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A weighted directed graph G IS a triple (V, A . g) where (V. A) IS a directed graph and g is 
a n arbitrary real-valued function defined on the arc set A. Let G be a strongly-connected, 
simple weighted directed graph. We say tha t G is max-balanced if fo r every nontrivial ~ ubset 
of the vertices W, the maxImum weight over arcs leaving W equals the maximum weIght over 
arcs entering W. We show that there exists a (up to an addItIve con~tant) unique potential p, 

for ( E V such that (V, A, g") IS max-balanced where g/: = P" + go - PI for a = (U , I ) EA. 
We describe an O(1V12 IAI) algorithm for computlJ1g P using an a lgorithm for computing the 
tnaxmwm cycle-mean of C. Fmally. we apply our principal result to the similarity scaling of 
nonnegatIve matrices. 

1. Introduction. Let (V, A) be a directed graph (or simply a graph) with vertex 
set V and arc set A . We will use the notation a = (u, 1') to denote the arc a from 
vertex u to vertex v. The graph (V, A) may contain multipl e arcs from u to [', 
although we will rule this out shortly. (Strictly speaking, we should write a E (u, L') 
where (u , u ) is the set of all arcs from u to c.) A weight function for (V, A) is a 
real-valued function defined on the arcs A. A potential for (V, A) is a real-valued 
function defined on the vertices V. A weighted graph is a triple G = (V, A, g) where 
(V, A) is a graph and g is weight function for (V, A). We will use ga for a E A and 
P" for U E V to de note the weight of a and thc potential of v, respectively. 

For a graph (V, A), a cut for (V, A) is a nontrivial subset Wof V (i .e., 0 e We V). 
(We will use the symbols c and ~ to denote strict and weak containment, 
respectively.) We define the set of arcs leaving Wand the set of arcs entering W, 
written 8 + (W; G) and 8 '-( W; G), respectively, by 

8+(W;G) = {a = (u,L') EAlu E W , and u E V " W}, and 

8-(W;G) = {a = (U,LI) EAlu E V " W , and () E W}. 

When there is no possibility of confusion, we will omit the dependence on G. 
Let G = (V, A, g) be a weighted graph, and let W be a cut for (V, A). Then G is 

max-balanced at W if 

max ga = max ga' 
a E !l+(W) a E o-O'V) 

that is, if the maximum weight over arcs leaving W equals the maximum weight over 
arcs entering W. (See Figure 1.) We define the maximum over the empty set to be 
- x. Further, G is max-balanced if G is max-balanced at every cut W. If G is 
max-balanced, we will also refer to the weight function g as max-balanced. 
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FIGURE 2. Identifying Parallel Arcs of G 

Let p be a potential for (V, A). Wc defined the reweighting of G with respect to p, 
written G P, to be the weighted graph (V, A, g P) where 

(1) g~ = p" + ga - P, for a = (u, /;) EA. 

A weight function f for (V, A) is a reweighting of g if f = gP for some potential p. 
A graph (V, A) is simple if it contains no loop (i.e., an arc a = (u, u») and no 

parallel arcs (i.e., multiple arcs from u to u). Let G be a weighted graph, and let H 
be the simple graph obtained from G be removing all loops and identifying parallel 
arcs. Thus, multiple arcs from Ll to L' are replaced be a single arc whose weight equals 
the maximum weight over the arcs identified be forming (u, v ). (See Figure 2.) It is 
easy to see that G is max-balanced if and only if H is max-balanced, and that a 
max-balanced graph must be the disjoint union of strongly-connected max-balanced 
graphs. 

We are thus led to study the following problem: 
PROBLEM I (The Max-Balancing Problem). Given a strongly-collnected, simple 

weighted graph (V, A, g), find a potential p, such that the reweigh ted graph GP = 
(V, A, gP) is max-balanced. 

If p is a potential that solves Problem 1, we say that p max-balances G. We will 
show that the Max-Balancing Problem has a (up to additive constant) unique solution 
p and describe an O(1V1 2 IAi) algorithm for constructing p. 

We now describe our paper in more detail. In §2 we recall analogous problems 
which have been studied and which motivate our investigations, and in §3 we present 
our notation and definitions. In §4 we define the operation of contraction which is 
used in our algorithm. In §5 we show that the max-balancing problem has at most one 
solution (up to an additive constant). 

In §6 we show that thcre exists a reweighting of the weighted graph G such that 
each arc weight is less than or equal to the maximum cycle-mean of G (see [3]). We 
use a variant of Karp's algorithm [8] (see also [4,5]) for finding the maximum 
cycle-mean. (Note, however, that any algorithm which computes the maximum 
cycle-mean could be used.) This algorithm will form the principal subroutine in our 
solution of the max-balancing problem. 

