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ABSTRACT 

A proof is given for the preferred basis theorem for the generalized nullspace of a 
given M-matrix. The theorem is then generalized and extended to the case of a 
Z-matrix. 

1. INTRODUCTION 

In this paper we give a proof for a known result, namely, the preferred 
basis theorem for the generalized nullspace of a given M-matrix. We then 
generalize and extend the theorem to the case of a Z-matrix. 

Let A be a Z-matrix. A preferred set is an ordered set of semipositive 
vectors such that the image of each vector under - A is a nonnegative linear 
combination of the subsequent vectors. Furthermore, the positivity of the 
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entries of the vectors and the coefficients in the linear combinations depends 
entirely on the graph structure of A in a specified manner. The preferred 
basis theorem asserts that the generalized nullspace E( A) of an M-matrix A 
has a basis which is a preferred set. As an immediate consequence of this 
theorem we obtain the index theorem for M-matrices, which asserts that the 
index of an M-matrix equals the maximal length of a singular chain in the 
reduced graph of A. 

In the case of a Z-matrix A, we prove a result concerning the support of a 
nonnegative vector in the generalized nullspace. We deduce that the sub­
space of the generalized nullspace E(A) which is spanned by the nonnega­
tive vectors in E( A) has a basis which is a preferred set. It follows that E( A) 
has a basis consisting of nonnegative vectors if and only if a certain principal 
sub matrix of A is an M-matrix. This condition is clearly satisfied when A is 
an M-matrix. Thus our results generalize the preferred basis theorem. We also 
obtain a graph theoretic lower bound for the index of a Z-matrix. 

It should be noted that our formulation of these results in terms of 
M-matrices or Z-matrices rather than nonnegative matrices is in fact a 
technicality. Thus the preferred basis theorem for M-matrices may be stated 
as a theorem on the generalized eigenspace associated v.ith the spectral 
radius of a nonnegative matrix. Similarly, our results concerning generalized 
nullspaces of Z-matrices may be considered as results on the generalized 
eigenspaces associated with the spectral radii of the diagonal blocks in the 
Frobenius normal form of a nonnegative matrix. 

The discussion of such problems originated in Section 11 of [1] . Here 
Frobenius determines those eigenvalues of a nonnegative matrix which have 
an associated nonnegative eigenvector. He proves the following result: Let A 
be a nonnegative matrix in (lower triangular) Frobenius nonnal f01m, and let 
Pi be the spectral radius of the diagonal block A ii . Let A be an eigenvalue of 
A. If, for some j, A = Pj and Pk < Pj whenever k> j , then A has a 
semipositive eigenvector associated with A. He observed that the converse is 
true up to a permutation similarity that keeps the matrix in Frobenius normal 
form. Frobenius also proved that each component of a semipositive eigenvec­
tor of a nonnegative matrix, which is partitioned conformably with the 
Frobenius normal form, is either strictly positive or zero. His proofs were by 
the "tracedown method," which is essentially induction on the number of 
diagonal blocks in the Frobenius normal form. Some graph theoretical 
considerations or their equivalent are required to distinguish between those 
components that are positive and those that are zero. For the case of the 
spectral radius, this was done in [6]. In the general case a precise graph 
theoretic version of the result was recently proved by Victory [8]. However, 
by use of well-known results on permutations of partially ordered sets, it may 
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be seen that Frobenius's theorem is equivalent to our Corollary 5.12 below, 
which is part of the result in [8]. 

In [6, Theorems 5 and 6], the preferred basis theorem is stated under the 
assumption that the singular graph of the matrix is linearly ordered, but 
actually the methods developed there are applicable to the general case. The 
first part of the theorem in full generality is proved by Rothblum [5], and the 
complete theorem is proved in [4]. However, it is one of the characteristics of 
proofs in this area that the basic ideas are simple but that the details are 
complicated and tend to obscure the underlying principles. Our main goal in 
re-proving the preferred basis theorem is to simplify the proof significantly in 
a manner which displays the underlying ideas. 

Section 2 below contains most of our definitions and notation. In Section 
3 we give some lemmas on general matrices. The preferred basis theorem is 
proved in Section 4, and Section 5 contains the new extensions to Z-matrices. 

