
Characterizations and Classifications of 
M-Matrlces Using Generalized Nullspaces 

Daniel Hershkowitz* 
Department of Mathematics 
Technion -Israel Institute of Technology 
Haifa 32000 Israel 

Uriel G. Rothblum t 
Faculty of Industrial Engineering and Management 
Technion -Israel Institute of Technology 
Haifa 32000 Israel 

and 

Hans Schneider:j:* 
Mathemntics Department 
University of Wisconsin - Madison 
Madison, Wisconsin 53706 

Submitted by Richard A. BruaIdi 

ABSTRACT 

Several characterizations of the class of M-matrices as a subclass of the class of 
Z-matrices are given. These characterizations involve alternating sequences, decom
positions, and splittings, and all are related to generalized nullspaces. 

1. INTRODUCTION 

In this paper we give several new characterizations for a Z-matrix to be 
an M-matrix. All of our characterizations are related to the generalized 
nullspace of the matrix. 
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Let A be a Z-matrix. In Section 3 we introduce alternating sequences for 
A and we show that a Z-matrix A is an M-matrix if and only if the length of 
every alternating sequence is finite. Moreover, it is shown that the index of an 
M-matrix equals the maximal length of an alternating sequence. Related 
results appear in [6] and [7]. In Section 4 we show that every vector x such 
that Ax;;;, 0 has a decomposition of a certain type if and only if A is an 
M-matrix. In Section 5 we show that if the index of A is less than or equal to 
1, then A is an M-matrix if and only if there exists a weakly regular splitting 
of A, A = M - N, such that the matrix 1- M-1N is an M-matrix with the 
same index as A. We introduce a more general class of splittings, called 
Z-splittings, for which a similar result holds. 

Some of our results improve results found in [1]. 
This paper is the third in a sequence of related papers. The first paper in 

the sequence is [2] and the second paper is [3]. 

2. NOT A TION AND DEFINITIONS 

This section contains most of the definitions and notation used in this 
paper. In the main we follow the definitions and notation used in [9]. 

Let A be a square matrix with entries in some field. As is well known (see 
[9] for further details), after performing an identical permutation on the rows 
and the columns of A, we may assume that A is in Frobenius normal form, 
namely a block (lower) triangular form where the diagonal blocks are square 
irreducible matrices. 

NOTATION 2.1. For a positive integer n we denote (n) = {I, ... , n}. 

CONVENTION 2.2. We shall always assume that A is an n X n matrix in 
Frobenius normal form (A ij ), where the number of diagonal blocks is p. Also 
every vector h with n entries will be assumed to be partitioned into p vector 
components hi conformably with A. 

NOTATION 2.3. Let h be a vector with n entries. We denote 

supp( h) = {i E (p): hi * O} . 

DEFINITION 2.4. The reduced graph of A is defined to be the graph 
R(A) with vertices 1, ... , p and where (i, j) is an arc if and only if Aij * O. 
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DEFINITION 2.5. Let i and j be vertices in R(A). We say that j 
accesses i if i = j or there is a path in R( A) from j to i. In this case we write 
i =< j. We write i -< j for i =< j but i =F j. We write i =F< j [i f< j] if 
i = < j [i - < j] is false. 

DEFINITION 2.6. Let W be a set of vertices of R( A), and let i be a 
vertex of R(A). We say that i accesses W (W =< i) if i accesses (at least) 
one element of W. We say that Waccesses i (i = < W) if i is accessed by (at 
least) one element of W. 

NOTATION 2.7. Let W be a set of vertices of R(A). We denote 

below( W) = {vertices i of R ( A ) : W = < i }, 

above( W) = {vertices i of R ( A ) : i = < W }, 

top(W) = {i E W: JEW, j =< i => i = j}, 

DEFINITION 2.8. A vertex i of R( A) is said to be singular [nonsingular] 
if Aii is singular [nonsingular]. The set of all singular vertices of R(A) is 
denoted by S. 