In §7 we describe our algorithm for computing the potential p that max-balances 
G. Our algorithm constructs a sequence of weighted graphs 

where G t+ I is derived from G' be reweighting and contracting a maximum-mean 
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cycle. The final term of this sequence is a singleton. At each iteration of the 
algorithm, we generate a potential (II for G

I 
corresponding to a maximum-mean 

cycle of G/. At the conclusion of the algorithm, the sum of the potentials (II (suitable 
defined) computed at each iteration is a potential that max-balances G. The rest of §7 
is devoted to a proof of this assertion. In §8 we apply our principal result to the 
similarity scaling of nonnegative matrices. 

Wc remark that we consider strongly-connected, simple weighted graphs for the 
sake of simplicity of exposition. Our variant of Karp's algorithm finds the maximum 
cycle-mean of an arbitrary weighted graph G, and our algorithm (with slight modifi­
cations) can be shown to balance an arbitrary graph G at all cuts that are not the 
union of strong components of G. In particular our algorithm will max-balance all 
strongly-connected components of G (see [11] for a proof). A numerical example of 
the algorithm in the general case may be found in [11]. 

Max-balanced graph have also been studied in algebraic optimization under the 
name algebraic flows. See, for example, [1,6,7, 16]. Further results for max-balanced 
graphs can also be found in [10, 12]. 

2. Motivation. Let (V, A) be a graph. A nonnegative weight function g for 
(V, A) is a circulation if for every vertex u the sum of the weights over arcs entering l' 

equals the sum of the weights over arcs leaving c. The following I] version of the 
max-balancing problem has been studied in [2, 9,13, 14]. 

PROBLEM 2 (i,-Balancing Problem). Giuen a strongly-connected, simple weighted 
graph (V, A, g) with ga > 0 for a E A, find a potential p > 0 for (V, A) such that the 
weight function f defined by 

(2) 

is a circulation for (V, A). 
The I,-balancing problem occurs in economics, statistiCS, urban planning, and 

demography. For example, in development economics the weight function g repre­
sents an initial statistical estimate of the flow-of-funds between sectors of an econ­
omy. The circulation conditions are prescribed accounting identities requiring that 
after accounting for all transactions (including borrowing and saving) each sector's 
total receipts and expenditures must be equal. Since the data used to estimate the 
weights are incomplete, a numerical procedure must be used to modify the weights so 
that the initial estimates satisfy the accounting identities. The I,-balancing problem is 
one approach for formulating this problem. See [15] for a discussion of the applica­
tions of I)-balancing and related matrix balancing problems. 

The I,-balancing problem can be extended to I" for 1 ,;;; p < 00 by requiring that for 
each vertex v the sum of the pth powers of the weights over arcs entering and leaving 
u must be equal. It is not hard to see that for 1 ,;;; p < 00 the I,,-balancing problem can 
be reduced to the iI-balancing problem for the weight function g~ = (g)" for a EA. 
The case of p = 00, however, produces a significantly different problem which 
apparently cannot be reduced to the II case. This is the problem we consider in this 
paper. 

In the case of I,-balancing, it is easy to see that if the weight function g is a 
circulation for (V, A), then for any cut W, the sum of the weights over arcs leaving W 
equals the sum of the weights over arcs entering W. Thus, if thc circulation condition 
is satisfied with respect to single vertices, then the analogous circulation condition is 
also satisfied at every cut. This property is not satisfied in the extension to p = .'X). 

That is, a weight function that is max-balanced at singletons need not be max-bal­
anced at larger cuts. (See Figure 3.) 
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FIGURE 3. G IS Max-balanced at Singletons, but Not Max-balanced. 

Thus we are lead to study the following (",-balancing problem: 
PROBLEM 3 (loc-Balancing Problem). Given a strongly-connected , simple weighted 

graph (V, A, g) with ga > 0 for a E A, .find a potential p > 0 for (V, A) such that for 
f defined by 

(3) f a =p"gap,-:-I fora = (u,v) EA 

the weighted graph (V, A, n is max-balanced. 
By taking logarithms in (3) it is straightforward to show that the l~-balancing 

problem is equivalent to the max-balancing problem. The original additive version 
(Problem 1) is morc natural for presenting the algorithm described in §7. We will use 
the multiplicative version (Problem 3) in §8 when we apply our results to the 
similarity scaling of nonnegative matrices. 

3. Notation and definitions. Let (V, A) be a graph, and let 1' 0 and vk be vertices 
of (V, A). A path from Vo to L'k of (V, A) is a sequence of the form P = 
(l'o,al , l.'I , . .. , akl uk ) in which 0, = (V,_I'V,) for i = 1,2, .. . ,k. That is, a path is 
directed and may contain repeated arcs (or vertices). The path P is said to start and 
end at the vertices Uo and Uk' respectively. We will identify a path with its underlying 
arc set. In particular, the length of a path P is the number of arcs of P and is 
denoted by I PI. A (simple) cycle is a path containing at least one arc that starts and 
ends at the same vertex and contains no repeated vertices. The set of all cycles of a 
graph (V, A) is denoted by cycles (G). 