Further discussion of the history of the preferred basis theorem and of 
related results may be found in the survey paper [7]. 

This paper is the first in a sequence of related papers. This sequence will 
organize important known results and prove new results in the graph 
theoretic theory of (reducible) M-matrice sand Z-matrices. The next papers in 
the sequence are [3] and [2], which contain some applications of the results in 
the present paper. 

2. NOTATION AND DEFINITIONS 

This section contains most of the definitions and notation used in this 
paper. In the main we follow the definitions and notation used in [7]. 

Let A be a square matrix with entries in some field. As is well known (see 
[7] for further details), after performing an identical permutation on the rows 
and the columns of A we may assume that A is in Frobenius normal form, 
namely a block (lower) triangular form where the diagonal blocks are square 
irreducible matrices. 

NOTATION 2.1. For a positive integer n we denote ( n ) = {I, ... , n }. 

CONVENTION 2.2. We shall always assume that A is an n X n matrix in 
Frobenius normal form (A ij ) , where the number of diagonal blocks is p. 
Also, every vector h with n entries will be assumed to be partitioned into p 
vector components hi conformably with A . 
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NOTATION 2.3. Let b be a vector with n entries. We denote 

supp( b ) = {i E < p ) : bi * O} . 

DEFINITION 2.4. The reduced graph of A is defined to be the graph 
R( A) with vertices 1, . .. , p and wherer (i, j) is an arc if and only if Ai j * O. 

DEFINITION 2.5. Let i and j be vertices in R(A). We say that j 
accesses i if i = j or there is a path in R( A) from j to i. In this case we write 
i =< j. We write i -< j for i =< j but i * j. We write i *< j [i f< j] if 
i =< j [i -< j] is false. 

DEFINITION 2.6. Let W be a set of vertices of R( A), and let i be a 
vertex of R(A). We say that i accesses W (W =< i) if i accesses (at least) 
one element of W. We say that Waccesses i (i =< W) if i is accessed by (at 
least) one element of W. 

DEFINITION 2.7. A set Wof vertices of R( A) is said to be final [initial] if 
for every vertex j of R(A), j =< W implies JEW [W =< j implies JEW]. 
Observe that by Convention 2.2, {I} is a final set and {p} an initial set of 
R(A). 

NOTATION 2.8. Let W be a set of vertices of R(A). We denote 

below{W) = {vertices i of R(A): W =< i}, 

above{W)= {vertices i of R{A):i=<W}, 

bot(W) = {i E W: JEW, i =< j = i = j}, 

DEFINITION 2.9. Let i and j be vertices of R( A). The set below( i) Ii 
above(j) is called the convex hull of i and j and is denoted by hull(i, j). 
Observe that in general hull(i, j) * hull(j, i). Also, hull(i, j) * 0 if and only 
if i =< j. 

DEFINITION 2.10. A vertex i of R(A) is said to be singular [nonsingu­
lar] if Aii is singular [nonsingular]. The set of all singular vertices of R(A) is 
denoted by S. 
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NOTATION (2.11). Let W be a set of vertices of R(A). We denote 

A [W] = the principal submatrix of A whose rows and columns are indexed 
by the vertices of G( A) that belong to the strong components in W, 

A(W) = A[(p)" W]. 

NOTATION 2.12. Let W be a set of vertices of R(A) and let b be a 
vector. We denote 

b[W] = the vector obtained by omitting all bi' such that i fl W, 
b(W) = b[(p)" W]. 

DEFINITION 2.13. A real (not necessarily square) matrix P will be called 
nonnegative (P ~ 0) if all its entries are nonnegative, semipositive (P > 0) if 
P ~ 0 but P =1= 0, and (strictly) positive (P » 0) if all its entries are positive. 

NOTATION 2.14. Let P be a nonnegative square matrix. We denote by 
p(P) the spectral radius of P (its Perron-Frobenius root). 

DEFINITION 2.15. A Z-matrix is a square matrix of form A = A I - P, 
where P is nonnegative. A Z-matrix A is an M-matrix if A ~ p(P). The least 
real eigenvalue of a Z-matrix A is denoted by l( A) [observe that (A) = A -
p(P)]. 