DEFINITION 2.9. Let W be a set of vertices in R(A). A sequence 
a I , ... , ale of singular vertices in W is said to be a singular chain in W of 
length kif a l -< . .. -< ale' 

DEFINITION 2.10. Let i be a vertex in R(A). The level of i is defined to 
be the maximal length of a singular chain in below( i). 

NOTATION 2.11. Let k be a nonnegative integer. We denote by Ale the 
set of all vertices in R( A) of level k. 

DEFINITION 2.12. Let x be a vector. The level of x, level(x), is defined 
to be the maximal level of a vertex i, i E supp( x). 

DEFINITION 2.13. A real (not necessarily square) matrix P will be called 
nonnegative (P ~ 0) if all its entries are nonnegative, semipositive (P > 0) if 
P ~ 0 but P =F 0, and (strictly) positive (P » 0) if all its entries are positive. 
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NOTATION 2.14. Let P be a nonnegative square matrix. We denote by 
p(P) the spectral radius of P (its Perron-Frobenius root). 

DEFINITION 2.15. A Z-matrix is a square matrix of form A = A. I - P, 
where P is nonnegative. Such a Z-matrix A is an M-matrix if A. ~ p( P). The 
least real eigenvalue of a Z-matrix A is denoted by l( A) [observe that 
I(A) = A. - p(P)]. 

NOTATION 2.16. Let A be a Z-matrix. We denote 

T= {ie( p ) :I(A;J <o} . 

NOTATION 2.17. Let A be a square matrix. We denote 

ind(A) = the index of 0 as an eigenvalue of A, viz., the size of the largest 
Jordan block associated with 0; 

E(A) = the generalized nullspace of A, viz. N(N), where n is the order 
of A. 

DEFINITION 2.18. Let A be a square matrix and let x E E( A). The 
height of x, height( x). is defined to be the minimal nonnegative integer k 
such that AkX = O. 

DEFINITION 2.19. Let A be a square matrix in Frobenius normal form. 
and let H = {a l , ... , a q }, a l < ' " < a q , be a set of vertices in R(A). A set 
of semipositive vectors Xl, . . . , x q is said to be an Hpreferred set (for A) if 

xj » 0 

and 

if a;=<j,} 
i=I, ... ,q, j=I, ... , p, 

if a j *< j, 

q 

- AXi = L, CikXk, 

k-l 
i=I, .. . ,q 
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where the ca, satisfy 

if a i -ai - < ak>} 
i, k = 1, ... ,q. 

if a i f< ak' 

DEFINITION 2.20. Let A be a square matrix in Frobenius normal form, 
and let H be a set of vertices in R( A). An H-preferred set that forms a basis 
for a vector space V is called an H-preferred basis for V. 

DEFINITION 2.21. Let A be a square matrix. A splitting A = M - N is 
said to be a Z-splitting if M is a nonsingular matrix, M- 1 is nonnegative, 
and the matrix I - M- 1 N is a Z-matrix. A splitting A = M - N is said to be 
a weakly regular splitting if it is a Z-splitting and also M - 1 N is nonnegative. 

3. ALTERNATING SEQUENCES 

DEFINITION 3.1. Let A E C nn and let x E en. The sequence 
x, Ax, ... , AkX is said to be semipositive sequence for A of length k if 

A'x > 0, r=O, ... ,k-l, 

The sequence x, Ax, ... , AkX is said to be an alternating sequence for A of 
length k if the sequence x, Bx, ... , BkX is a semipositive sequence for B, 
where B= - A. 

DEFINITION 3.2. Let A E C nn and let x E en. An infinite sequence 
x, Ax, A~, ... is said to be an infinite semipositive sequence for A if 

A'x >0, r = 0,1,2, .... 

The infinite sequence x, Ax, A~,... is said to be an infinite alternating 
sequence for A if it is an infinite semipositive sequence for - A. 
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LEMMA 3.3. Let A be an M-matrix, and let x be a seminegative vector 
such that Ax = b ~ O. Then level( x) > level( b). 