Let G = (V, A, g) be a weighted graph. For a subset E of the arcs A we define 
the weight of £, written geE), by 

geE) = L ga· 
a E /: 

In particular, for a cycle or path C, the weight of C is g(C) = LfJ E Cga . For a cycle C 
in G, wc define the mean of C, written g(C), by 

_ 1 
g(C) = iCT L gao 

a E e 

We define the maximum cycle-mean for G , written mcm(G), by 

mcm( G) = max{ g( C)IC E cycles( G)}. 

Note, mcm(G) = -00 if and only if G is acyclic (i.e. , (V, A) contains no (directed) 
cycle). A cycle C of G is a maximum-mean cycle if 

g(C) = mcm(G). 

Two vertices u and I ' are connected if there is a path from u to l.' and a path from 
l' to u. Connectedness induces an equivalence relation on the set of vertices; the 
resulting equivalence classes are called the strong components of (V, A). We call a 
graph strongly-connected if it has exactly one strong component. 

Copyright © 2001 All Rights Reserved 
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4. The operation of contraction. Let G = (V, A, g) be a simple weighted graph. 
We need to define the graph derived from G by contraction. Our convention is that 
the operation of contraction is defined only for a graph whose vertex set is a partition 
of some underlying set. This is necessary for the consistency of the sequence of 
graphs generated by contraction in our max-balancing algorithm described in §7. 

Let fI and Il I be partitions of a set V. Then we say that n I is coarser than TI if 
every element of TI' can be expressed as the union of elements of TI. Let G = 

(II, A, g) be a weighted graph, and let IT I be coarser than fl. We define the 
contraction of G with respect to Il', written G/II', to be the weighted graph 
(II ' , A', g') where A' is the set of all a ' = (II, JI) such that /', J' Eo Il', [' *- JI, 
1 s;;: I' and J c J' for some (J,1) E A, and for a' = (I', JI) 

(4) g; , = max{ ga I a = (J, 1) E A, 1 s;;: I', and J s;;: J '} . 

The definition of A' ensures that this maximum is taken over a nonempty set. 
Intuitively, G' is derived from G by identifying all vertices of II contained in the 
same element of fli. Then aU loops are removed and parallel arcs are identified . The 
weight function g I is derived by max-projecting g onto A'. 

Restricting the operation of contraction to weighted graphs whose vertex sets are 
partitions is without loss of generality. For an arbitrary weighted graph (V, A, g), we 
define the discrete partition of V, written fI(V), by 

n(v) = {{1'}ll ' E V} . 

By identifying the element u of V and the element {v} of fI(V), there is an obvious 
graph isomorphism between (V, A, g) a nd (TI(V), A , g). 

In our algorithm, we shall consider the important case in which the partition 11' is 
induced by a cycle e to G. That is, one element of n I is the set of vertices of e, and 
the others are the remaining elements of fl. In this case we denote the contracted 
graph by G Ie, and refer to G I e as the graph derived from G by contraction e to a 
point. 

Let G = (V, A, g) and let Go = (fI, A, g) be the isomorphic weighted graph in 
which fI is the discrete partition of V. Then for a sequence of weighted graphs 

where G k + I is constructed from G k by contraction, the vertex set of each graph is a 
partition of V and is coarser than the preceding term. 

5. Uniqueness. In this section we show that for a strongly-connected weighted 
graph G there is at most one (up to an additive constant) potential that max­
balances G. 

THEOREM 1. Let G = (V, A, g) be a strongly-connected weighted graph. If p and q 
are potentials for (V, A) that max-balance G, then, for some constant a, P, - q" = a 
for all v E V. Therefore, the weight function gP is the unique max-balanced reweighting 
afg· 

PROOF. Let p and q be potentials that max-balanced G, and let r be the 
potential defined by r" = P" - ql'. It is easy to see that gP = (gqy; that is, 

(5) g/: = ru + g:1-r" fora = (u,v) EA. 
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We define W ~ V by 

W = {w E V I r .. = max rl'}' 
,' E V 
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It suffices to show that W = V. If not, then because G P is max-balanced it follows 
from (5) that 

( 6) max {r ll + g~ - r,} 
a E/) +(J1') 

a = (u , l'l 

max {r" + g~ - rl , }. 

aEO - (W) 
(1 = (11.,.) 