NOTATION 2.16. Let A be a square matrix. We denote 

m( A) = the algebraic multiplicity of 0 as an eigenvalue of A, 
ind( A) = the index of 0 as an eigenvalue of A, viz., the size of the largest 

Jordan block associated with 0, 
N(A) = the nullspace of A, 
E( A) = the generalized nulls pace of A, viz. N( An), where n is the order 

of A, 
F( A) = the subspace of E( A) which is spanned by the nonnegative 

vectors in E( A ), 
K(A) = the cone of nonnegative vectors in F(A). 

3. LEMMAS ON GENERAL MATRICES 

This section contains lemmas to be used in the next sections. They are 
given in a separate section because they refer to general square matrices. 
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LEMMA 3.1. Let A be a square matrix in Frobenius normal form. Let W 
be a final set of vertices of R( A), and let x be a vector such that 

x[W] =0. 

Then 

(Ax)[W] = 0 

and 

(Ax)(W) = A(W)x(W) . 

Proof. Immediate. • 
LEMMA 3.2. Let A be a square matrix in Frobenius normal form. Let i 

be a vertex in R( A), and let x be a vector such that 

whenever i *-< j. 

Then 

whenever i *-< j . 

Proof. The set of all j satisfying i *-< j is final. Our claim now follows 
from Lemma 3.1. • 

LEMMA 3.3. Let A be a square matrix in Frobenius normal form . and let 
A i i be singular. Then there exists a vector x in E( A) such that 

(3.4) 

and 

(3.5) whenever i *-< j. 

Proof. Let W be the set of all vertices j of R(A) such that i *-< j, and 
let B = A(W). Let v(W) E E(B). Observe that if Vi = 0 then v(W)" {i} E 

E(B(i)). Therefore, since m(B(i)) < m(B), it follows that E(B) must contain 
a vector x(W) such that Xi *- O. Since W is a final set of vertices of R(A), it 
follows from Lemma 3.1 that the vector x obtained by putting x j = 0 for all 
JEW is in E( A), and satisfies the required conditions. • 
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4. PREFERRED BASIS FOR THE GENERALIZED NULLSPACE 
OF AN M -MATRIX 

11 

DEFINITION 4.1. Let A be a square matrix in Frobenius normal form, 
and let H = {a, ... , a q }, a l < ... < a q , be a set of vertices in R(A). A set of 
semi positive vectors x I, ... , x q is said to be an H-preferred set (for A) if 

(4.2) 

(4.3) 

and 

(4.4) 

xj» 0 

where the c jk satisfy 

(4.5) 

if aj=<j, 

if a j *< j, 
i=l, ... ,q, j=l, ... ,p, 

q 

- Axj = " c. Xk i....J .k , i = l, ... ,q 
k=l 

i,k=l, ... ,q. 

REMARK 4.6. Observe that an H-preferred set is a set of linearly inde­
pendent vectors which spans an invariant subspace of E(A). 

DEFINITION 4.7. Let A be a square matrix in Frobenius normal form, 
and let H be a set of vertices in R( A). An H-preferred set that forms a basis 
for a vector space V is called an H-preferred basis for V. 

Note that for H = S, H-preferred bases may be found in [4] under the 
name S+-bases (see also Section 7 of [7]). 

LEMMA 4.8. Let A be an M-matrix, and assume that 1 is a singular 
vertex of R( A). Let u be a vector satisfying 

(4.9) 

and 

(4.10) if l*<j. 
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Let G be the set of all vertices j in R( A) such that hull(l, j) (') S = {I}. If 

(4.11) for all j in G, 

then 

(4.12) for all j in G. 

