L et G be a max-balanced graph , and let T = (CJ, C2 , ... , Cr ) be a tower 
fol' G. Then there e.risis a cycle cover fo r G associated with th e gmph ofT. 

Proof. Let H = (V, E) be the graph of the tower T. We will define a collection of 
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cycles 1) = {Db I b E A} for G (not all distinct) and show that 1) is a cycle cover for 
G associated with H. First, let bEE be an arc of T contained in cycle Gj . It follows 
from Observation 3 that Db = Cj (where Cj is the extension of Gj described above) 
satisfies the required conditions. 

Nex t, let b be an arc not contained in H, and let II j , i = 0,1 , ... , r, be the 
partitions determined by Hi defined in (4). It is intuitively obvious that the graph 
G IIIj is formed by sequentially contracting the cycles G1 , G2 , ... ,Gj (see [4J for a 

careful proof of this). T he arcs of G/II j _ 1 that are deleted by contracting Gj to a 
point are precisely those arcs with both endpoints in Gj • Let j be the integer such 
that b is deleted when Gj is contracted to a point. It fo llows that b has both endpoints 
in the extended cycle Cj. Thus we can form Db by concatenating b and the path in G; 
between th e endpoints of b in the direction of b. T his proves that Db \ {b} is contained 
in H. 

Since b is an arc of G III j- 1 it follows that gb ..:; Aj. Further, since Db is contained 
in G;, it follows directly from (10) tha t gb ..:; ga for a E Db. This proves that 1) is a 
cycle cover for G associated with H. I 

We remark that there is an analogy between the graph H of a tower for a max­
balanced graph and a spanning tree for an undirected graph in the sense that every 
arc b not in H is contained in a cycle all of whose arcs except b are contained in H. 

\\'e have the following corollary of Theorem 3. 

Corollary 7 Let G = (11, A , g) be a strongly connected max-balanced graph. Then 
there exists a max-suffi cien t subgraph H Jor G that has a cycle coveT containing Jewej' 
that WI cydes. 

Proof. Let T be a tower for G, and let H be the graph of T. It follows from 
Theorem 3 that H is max-sufficient for G, and by Observation 3 the set 1) 

{G; I i = 1,2, ... ,r } is a cycle cover for H. Furthermore, r < IV I by part (iii) of 
Theorem 3. I 

As a consequence of Theorems 3 and 6 we have the following characterization of 
max-ba la nced graphs. 

Corollary 8 Let G = (11, A, g) be a strongly connected weighted graph. Th en G is 
mo.r-balanced iJ and only iJ G has a cycle cover. 

Proof. Let G be max-balanced. Then by Theorem 3, G has a tower T. It follows 
from Theorem 6 that G has a cycle cover associated with the graph of T , which by 
Observation 2 is a cycle cover fo r G (associated with G). 

Conversely, let 1) be a cycle coyer for G, and let IV be a cut for G. Then for each 
b E 8+ (W) there exists a cycle D E 1) such that gb ..:; ga for a E D. Since D must 
also intersect 8- (W) there exists some arc c E 8- (IV) such that gb ..:; go. Thus we 
haye shmy that 

max ga":; max gao 
a€6+(W) a€6-(W) 

(12) 

A similar a.rgument shows tha.t the reverse inequality in (12) is also satisfied. This 
proves tha.t G is max-balanced. I 
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Figure 4: A Max-Balanced Graph 

Corollary 8 is an analogue of a cycle decomposition for a circulation in a graph. 
Specifically, it is easy to prove that a weight function g is a circulation for a graph 
(V, A) if and only if there exist cycles D I , D2 , ••. , Ds and positive numbers ILl, IL2 , 

... , /ls such that 
ga = L /l; for a E A. 

{;laED.} 

Given a circulation g it is easy to construct such a cycle decomposition: Let DI be a 
cycle for (V, A) such that ga > 0 for a E D1 . Let /l = max {ga I a E D I }, and subtract 
/l from each weight ga, a E D, and repeat this operation on the resulting circulation. 
Continuing in this fashion, we can easily construct the desired cycle decomposition. 
The tower algorithm is, in a sense, an analogue of this algorithm for decomposing 
circulations. 

5 Examples 

We conclude the paper by providing examples of max-balanced graphs. We proved in 
Theorem 5 that G is max-balanced if and only if G contains a tower. Thus every max­
balanced has the structure of a tower together with appropriately weighted chords. 
Every max-balanced graph contains a cycle all of whose weights are maximal. If a 
weighted graph G contains such a cycle that is also Hamiltonian, then G is max­
balanced. See Fig. 4. 

More complicated examples can be built by contracting the maximal cycle to a 
point and repeating this construction. See Fig. (5). 

-2 

3 
-2 

Figure 5: A Max-Balanced Graph 
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