Note that hoth O-'-(W) and O-(W) are nonempty since (V, A) is strongly-connected. 
But since r" - r

l 
> 0 for a = (u, c) E 8 +(W), and r

ll 
- r

l 
< 0 for a = (u, v ) E 

O-(W), line (6) contradicts the assumption that gq is max-balanced. 0 

6. Computing maximum-mean cycles. The principal subroutine used by our 
max-balancing algorithm computes the maximum cycle-mean (mcm(G») of a weighted 
graph G = (V, A, g). Given mcm(G), we can find a potential p for (V, A) with the 
property that in the reweighted graph GP, every arc has weight no larger than 
mcm(G). The following lemma shows that such a potential exists (see also, [3, 
Theorem 7.5]). 

THEOREM 2. Let G = (V, A, g) be a weighted graph containing a cycle, and let 
H = (V, A, g - mcm( G») be the weighted graph in which the arc weights are shifted 
down by mcm(G). For each L' E V, let PI' be the maximum weight over all paths of H 
ending at L'. (Note, the length and starting point are arbitrary.) Then 

(7) PII + go - PI' .,;:;; mcm( G) forevClya = (u, v) EA. 

Further, if r is any potential satisfying (7) and a is an arc contained in some 
maximum-mean cycle for G, then 

( 8) g~ = ru + go - r l , = mcm(G). 

PROOF. Since H has no positive cycles, PI' is finit e for eaeh L' E V. Since 
a = (u , d extends any path ending at u to a path ending at u, it follows directly from 
the definition of PI ' that 

PII + ga - mcm( G) .,;:;; PI for each a = (u, v) E A, 

and (7) follows . (See Figure 4.) 
Let C be a maximum-mean cycle for G, and let r be a potential satisfying (7). 

Since gee) = gr(c), we have 

mcm(G) =g(C) =g"(C). 

Now (8) follows directly from (7). 0 

Copyright © 2001 All Rights Reserved 
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We call a potential satisfying (7) an optimal potential for G. The optimal potential 
p defined in Theorem 2 can be computed in time O(IVIIAi) as follows: Let n = IVI; 
for k = 0, 1, ... , nand U E V, let Fk ( u) be the maximum weight over the set of paths 
of length k ending at u (in the original graph (V, A, g». The Fk (u )'s can be 
computed using the recurrence 

Fo(u) = ° for U E V, and 

max {Fk(U)+ga} fork=0,1,2, ... ,n-1. 
aE8-(1') 

U = (U.l') 

Then mcm( G) is given by 

(9) (G) {
. {FnCU) -Fk(U)}} mcm = max mm . 

rEV O.;; k';;n - l n - k 

Now the optimal potential p in Theorem 2 can be computed by 

(10) P, = max {Fk( U) - k' mcm(G)} for L' E V. 
O.;;k ,;; n-- 1 

The method described here is a modification of the maximum cycle-mean algorithm 
described in Karp [8]. Specifically, Karp assumes that the graph G is strongly-con­
nected and defines the Fk(u)'s as the maximum weight over paths ending at u from 
some fixed vertex. In our modification we define the Fk ( /) )'s as the maximum weights 
over all paths ending at u, thereby extending Karp's algorithm to arbitrary weighted 
graph. Karp's proof that the mcm(G) is given by (9) in the strongly-connected case 
extends to this more general setting (sec [11] for the details). 

7. The balancing algorithm. In each iteration of our max-balancing algorithm 
we compute the maximum cycle-mean mcm( G) and a maximum-mean cycle C for a 
graph G = (V, A, g). Using these we can compute an optimal potential for G, that is, 
a potential with the property that in the reweighted graph GP the weights on the arcs 
of C are equal to mcm(G) and the weights on the remaining arcs are no larger that 
mcm(G) (Theorem 2). We then contract the cycle C to a point (in the reweigh ted 
graph) and repeat the iteration. Since each contraction operation decreases the 
number of vertices, the algorithm terminates after at most IV I iterations. 

At each iteration, the vertex set is a partition of V. Thus, for v E V we consider 
the element of each partition containing u. We define a potential for the original 
graph G be adding up the optimal potentials computed at each iteration evaluated at 
the element of the partition containing u. We show in Theorem 6 that the resulting 
potential max-balances G. 

The max-balancing algorithm 
Input: A strongly-connected, simple weighted graph G = (V, A , g). 
Output: A potential p for (V, A) such that the reweigh ted graph G P is max-bal­

anced, and an integer In equal to the number of iterations of the algorithm. (RecaIJ, 
the weight of a = (u, u) in GP is P" + ga - P",) 

0: (Initialization) Let G o = (n°, AO, gO) where no is the discrete partition of 
V, AO = A, and gO = g. Set k = O. 

