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ABSTRACT 

Let A = M - N E IR nn be a splitting. We investigate the spectral properties of the 
iteration matrix M - 1 N by considering the relationships of the graphs of A, M, N, and 
M- 1 N. We call a splitting an M-splitting if M is a nonsingular M-matrix and N;;. O. 
For an M-splitting of an irreducible Z-matrix A we prove that the circuit index of 
M- 1 N is the greatest common divisor of certain sets of integers associated with the 
circuits of A. For M-splittings of a reducible singular M-matrix we show that the 
spectral radius of the iteration matrix is 1 and that its multiplicity and index are 
independent of the splitting. These results hold under somewhat weaker assumptions. 

l. INTRODUCTION 

In [18] and [19] Varga introduced the definition of a regular splitting of a 
matrix A = M - N in order to unify and generalize classical procedures in the 
numerical solution of systems of linear equations and more recent correspond­
ing theorems on matrices; see [19] and Ostrowski [9] for historical comments 
and Varga [20] for a subsequent survey. Many of these results are connected 
with M-matrices, which were defined by Ostrowski [8]. Recently attention has 
been paid to singular systems, particularly those associated with a singular 
M-matrix A; see Plemmons [10], Meyer and Plemmons [4], Neumann and 
Plemmons [5] , [6], Buoni, Neumann and Varga [2], Kaufman [3], Rose [12] 
and Berman and Plemmons [1, Chapters 6,7]. In this paper we shall prove 
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some theoretical results on singular M-matrices which are motivated by recent 
questions raised in numerical analysis (see the end of this introduction). 

Arguments now recognized as graph-theoretic have been used in the 
theory of nonnegative matrices since its inception (see [17] for some com­
ments). In this paper we aim to prove results on the spectral properties of the 
iteration matrix M-1N which depend on the graphs of M and N. We 
concentrate on singular M-matrices A (or more generally, on Z-matrices; see 
Section 2 for definitions) and on splittings we call M-splittings. Such splittings 
arise naturally, and many examples may be found in the literature. We also 
consider a type of splitting called graph compatible. 

We now describe the results of our paper in greater detail. Our Section 2 
is devoted to the study of the relationship of the colored graph of A (i.e. the 
graph of M colored red and the graph of N colored blue) and the graph of 
M- 1 N. We show that the access relations in the two graphs almost coincide 
for an M-splitting of a Z-matrix; see Theorems 2.7 and 2.8. 

For an M-splitting of an irreducible Z-matrix A, we show in Section 3 that 
the circuit index of the iteration matrix is determined by the numbers of blue 
and red arcs in the circuits of A in a simple manner; see Theorem 3.3. 
Theorem 3.5 generalizes Frobenius' result that the circuit index of an irre­
ducible nonnegative matrix equals the number of eigenvalues on the spectral 
circle (e.g. [19, p. 38] or [1, p. 32]). Several corollaries follow. 

In Section 4 we consider splittings of a reducible singular M-matrix. In the 
case of an M-splitting we show that the multiplicity and index of the 
eigenvalue 1 of the iteration matrix (its spectral radius) equals the multiplicity 
and index of the eigenvalue 0 of A; see Theorem 4.5. In the preceding 
Theorem 4.4 we prove somewhat less for weak regular graph compatible 
splittings. An important tool in this section is Rothblum's first index theorem 
for a nonnegative matrix [13]. 

Four open questions are stated in Section 5. We also point out that our 
principal results hold under weaker assumptions and for matrices that need 
not be Z-matrices; see Table 1. 

Applications to the convergence of iterations will appear elsewhere. 
We now mention investigations by other mathematicians which motivated 

ours. There is the result by Neumann and Plemmons [5, Corollary 2] 
concerning the index of a regular splitting of an M-matrix with property c, a 
result which we have only partly generalized in our Theorem 4.5; see Open 
Question 5.2. We were also considerably motivated by their question [5, p. 
273] concerning the relation of the circuit indices of A and M- 1 N. Though 
the answer is negative, this question led us to an example which was 
published in [2] and to much of the theory contained in Section 3. We have 
also been influenced by the paper by Rose [12], which contains graph-theo­
retic considerations similar in spirit to those of our more general ones and 
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whose main result leads to corollaries also proved here; see Sections 3 and 5. 
Last, but no means least, we acknowledge some remarks by R. Plemmons 
which drew our attention to the subjects under discussion. 