Proof. We prove the lemma by induction on the number p of diagonal 
blocks in the Frobenius normal form of A. If p = 1, there is nothing to prove. 
Assume that the lemma holds for p < m where m > 1, and let p = m. Since 
A( m) and u( m) satisfy the conditions of the lemma, then by the inductive 
assumption we need to prove (4.12) only for j = m. So assume that mEG, 
and denote by Q the set of all k such that k < m and A mk *- O. Since by 
(4.11), (Au)m = 0, we have 

(4.13) Amum = - L AmkUk · 
kEQ 

Let k E Q. If 1 *-< k, then by (4.10), we have Uk = O. If 1 =< k, then 
necessarily kEG, and by the inductive assumption we have Uk» O. Fur­
thermore, since 1 =< m, there exists k E Q such that 1 =< k. Therefore, it 
follows from (4.13) that Ammum > O. Since Amm is a nonsingular irreducible 
M-matrix, it follows that um » O. • 

We now prove the preferred basis theorem for M-matrices (see Theorem 
7.1 in [7] for another statement of this result). In the course of the proof we 
shall use certain subsets of R( A). An example illustrating these sets will be 
given after the proof. 

THEOREM 4.14. Let A be an M-matrix. Then there exists an $-preferred 
basis for E( A). 

Proof. We prove the theorem by induction on p. For p = 1 the claim 
follows from the Perron-Frobenius theorem on spectra of nonnegative 
matrices. Assume the claim holds for p < m where m> 1, and let p = m. Let 
S = {a l , ... , a q }, where a l < ... < aq • By the inductive assumption we can 
find an S " (l }-preferred basis for E( A(l». We now adjoin zero components 
at the top of the basis elements and so obtain linearly independent vectors in 
E(A). If All is nonsingular, then this is the required basis. In the rest of this 
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proof we assume that A 11 is singular, and we denote the q - 1 vectors just 
obtained by x 2, •.• , x q. Since the multiplicity of 0 as an eigenvalue of A is q, 
it follows that we need to add one more vector u in order to obtain a basis for 
E( A). By Lemma 3.3 we choose a vector u in E( A) satisfying 

(4 .15) 

and 

(4.16) whenever 1 *< j . 

It now follows from (4.16) by Lemma 3.2 that 

(4 .17) whenever 1 *< j. 

By (4.15) the vector u is linearly independent of x 2, ••• , x q
• Observe that 

U i E (All) = N(All)' By the Perron-Frobenius theorem for irreducible non­
negative matrices, we may thus assume that 

(4 .18) 

Since 

(4.19) (Auh = 0, 

we have 

(4 .20) (Au )(1) E E(A(I)) . 

Since Au E E(A), we have 

(4.21) 
q 

- Au = diU + 2: dkxk . 

k -2 

By (4.18) and (4.19), and since the first components of x 2, ... , x q are zero, we 
have 

(4 .22) 

We now prove that 

(4 .23) whenever k E ( q ), 1 *< tXk' 
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Suppose that (4.23) is false. Let j E (q) be the smallest integer such that 

(4.24) 

and d j * O. By the structure of x2, ... , x q it follows from (4.21) that 

(4.25) 

However, by (4.17) and (4.24) we have 

contradicting (4.25). Therefore, (4.23) holds. 
Denote by R the sets below(l) n 5 " {I}. In view of (4.21), (4.22), and 

(4.23), we have to prove that u may be chosen such that 

(4.26) whenever k E R. 

We shall first prove (4.26) for singular vertices k such that hu1l(l, k)n S = 
{I, k}. Then we shall show that u can be modified so that (4.26) holds, and 
remodified (and renamed Xl) so that (4.2) and (4.3) hold. 

We first show that u satisfies the conditions of Lemma 4.8. Note that 
(4.9) and (4.lO) are (4.18) and (4.16) respectively. Now let 

G = {vertices j in R ( A ) : hu1l( 1, j ) n S = {l} } 

and let j E G. Assume that (Au)j * O. By (4.19), j> 1. By (4.20) and by the 
structure of the 5 " { I)-preferred set x 2, ... , x q there must exist h E 5, h > 1, 
such that h =< j and (Au)h * O. By (4.17) we have 1-< h and hence 
h E hull(l, j) n 5, in contradiction to j E G. Therefore, our assumption that 
(A U ) j * 0 is false and (4.11) is satisfied. Thus the vector u indeed satisfies 
the conditions of Lemma 4.8. 