I: (Termination) If G k is a singleton, set m = k, and go to Step 5. 
2: (Compute Maximum-Mean Cycle) Find a maximum-mean cycle C k and corre­

sponding optimal potential u k for Gk , (See Theorem 2.) Set n k + I equal to the 
partition induced by C k

. (See §4.) 
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3: (Reweight and Contract G k) Let G k + I be the weighted graph formed by 
reweighting G k with respect to the potential 0' k and contracting the cycle Cl. to a 
point. That is, 

Thus, arc a' = (I',l') EA k
+ 1 has weight 

4: (Increment) Set k = k + 1, and return to Step 1. 
5: (Compute Max-Balancing Potential) For v E V and k = 0, 1,2, ... , nz - I, let 

I(c, k) be the element of nk containing u. Define the potential p for (V, A) by 

(11) 
111-1 

PI' L U/~' .k) for v E V. 
k =O 

Return p and m; STOP. 
H is easy to see that if a weighted graph G is strongly-connected and simple then so 

is any contraction of G. Therefore, the weighted graphs generated by the max-balanc­
ing algorithm are strongly-connected and simple. Further, at any iteration if the 
algorithm docs not terminate in Step 1, the graph Gk must contain a cycle. Note that 
we use the notation g k to denote the weight function of the graph G k' Strictly 
speaking, we should write g(k) to distinguish this from gP which denotes the 
reweighting of g with respect to the potential p. No confusion should result, 
however, since k will always be an index. 

THEOREM 3. Let G = (V, A, g) be a strongly-connected, simple weighted graph. 
Then the max-balancing algorithm terminates after at most IVI contraction-reweighting 
operations. 

PROOF. After each contraction operation III k+ II > III k I since a cycle has at least 
two arcs. 0 

LEMMA 4. Let G = (V, A, g) be a strongly-connected, simple weighted graph, and 
let G k = (n k

, Ak, gk) for k = 0,1, ... , nz be the sequence of weighted graphs produced 
by the max-balancing algorithm. Then 

(j) g~ + I ,;;;; mcm(Gk ) for a E A k + 1 and k = 0,1, ... , nz - 1, and 
(ii) mcm(Go) ;;;. mcm(G 1);;;. ..• ;;;. mcm(G

m
_ I )· 

PROOF. Part (i) follows directly from Theorem 2 since reweighting Gk by Uk 

decreases all arcs' weights below mcm( G k ). Part (ii) follows directly from part (i) 
since mcm( G k , . I) is an average of arc weights from G k +- I' 0 

For a given strongly-connected, simple weighted graph G = (V, A, g), let Uk for 
k = 0,1 , ... , m be the sequence of partitions of V produced by the max-balancing 
algorithm, and let I(v, k) be the element of n k containing v (as in Step 5 of the 
max-balancing algorithm). For the graph (V, A) we define the potentials pk, k = 

0, 1,2, ' .. , m , by pO = 0, and 

k-I 

(12) P k _ " / 
" - '-' 0'1(1'. /) for l ' E V, for k = 1,2, . .. m. 

1= 0 

Note that the pbS are the partial sums in (11). 

Copyright © 2001 All Rights Reserved 
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The next lemma contains technical results that are needed to prove correctness of 
the max-balancing algorithm. 

LEMMA 5. Let G = (V, A, g) be a strongly-connected, simple weighted graph. Let 
G k = (II k, Ak, gk) and pk for k = 0, 1, ... , m be, respectively, the weighted graphs 
produced by the max-balancing algorithm and the potentials defined in (12). Then the 
following are true: 

(j) If u , u E V are in the same element of II J, j = 0,1, ... , m, then 

PI~ - PI~ = p~ - p! for k = j , j + 1, ... , m. 

(ii) If I and] are distinct elements of II.! - I, j = 1,2, ... , m, then for a' = (I , ]) 

(13) g J- l = max{pJ-l +g -p.! - 'Iu EO I [ 1 EO] anda = (u u) EA} a' u a I' " , , 

and 

(14) uri + g~;-' - uri = max{p!, + go - p/.lu EO I, L' E], and a = (u , u) E A}. 

PROOF. (i) If u and U are in the same element of [l.! then they are in the same 
element of Ilk for k ~ j since Ilk is coarser than III. Therefore I(u, k) = I(u, k) for 
k ~ j , and part (i) follows directly from (12). 

(ij) Line (13) follows by induction and the definition of contraction. Line (14) 
follows from (13) and the definition of pJ in (12). 0 

Next, we provide additional explanation of the results in Lemma 5. Consider the 
weight functions g p' for (V, A) derived from g by reweighting with respect to the 
potential pk defined in (12). For a given arc a = (u, u) E A, consider the sequence of 
weights g( for k = 0,1, .. . , m. It follows from part (j) that as soon as the endpoints 
u and U are in the same vertex of G

J
, then the weight of a in this sequence is 

constant. We will use this observation in the proof of Theorem 6. Since the maximum 
cycle-mean calculations are performed on the contracted graphs Gk, to prove that 
p = pm max-balanced (V, A), it is necessary to relate the weight function gP' for 
(V, A) with the weight function gk of the contracted graph G k • It follows from part 
(ii) that g k can be derived by (13) from gP' . Line (14) is the relation that we will 
actually use in Theorem 6. 