Proof. Let i E top(x). Observe that Ajjx j = bj' If i is a nonsingular 
vertex, then it follows that b j > O. Hence, since Ajj is an irreducible M
matrix, it follows that x j » 0, contrary to assumption. Thus i is a singular 
vertex. Furthermore, since Ajj is an irreducible singular M-matrix and bi ~ 0, 
it follows that bi = O. Hence, an examination of the accessibility relations 
(d. Lemma (3.1) in [3]) shows that top(x) -< supP(b). Since top(x) consists 
of singular vertices only, the result follows. • 

THEOREM 3.4. Let A be an Z-matrix . Then 

(i) if A is not an M-matrix, there exists an infinite alternating sequence 
forA; 

(ii) if A is an M-matrix, the index of A is equal to the maximal length of 
an alternating sequence for A. 

Proof. (i): If A is not an M-matrix, then choose x to be a semipositive 
eigenvector associated with the least real (negative) eigenvalue of A. Observe 
that the sequence x, Ax, .. . is an infinite alternating sequence for A. 

(ii): Let A be an M-matrix, and let ind(A)=k. By the preferred basis 
theorem (e.g. , Theorem (4.14) in [2]) there exists an alternating sequence for 
A of length k (see also Theorem 3.1 in [4]). To show that k is the maximal 
length of such a sequence, let m be a positive integer, and assume that 
x, Ax, .. . , Amx is an alternating sequence for A. It follows from Lemma 3.3 
that the level( x) ~ m. Since by the index theorem for M-matrices 
(e.g., Theorem 3.1 in [4] ; see also Corollary (4.37) in [2]) we have ind(A) ~ 
level( x), it follows that k ~ m. • 

The following characterization of M-matrices is an immediate conse
quence of Theorem 3.4. 

COROLLARY 3.5. Let A be a Z-matrix . Then A is an M-matrix if and only 
if every alternating sequence for A is of finite length . 

4. DECOMPOSITIONS 

THEOREM 4.1. Let A be a Z-matrix . Then the following are eqUivalent: 

(i) A is an M-matrix . 
(ii) Ax ~ 0 implies that there exists a nonnegative vector u and a non

negative vector v, v E E(A), Av ~ 0, such that x = u - v. 



CHARACTERIZATIONS OF M -MATRICES 65 

(iii) Ax ~ 0 implies that there exists a nonnegative vector u and a vector 
v, v E E(A), such that x = u - v. 

Proof, (i) => (ii): Let A be an M-matrix, and let i be a vertex in R( A). If 
iii below(S), then it follows from Proposition (4.2) in [3] that Xj ~ O. 
Furthennore, by the preferred basis theorem, E( A) contains a semi positive 
vector W such that Wi » 0 for all i E below( S) and Aw ~ O. Therefore, for a 
sufficiently large positive c, the vector x + cw is semipositive. Hence, the 
decomposition x = u - v, where u = x + cw and v = cw, satisfies the re
quired conditions. 

(ii) => (iii): Obvious. 
(iii) => (i): Suppose that (iii) holds, and assume that A is not an M-matrix. 

By the preferred basis theorem there exists a seminegative eigenvector x for 
A associated with l( A) such that 

(4.2) supp( x) n T 4: 0 . 

Observe that Ax > O. By (iii), x may be written as x = u - v , where u ~ 0 
and v E E( A). Since x < 0 we have v > O. Furthennore, by (4.2) we have 

(4.3) supp( v ) n T 4: 0 . 

However, since v is a nonnegative vector in E(A) it follows from Theorem 
(5.3) in [2] that supp( v) n T = 0, in contradiction to (4.3). Therefore, our 
assumption that A is not an M-matrix is false. • 

LEMMA 4.4. Let A be an M-matrix and let x E E(A). Then top(x) ~ S. 

Proof, The claim clearly holds for all elements in the S-preferred basis 
for E(A) (e.g., Theorem (4.14) in [2]), and hence it holds for all x E E(A) .• 

LEMMA 4.5. Let A be a singular M-matrix. Let x be a vector of level k in 
E(A) such that Xi > 0 for all i E A" nsupp(x)n S. Then height(x) = k. 