We now define the sets 

R 1 = (j E R : hull{l, j) n 5 = {l, j} } , 
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Let t E Rl and let t = a,. It follows from (4.21) that 

( 4.27) 

where 

(4.28) 

and by (4.21) and (4.22) 

(4 .29) 

I-I 

Y t = - L Atjuj , 

j = 1 

15 

Let k be in {2, ... , r - I}. If ak f< t , then by the inductive assumption we 
have x~ = O. If ak -< t , then since t E R I , we have 1 *< ak and by (4.23) 
d k = O. Thus, it follows from (4.29) that 

(4.30) 

Let Q = {j E (t - 1) : Atj * O}. Since t E Rl it follows that for each j E Q 
we have either 1 *< j , in which case u j = 0 by (4.16), or 1 =< j, in which 
case j E G and by Lemma 4.8 u j » O. Further, since 1-< t there exists 
j E Q such that 1 =< j . Hence, it follows from (4.28) that 

(4.31) Yt>O. 

Assume that d, ~ O. Since x~» 0, it follows from (4.30) and (4.31) that the 
right-hand side of (4.27) is semipositive, which is impossible, since Att is a 
singular irreducible M-matrix. Hence our assumption that d, ~ 0 is false and 
we have 

d, > O. 

Now let t E R 2' and let t = a,. Then there exists an integer s( t) E {2, .. . , r -
I} such that a s (t ) E Rl and as(t) -< t . We choose a positive constant ht 

which is greater than I d, II Cst t ). " where cs( I). ' is the positive coefficient 
defined in (4.4) for the S " {I }-preferred basis x 2

, ... , x q
• Observe that the 

vector 

v = U + L htxS(t) 

IE R2 
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satisfies 

(4.32) 

where 

(4.33) 
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q 

- Av = L die xk , 
k-2 

die=O 

die> 0 

if 1 *< (1.k' 

if 1 =< (1.k' 

Now let j E below(l). We have either j E G, in which case Vj = u j » 0 by 
Lemma 4.8, or there exists k(j) E {2, ... , q} such that 1 -< (1.k(j) -< j. In 
the latter case we choose a positive hi such that hixJ(J) - Vj » O. Define the 
vector 

(4.34) b~Xk(j). 
J 

j E below(l)" G 

By the choice of the h; 's it follows from (4.34) that (4.2) is satisfied for i = 1. 
Also, since all the (1.k(j) chosen above access 1, it follows from (4.32) and 
(4.33) that 

where 

q 

- AXI = L ClkXk, 

k-l 

otherwise, 

and hence (4.4) and (4.5) are satisfied for i = 1. Let j $. below(l). Then j 
does not access any of the (1..(1) and (1.k(j) discussed above, since they access 
1. Thus the jth components of the corresponding basis elements are zero. In 
view of (4.16), it follow~ that (4.3) holds also for i = 1. Therefore, Xl, ... , x q is 
an S-preferred basis for E( A ). • 

The follOwing example illustrates subsets of R( A) used in the proof of the 
preferred basis theorem. 

EXAMPLE 4.35. Let A be an M-matrix, and let R( A) be the graph in 
Figure 1, where 0 denotes a singular vertex in R(A) and + denotes a 
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FIG. I. 

nonsingular vertex in R(A). We have 

s= {1,3,6,7,8,1O}, 

below(l) = {l,3,4,5, 7,8,9, lO}, 

hull(I,9) = {1,4,8,9}, 

G = {1,4,5}, 

R = {3,7,8,1O}, 

Rl = {3,7,8}, 

R 2 = {lO}. 
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DEFINITION 4.36. Let A be a square matrix, and let x E E(A). We 
define the height of x to be the minimal nonnegative integer k such that 
Akx = O. 

DEFINITION 4.37. Let A be a square matrix in Frobenius normal form, 
and let H be a set of vertices in R( A). A sequence a l , . . . , ak of vertices in H 
is said to be an H-chain in R(A) of length k if a l -< ... -< ak' An S-chain 
in R( A) is called a singular chain in R( A). 

Let A be an M-matrix. Observe that it follows from the preferred basis 
theorem that the maximal height of an element in an S-preferred basis of A 
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equals the maximal length of a singular chain in R( A). Hence we obtain the 
index theorem for M-matrices due to Rothblum ([5]; see also [7, Corollary 
7.5]), as a corollary to the preferred basis theorem. 