We need the following definition in the proof of Theorem 6. For a graph (V, A), let 
II and W be, respectively, a partition and a cut. We say that W is compatible with II 
if for every element I or 11, either I S; W or I S; V", W. Equivalently, W is 
compatible with II if W can be written as the union of elements of It. We can now 
state and prove the main theorem of our paper. 

THEORE M 6. Let G = (V, A, g) be a strongly-connected , simple weighted graph, 
and let p be the potential for (V, A) produced by the max-balancing algorithm. Then GJ> 
is max-balanced. 

PROOF. Let W be a cut for (V, A). We must show that 

max {p" + ga - P, ,} 
aEI)· (W) 
a -~(U.I · ) 

max {Pu + go - p,.}. 
a E o-(W) 
a~(l/ , I') 

Let pk for k = 0, 1, . .. , m be the potentials defined in (12), and consider GP" the 
reweighting of G with respect to pk. 
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Intuitively, our proof technique is as follows: We run the max-balancing algorithm 
until the first time, say j, that thc computed maximum-mean cycle U - I contains 
vertices from both Wand V" W. Then we show that the reweighting operation 
forces the weights on arcs of Gpl leaving and entering W to lie below mcm(GI_ I)' 
Since C I - I must entcr and leave W, it follows that G pl is max-halanced at W. Since 
the contraction operation frcezes the weight of at least one arc from 8+(W) and 
8-(W) and since the computed maximum cycle-means are decreasing, it follows that 
Gp' must remain max-balanced at W at subsequent iteration. Since p = pm, it 
follows that Gp is max-balanced. We now givc the formal argument. 

Let G k = (TI k , A \ g k) for k = 0, 1, ... , m be the sequence of graphs generated by 
the max-balancing algorithm with input G. Define j, 0 > j ~ m, to be the smallest 
integer such that W is not compatible with HI. There must be one since nn and TIm 
are , respectively, the discrete and indiscrete partitions of V. 

Claim 1. Gp' is max-balanccd at W. 
We define W' ~ 11' - 1 by 

W' = {I E fl'-IIJ ~ W}. 

Note that W' is a cut for GI- I since W is a compatible with TIJ - I. Since W in not 
compatible with TI J, however, the cycle CJ- I computed by the max-balancing algo­
rithm must contain arcs from both 8+(W '; G

J
- I) and 8 - (W '; G,_I)' Since !TI - I is an 

optimal potential for GJ _ I it follows from Theorem 2 that GJ - I reweighted by !T' - I 
is max-balanced at W'. That is 

(15) mem(G, _ I) = max {!Tr l + g~-;-I - !T;-I} 
a 'E8+ (W '; G

1
_ ,) 

a'~{/ , J) 

max {!T;- I + g; -;- I -!Tr I}. 
a'E /i - (W ' .<i,) 

a'=(I.J) 

Furthermore, both maxima in (15) are attained at some arc of C 1- I. 

Let a = (u, d be an arc of O+(W; G) U o - (W; G). Since W is compatible with 
JI J - 1 it follows that u and [' are in distinct elements of TI I - I. Therefore, combining 
Lemma 5, part (ji) and (15) we have 

mcm(GJ_ I) = max {p~ + Ka - pn = max {p~ + ga - pil, 
a E/i+ UV . G) a E8 -(W. G) 

a = (II,I) a = (II,I) 

which shows that G 1' 1 is max-balanced at W. 
Claim 2. (;P' is max-balanced at W for k = j + 1, j + 2, . .. , m. 
Let a = (u , v) be any arc of O- (W; G) U o~(W; G). If u and v are In distinct 

clements J and] of TIk - l, then for a' = U, J) 

(16) k + k k - I k - [ k -I (G) (C,) Pu g il - PI ~ !TI + ga o -!TJ ~ mcm k-[ ~ mcm TJ - I . 

Thc first inequality follows from (14), the second from Theorem 2, and the third from 
Lemma 4, part Oi). 

If u and /' are in the same element of n k .. I, then let i, j ~ i < k, be the smallest 
index such that u and l' arc in the same element of TIl. Then 
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The equality follows from Lemma 5, part (i); since u and u are in distinct elements of 
il, - I, the first inequality follows from (13) and Theorem 2; the second inequality 
follows from Lemma 4, part (ii). 

Combining (16) and (17), we have 

Since the cycle C}--I is contracted to a point when III is formed in Step 3 of the 
max-balancing algorithm, for k ;;;. j each set 8 +(W; G) and 8 - (W; G) contains an arc 
a = (u, L') such that u and u are in the same element of 0 k and p~ + g a - p/ = 

mcm( G) _ I)' It follows from Lemma 5, part (i), that for such arcs P,~ + g a - p,k = 

mcm(G
J

_ 1). Therefore, it follows from (18) that 

max {p: + ga - pn = max {p: + go - pn = mcm(G}_I)' 
a E /)+(W;G) a E Il - (W,C) 

U ~ (l1 , ,) U~(II,,.) 