Proof, We prove our assertion by induction on k. The case k = 0 is 
obvious, since then x = 0 by Lemma 4.4. Assume the claim holds for k < m 
where m > 0, and let k = m. By the preferred basis theorem, x is a linear 
combination of the S-preferred basis elements, where the coefficients corre
sponding to the k-Ievel vectors are nonnegative and not all zero. Also, the 
coefficients corresponding to vectors of level greater than k (if any) are zero. 
Thus, by the preferred basis theorem, y = - Ax is a (k - I)-level vector in 
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E(A), where Yi > 0 for all i E A k - l nsupp(y)n S. By the inductive assump
tion we have height(y) = k -1, and hence height(x) = k. • 

COROLLARY 4.6. Let A be an M-matrix. Then there exists a vector x such 
that Ax ~ 0, arul for every decomposition x = u - v where u ~ 0 arul v E 

E( A) we have height( v) = ind( A). 

Proof. Let k = ind( A). Choose - x to be one of the k-level vectors in 
an S-preferred basis for E(A). Then Ax ~ O. Let x = u - v, where u ~ 0 and 
v E E( A). Observe that v> 0 and level( v) = k. By Lemma 4.5 we have 
height( v) = k. • 

REMARK 4.7. Using similar arguments we can prove the following state
ment: Let x be a k-level vector such that Xi> 0 for all i E A k n supp( x) n S. 
Then for every decomposition x = u - v where u ~ 0 arul v E E( A) we have 
height( v) ~ k. 

In view of Corollary 4.6, Theorem 4.1 can be stated in a slightly stronger 
version: 

THEOREM 4.8. Let A be a Z-matrix arullet k be a nonnegative integer. 
Then the following are equivalent: 

(i) A is an M-matrix with ind(A) = k . 
(ii) Ax ~ 0 implies that there exists a nonnegative vector u arul a non

negative vector v, v E E( A), A v ~ 0, height( v ) = k, such that x = u - v. 
(ill) Ax ~ 0 implies that there exists a nonnegative vector u arul a vector 

v, v E E( A), height( v) = k, such that x = u - v . 

Proof. (i) = (ii): The proof is identical to the proof of the corresponding 
implication in Theorem 4.1. Note that the vector w chosen there is of 
height k. 

(ii) = (ill): Obvious. 
(ill) = (i): By Theorem 4.1, A is an M-matrix. Also, clearly, ind(A) ~ k. 

By Corollary 4.6 it follows from (ill) that ind(A) = k. • 

In the case k ~ 1, the implication (ill) = (i) in Theorem 4.8 may be found 
as (E I2 ) = (i) in Theorem 2 of [5]; see also [1, p. 154]. 

We have the follOwing extension of Theorem 4.1 to Z-matrices. We let 
F( A) be the subspace spanned by the nonnegative vectors in E( A). 
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THEOREM 4.9. Let A be a Z-matrix, and suppose that Ax ~ O. Then the 
following are equivalent: 

(i) supp(x)nabove(T) =0. 
(ii) There exists a nonnegative vector u and a nonnegative vector v, 

v E E(A), Av ~ 0, such that x = u - v. 
(iii) There exists a nonnegative vector u and a vector v, v E F(A), such 

that x = u - v. 

Proof. (i) = (ii): Let W = below(supp(x)). If (i) holds, then A[W] is an 
M-matrix. Hence (ii) follows by an application of Theorem 4.1 to A[W]. 

(ii) = (iii) is trivial. 
(iii) = (i): Suppose (i) is false and that (iii) holds. Since (i) is false, 

below( supp( x» n T * 0. Let 

V' = top(below( supp( x) ) n T), 

and let V = above(V'). By Corollary (5.8) in [3] we have v[V] = 0, and it 
follows from (iii) that 

(4.10) x[V] ~O. 

Since, by its definition, V does not access any vertex outside V, we have 
(Ax)[V] = A[V]x[V]. Hence, A[V]x[V] ~ O. Since every initial vertex of 
A[V] belongs to T, it follows from Theorem (5.1) in [3] that 

(4.11) A[V]x[V] =0. 