COROLLARY 4.38. Let A be an M-matrix. Then the index of A equals the 
maximal length of a singular chain in R( A). 

5. NONNEGATIVE GENERALIZED EIGENVECTORS 
OF A Z-MATRIX 

NOTATION 5.1. Let A be a Z-matrix. Denote 

U= S ,above(T), 

Observe that To ~ S, and that this inclusion may be proper. 
To illustrate the sets discussed in Notation 5.1, consider the following 

example. 

EXAMPLE 5.2. Let A be a Z-matrix and let R( A) be given by the 
following graph, where 

+ denotes a nons in gular M-matrix vertex, 
o denotes a singular M-matrix vertex, 
e denotes a singular component Aj; with l(Ai;) < 0, and 
- denotes a nonsingular component Ai; with I(Aij) < 0: 

1 
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Here we have 

T= {7,8}, 

above(T) = {1,4,5, 7,8}, 

S = {l,2,7}, 

U= {2} 

To = {l,2}. 
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THEOREM 5.3. Let A be a Z-matrix. Then for every nonnegative vector x 
in E(A) we have 

(5.4) supp(x) ~ below(U). 

Proof. We prove our assertion by complete induction on the number p 
of diagonal blocks in the Frobenius normal form of A. Assume that our claim 
holds for p < m where m > 0, and let p = m. Let x be a nonnegative vector 
in E( A). If T = 0, then the result follows from the preferred basis theorem 
(Theorem 4.14). Let T ~ 0, and let j be the smallest integer such that JET. 
Let J.I. = l(A jj) and let J = above(j). It follows from Theorem 4.14 applied to 
the matrix AT[J] - J.l.I that AT[J] has a (strictly) positive eigenvector u 
associated with J.I.. By adjoining zero components to u we obtain a semiposi­
tive eigenvector v for AT associated with J.I. which satisfies 

(5.5) 
hEj, 

otherwise. 

Let k = ind(A). We have 

(5.6) 

Since J.I. < 0, it follows from (5.6) that vTx = 0, and hence, since x ~ 0, it 
follows from (5.5) that 

(5.7) supp( x) n J = 0 . 

Observe that J is a final set of vertices of R( A). Therefore, it follows from 
(5.7) and Lemma 3.1 that xU) is a nonnegative vector in E(A(J). Let 
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S' = S '/' T' = T, /, and U' = S' ,above(T'). By the inductive assumption 
we have 

(5.8) supp(x(J)) ~ below(U'). 

Observe that above(T'), / = above(T), /, and hence it follows that U' = U. 
Therefore it follows from (5.7) and (5.B) that (5.4) holds. • 

We now obtain several corollaries to Theorems 4.14 and 5.3. 

COROLLARY 5.9. Let A be a Z-matrix. Then F( A) has a U-preferred 
basis. 

Proof. Observe that by adjoining zero components to a generalized 
null vector of A[below(U)] we obtain a generalized nullvector of A. Con­
versely, by Theorem 5.3, every nonnegative vector in E( A) has its support 
contained in below(U). Note that A[below(U)] is an M-matrix and therefore 
by Theorem 4.14, E( ~ [below( u )]) has a U-preferred basis. Our result thus 
follows. • 

In view of Corollary 5.9 we can now obtain a more complete version of 
Theorem 5.3. 

THEOREM 5.10. Let A be a Z-matrix. Then for every nonnegative vector 
x in E( A) we have supp( x) ~ below( U ). Furtherrrwre, there exists a non­
negative vector x in E(A) such that supp(x) = below(U) and x[below(U)] 
» O. 

It follows from Corollary 5.9 that the maximal height of a vector in F( A) 
equals the maximal length of a U-chain in R( A). Thus, Corollary 5.9 yields 
the follOwing lower bound for the index of a Z-matrix. 

COROLLARY 5.11. Let A be a Z-matrix. Then the index of A is greater 
than or equal to the maximal length of a U-chain in R( A). 

An upper bound for the index of a Z-matrix is proved in [8, Proposition 
2J. 