This proves the claim. 
The theorem follows from Claim 2, since p = pm. 0 

A referee has proposed a different method for defining the potential a- k in Step 2 
of the max-balancing algorithm. Namely, let Gk = (ok, Ak, gk) be the graph in Step 
2, and let C k be any maximum-mean cycle of mean )"k = mcm(Gk ). Now let a- k be 
any potential for G k such that 

( 19) 

Such a a- k can be computed as follows: Choose any J E C k and set a-/ = O. Then 
travel around C k and set a- k so that (19) is satisfied. The value of a- k on the 
remaining vertices of G k can be set to zero. 

It is not hard to show that if a- k is defincd as above, then the computed 
cycle-means are decreasing (Lemma 4, part (D). Moreover, we still have the result 
that for a = (u , u) E A, if j is the first integer such that u and u are in the same 
element of the partition 0l' then 

Using these results, the proof of Theorem 6 can be adapted to show that the 
max-balancing algorithm with this modification is correct. 

In the referee's modified approach one first finds a maximum mean cycle C and the 
corresponding cycle mean. One then computes a potential for reweighting. This 
approach is more general in the sense that it does not depend on a specific way of 
identifying C, and because it shows that the value of the potential at vertices which 
do not lie on C are irrelevant. Our approach, on the other hand, repeats a modified 
version of Karp's algorithm for identifying C. We thus clearly reveal the connections 
between our algorithm, the max balancing problem and the min-max characterization 
of the maximum-cycle mean in Theorem 2 and [3, Theorem 7.5], namely 

mcm(G)=min{ max {p,,+ga-pJ}. 
p a--(u,,-) E A 

The two approaches are computationally equivalent. 

8. Similarity scaling of nonnegative matrices. Let B be an n X n nonnegative 
matrix, and let V = {l, 2, ... , n}. For J c V (recall, c denotes strict containment) we 
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use I' to denote V" I , the complement of I in V. The matrix B IS called 
max-balanced if for every nontrivial J c V we have 

max{ b,) liE {, j E {'} = max{ b,) liE J'. j E l}. 

In the definition of max-balanced matrices, we define the maximum over the empty 
set to be 0, whereas in the definition of max-balanced graphs we define the maximum 
over the empty set to be - 00. This is consistent with the log transformation used to 
convert the multiplicative matrix problem into the additive graph problem. (See §2.) 

We define the graph associated with B, written Graph (B), to be the weighted 
graph (V, A, g) where 

V= {l,2,oo ., n}, 

A = {a = (i, j)lb,) > O}, and 

ga = In b,) for a = (i , j) EA. 

This correspondence induces a bijection between nonnegative matrices and weighted 
graphs with no parallel arcs. 

An n X n matrix D = (dl)~. )~ ] is called diagonal if d ,) = 0 whenever i *- j. We 
denote a diagonal matrix by diag(d], d2 , ••• , dn ) where d , for i = 1, 2, ... , n is the ith 
diagonal entry. A diagonal matrix is called positive if all of its diagonal entries are 
positive. Given n X n nonnegative matrices Band C, the matrix C is a (diagonal) 
similarity scaling of B if C = DBD -- ] for some positive diagonal matrix D. 

There is a close connection between the operations of scaling nonnegative matrices 
and reweighting graphs. We state the following lenmla without proof. 

LEMMA 7. Let B be an n X n nonnegatil'e matrix, and let D = diag(d l , d 2 , • • . , d,) 
be an n X n positive diagonal matrix. 

(i) The matrix B is max-balanced if and only if Graph(B) is max-balanced. 
(ii) Let p be the potential for Graph( B) defined by P, = In d, for i = 1,2, ... , n. 

Then 

Graph(DBD - 1
) = Graph(B)". 

Let (V, A, g) be the graph associated with the nonnegative matrix B. Then B is 
called irreducible if (V, A) is strongly-connected. Also, B is called completely re­
ducible if every arc of A is contained in a strong component of (V, A). We state the 
following lemma without proof. 

LEMMA 8. Let B be an n X 11 nonnegatifle matrix, and let (V, A, g) be the graph of 
B. Then the following are equiualent: 

(i) Ihe matrix B is completely reducible; 
Oi) There exists a permutation matrix P such that p O, BP is the direct sum of 

irreducible matrices; 
(iii) For each cut W of (V, A), 8~ (W) is nonempty if and only if 8 - (W) is 

nonempty. 

Let G be the weighted graph obtained from Graph (B) by removing all loops. It is 
easy to see that a potential p max-balances G if and only p max-balances Graph (B). 
Thus we have the following corollalY of Theorems 1 and 6. 