By Corollary (5.9) in [2] it now follows from (4.10) and (4.11) that x[V] = O. 
But this is absurd, since by the definition of V we have supp( x) n V * 0 . • 

We note that we have found another proof of the implication (iii) = (i) of 
Theorem 4.9 which uses Proposition 3.6 of [3] in place of Corollary 5.9 of [2]. 

REMARK 4.12. In condition (iii) of Theorem 4.9 it is impossible to 
replace F( A) by E( A). This may be seen by the follOwing example. Let 

A= [
-1 
-1 

-1 ] 
-1 ' 

and let x = [1, -IV. Then x is a nuUvector of A and obviously x = 0 - v, 
where v = - X E E( A). But (i) of Theorem 4.9 is false. 
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5. SPLITfINGS 

In this section we consider Z-splittings, introduced in Definition 2.21. By 
definition, every weakly regular splitting is a Z-splitting. It is easy to extend 
Lemma 4.2 of [8] to show that if A is an M-matrix for which there exists a 
positive vector x such that Ax is nonnegative and if A = M - N is a 
Z-splitting, then the matrix B = I - M- 1 N is an M-matrix. It now follows 
that if A is either a nonsingular M-matrix or an irreducible singular M-matrix 
and if A = M - N is a Z-splitting, then the matrix B = I - M- 1 N is an 
M-matrix. However, in general if A is an M-matrix and if A = M - N is a 
Z-splitting (or even a weakly regular splitting), then the matrix B = I - M- 1 N 
need not be an M-matrix, as demonstrated by the weakly regular splitting 

discussed in [4]. 

PROPOSITION 5.1. Let A be an M-matrix. Then there exists a weakly 
regular splitting A = M - N for which B = I - M-1N is an M-matrix and 
ind(B) = ind(A). 

Proof. Since A is an M-matrix, it can be written as A = sI - P, where P 
is a nonnegative matrix and p(P) ~ s. Evidently, the splitting where M = sI 
and N = P has the required properties. • 

Conversely we have for Z-splittings. 

PROPOSITION 5.2. Let A be a Z-matrix, and let A = M - N be a Z-split
ting. If the matrix B = I - M- 1 N is an M-matrix with ind( B) ~ 1, then A is 
an M-matrix and ind(A) = ind(B). 

Proof. Let x be such that Ax ~ O. Then Bx = M-1Ax ~ O. Since 
ind(B) ~ 1, it follows from Theorem 4.1 that x = u - v, where u ~ 0 an 
Bv = O. Observe that Av = MBv = 0, and hence by Theorem 4.8 the matrix 
A is an M-matrix and ind(A) ~ 1. Clearly ind(A) = ind(B), since both 
indices are less than or equal to 1 and both matrices are either singular or 
nonsingular. • 

As a corollary of Propositions 5.1 and 5.2 we now obtain the follOwing 
theorem. 
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THEOREM 5.3. Let A be a Z-matrix, and l£t k be either 0 or 1. Then the 
following are equivalent: 

(i) A is an M-matrix and ind(A) = k. 
(ii) There exists a weakly regular splitting A = M - N for which B = 

1- M-1N is an M-matrix and ind(B) = k. 
(iii) There exists a Z-splitting A = M - N for which B = I - M- W is an 

M-matrix and ind(B) = k. 

Observe that the implication (ii) = (i) in Theorem (5.3) improves the 
implication (C g ) = (i) in Theorem 2 of [5]; see also [1, p. 154]. 

REMARK 5.4. Philip Kavanagh [private commtmication] infonns us that 
there are several examples of weakly regular splittings A = M - N where 
B = I - M-1N is an M-matrix and ind(B) > ind(A) or ind(B) < ind(A). 
Thus although by Proposition 5.1 the implication (i) = (ii) in Theorem 5.3 
holds for all k, the reverse implication holds in general only for k ~ 1. These 
examples also show that we cannot replace "there exists" by "for every" in 
statements (ii) and (iii) of Theorem 5.3. 

REMARK 5.5. Michael Neumann has shown us an alternative proof of 
Theorem 5.3 which is related to the proof of one direction of Theorem 1 in 
[4]. 
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