COROLLARY 5.12. Let A be a Z-matrix. Then the dimension of F(A) is 
equal to the cardinality of U. 

Proof. Immediate by Corollary 5.9. • 
The follOwing corollary slightly generalizes Proposition 1 in [BJ. 
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COROLLARY 5.13. Let A be a Z-matrix. Then A has a semipositive 
nullvector if and only if V"* 0. Furthermore, there is a bot(V)-preferred 
basis for F(A)n N(A). 

Proof. It immediately follows from Corollary 5.9 that K(A) consists of 
the nonnegative linear combinations of vectors in a V-preferred basis for 
F( A). But such a vector is a nullvector if and only if it is a nonnegative linear 
combination of the vectors Xi in this basis for which i E bot(V). This proves 
the first part of the corollary. The second part follows by observing that every 
vector in F( A) n N( A) is the difference of two vectors in K( A) n N( A). • 

REMARK 5.14. Observe that there is a unique (up to positive scalar 
multiples) bot(V)-preferred basis for F(A ) n N(A), and the elements of this 
basis are the extremals of the cone of nonnegative nullvectors of A . 

COROLLARY 5.15. Let A be an irreducible Z-matrix. Then E(A) contains 
a semipositive vector if and only if l( A) = O. 

Proof. Immediate by Corollary 5.13 and Theorem 4.14. • 
COROLLARY 5.16. Let A be a Z-matrix. Then the following are equiv­

alent: 

(i) E( A) has a nonnegative basis; 
(ii) E( A) has an $-preferred basis; 
(ill) A[below(S)] is an M-matrix; 
(iv) S = V. 

Proof. Immediate by Corollary 5.12. • 
Since condition (iii) and (iv) in Corollary 5.16 hold trivially when A is an 

M-matrix, it follows that Corollary 5.16 generalizes the preferred basis 
theorem. 

REMARK 5.17. Since for every Z-matrix we have V = To\ above(T), and 
since for every M-matrix we have To = S, it follows that all our results except 
for Corollary 5.16 remain valid if S is replaced by To everywhere, including 
the definition of V. However, we cannot replace S by To in condition (iv) of 
Corollary (5.16), as is shown by the matrix 

A= [
-1 
-1 

-1 ] 
-1 . 
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Observe that E(A) is spanned by [1, - IV, and hence E(A) does not have a 
nonnegative basis. Indeed, {I} = S "* U = 0, but U = To. 

The contents of our paper raise some natural questions concerning the 
cone K( A) of all nonnegative vectors in E( A), where A is a given Z-matrix. 
For example, what are the extremals of the cone? Another question suggested 
by Theorem (4.14) is whether this cone is invariant under multiplication by 
- A. It can be shown that the answer is positive when ind(A) ~ 2. Neverthe­
less, in general the answer is negative, as demonstrated by the following 
example. 

EXAMPLE 5.18. Let 

r -~ A= 
-1 

o 

o 
o 
o 

-6 

o 
o 
3 

-3 

The semipositive vector x = [3,0,2,OV belongs to E(A), since A3X = O. 
However, - Ax = [0,9, - 3,6]. Thus the cone K(A) is not invariant under 
-A. 

Indeed, the invariance of the cone K( A) of all nonnegative vectors in 
E( A) under multiplication by - A is not determined solely by the graph of 
A, as is shown by our final example. Note that the matrix B of Example 5.19 
has the same graph and the singular block structure as the matrix A of 
Example 5.18. 

EXAMPLE 5.19. Let 

[ -~ B= 
-1 

o 

o 0 
o 0 
o 3 

-1 3 

Then x' = [3,0, 1,OV, x 2 = [0,1,0, IV, x 3 = [0,0,1, IV is a basis for E(B). 
Let z E K(B). By examining the supports of the vectors xl, x 2, x 3 we easily 
prove that z = d1x 1 + d2x2 + d3X 3, where d 1 and d2 are nonnegative. Since 
BXl = - 9x 2

, Bx 2 = - 3x 3, and Bx 3 = 0, it follows that - Bz E K(B). 
Hence K( B) is invariant under - B. 
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