COROLLARY 9. Let B be an n X n nonnegatil'e, ineducible matrix. Ihen there exists 
a unique (up to multiplicative constant) positive diagonal matrix D such that the 
similarity scaling DBD -- 1 of B is max-balanced. 
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We have the following corollary of Corollary 9. 

COROLLARY 10. Lei B be an n X n nonnegatil'e matrix. Then there exists a 
similarity scaling of B that is max-balanced if and only if B is completely reducible. 

PROOF. (=) Suppose that B is completely reducible. Let G = (V, A, g) be the 
graph associated with B, and let n = {fl ' 12", ., I) be the partition of V deter­
mined by the strong components of (V, A). Let G, be the (strongly-connected) 
weighted graph induced by I" and let p' be a potential that max-balances G,. We 
define the potential q for (V, A) by 

(20) q, = p; for v E I, En. 

It is easy to see that q max-balances G, since it follows from the definition of 
completely reducible that G is the union of the induced subgraphs G, for i =. 

1,2, . .. , w. 

(=) Conversely, suppose that B is not completely reducible. Then by Lemma 8 
there exists a cut W of Graph (B) such that o +(W) =!= 0 and O-(W) = 0. Clearly, 
no similarity scaling of B can be max-balanced at W. 0 

Next we show that Corollary 9 can be generalized to arbitrary nonnegative 
matrices. First, we need the following elementary lemma: 

LEMMA 11. Let G = (V, A , g) be an acyclic weighted graph. Then for any scalar 
M > 0 there exists a potential (T for (V, A) such that 

(21 ) g;: ~ - M for all a EA. 

PROOF. For v E V, let r, be the maximum length over all paths in (V, A) ending 
at v. For a > 0, define the potential (Ta by (T,'" = ar,. Since r, ~ r" + 1 for 
a = (u ,v ) EA, we have 

Now we can choose a large enough so that (21) is satisfied. 0 

Let G = (V, A, g) be a weighted graph, and let IT be the partition of V deter­
mined by the strong components of (V, A). We define the condensed graph of G, 
written condense (G), to be the weighted graph G lIT. It is easy to see that condense 
(G) is acyclic. 

We can now state the main theorem of this section. 

TH EOREM 12. Let B be a n X n nonnegative matrix, and let G = (V, A, g) be the 
graph associated with B. 7hen for each E > 0 there exists an n X n positive diagonal 
matrix D such that the matrix C = DBD - I satisfies the following properties: 

(0 For each nontrivial I c V that is not the union of strong components of (V, A) 

max{c,J liE I, j E I'} = max{c,J liE I ' , j E I}. 

(ii) For each nontrivial I c V 

Imax{c ,J liE I , j El'} - max{c,J liE I',j E I}I ~ E. 

PROOF. Let n = {fl ' 12 " .• , I,J be the partition of V determined by the strong 
components of (V, A), and for i = 1, 2, . . . ,w let p' be a potential that max-balances 
the subgraph G, induced by the strong component I,. Define thc potential q for 
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q,. = P: for v E I, En. 
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Let {3 be the IntDlmUm over the set of all arc weights of (FI, and define 
a = min{{3, In E 1 2}. Let If = condense( G'I), and let (T be a potential for H such that 
every arc of H eT has weight less than or equal to {3. (See Lemma 11.) Define the 
potential p for (V, A) by 

(23) 

and let D = diag(d" d 2 , ... , d) where d , = c p
'. 

We claim that C = DBD-' satisfies (i) and (ii). Let a = (u , u) E A, and suppose 
that the vertices u and L' are contained in the strong components ] and K, 
respectively. If ] = K, then if follows from (23) that 

(24) 

If ] =I K, then (J , K) is an arc of If , and therefore 

(25) 

since q" + ga - q, is less than or equal to the weight of the arc (J , K) in Her. 
To prove part (i), let I be a cut for (V, A) that is not the union of strong 

components of (V, A). We will show that 

(26) 

Since I is not compatible with the partition n, both 8+(1) and 8 - (J) contain an arc 
whose endpoints are in the same strong component. Let a = (u, v) be any arc of 
8+(1). If u and u are in distinct strong components, then it follows from (24) and (25) 
that there exists an arc b E 8 - ( I) such that g~ ,;;; gt:. If u and v are in the same 
strong component I" then since the subgraph of GP induced by I, is max-balanced, it 
follows that there exists b E 8 - (1) such that g~ ,;;; gg. This proves the inequality 
(26). A similar argument show that the opposite inequality holds as well ; this proves 
part W. 

If I is the union of strong components of (V, A), then (25) holds for all arcs leaving 
and entering /. Therefore, part (ii) follows from (25) and part (i). 0 

Of course, Corollary 10 and Theorem 12 may be restated in an additive form for 
weighted graphs. 
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