2. ACCESS RELATIONS 

A (directed) graph f is a pair (V, E) where E ~ V X V. Unless otherwise 
specified, the vertex set is V = {I, ... , n}, and in this case we identify f with 
the edge set E. A path from i to j of length k is a sequence a = (io, ... , i k ) of 
vertices where io = i and ik = j such that (io' i 1 ),( iI' i2 ), ... ,( i k - 1, ik ) are arcs 
of f. We consider the empty path 0 to be a path from i to i of length 0 for 
each vertex i. If there is a path from i to j in f, we may say that i has access 
to j in f. (In particular i has access to itself for all i E V.) The path is called 
closed if i = j. A closed path (io"'" i k ) with io'"'' ik - 1 pairwise distinct is 
called a circuit. If a = (io,"" i k ) and p = (i k , .. . , i l ) are paths in f, then the 
concatenation path (io,"" i k' ... , i I) is denoted by (a, P). 

If fl and f2 are graphs, then the product graph flf2 is defined by 
(i, j) E flf2 if there is a k E V such that (i, k) E fl and (k, j) E f 2. We write 
f2 = ff, f3 = f2f, etc. By a we d~note the diagonal graph a ={!i, i): i E 

V}. The reflexive-transitive closure f of a graph f is defined to be f = auf 
u f 2 U . . . . Thus (i, j) E r if and only if i has access to j in f. Suppose that 
f ~ fl ~ r (i.e., the arc set of f is contained in the arc set of fl' etc.). Then i 
has access to j in f if and only if i has access to j in fl' 

If A E R nn, then the graph of A is defined to be f(A) = {(i, j): a i (1= o}. 

LEMMA 2.1. 

(a) Let A, B E Rnn. Then 

f(cA) ~ f(A) for cER, 

f(A + B) ~ f(A)U f(B), 

f(AB) ~ f(A)f(B) . 

(b) If A is nonsinguiar, then f(A -1) ~ f( A ). 

Proof. (a): Easy. 
(b): The matrix A-I is a polynomial in A, and the result follows from (a) . 

• 
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An example in Section 3 shows that the inclusion (b) may be strict. 
A matrix PER nn is called nonnegative if Pij ~ 0, i, j = 1, ... , n, and we 

write P ~ O. We call P positive if Pij > 0, i , j = 1, ... , n, and we write P > O. A 
matrix A E R nn is called a Z-matrix if A = sI - P for some s E R and P ~ 0, 
and A is called an M-matrix if A is a Z-matrix and s ~ p(P), the spectral 
radius of P; cf. [I, p. 132]. Since by the Perron-Frobenius theorem p(P) is an 
eigenvalue of P, the M-matrix A is nonsingular if and only if s> p(P). We 
may strengthen Lemma 1 for suitably chosen classes of matrices. 

LEMMA 2.2. 

(a) Let A, B be nonnegative, and let c E R be positive. Then 

f(cA) = f(A), 

f(A + B) = f(A)U f(B), 

f(AB) = f(A)f(B). 

(b) If A is a nonsingular M-matrix, then f( A - 1) = f( A ). 

Proof. (a): Easy. 
(b): Let A = sI - P, where P ~ 0 and s > p(P). Then it is well known that 

A -1 = s- 1I + S - 2p + S ·- 3p2 + "' , where f(A)= f(I)U f(P)u f(p2)U 
... . Since by (a), f(p k) = f(p)k, k = 1,2, .. . , it follows that f(A -1) = f( A) . 

• 
DEFINITION 2.3. 

(a) Let A E Rnn. A pair of matrices (M, N) in R nn is called a splitting of 
A if A = M - Nand Mis nonsingular. Usually, we refer to the splitting as 
A=M-N. 

(b) A splitting A = M - N is nontrivial if N * O. 
(c) A splitting is weak regular if M- 1 ~ 0 and M-IN~ O. 
(d) A splitting is regular if M- 1 ~ 0 and N ~ O. 
(e) A splitting is an M-splitting if M is an M-matrix and N~ O. 
(f) A splitting is graph compatible if f(M) ~ f( A ). 

The definitions of regular and weak regular splittings are standard (see [1 , 
p. 138]) and are due to Varga [18; 19, p. 88] and Ortega and Rheinboldt [7] 
respectively. Graph compatible splittings and M-splittings have not been 
considered before as such, though in practice the regular splittings used most 
often are M-splittings. We define f(M, N) = f(M)U f(N). 
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LEMMA 2.4. Let A E R nn and let A = M - N be an M-splitting. Then 

(a) A is a Z-matrix. 
(b) f(M, N) = f(M)U feN) = f(A)U a, 
(c) f(M)~f(A) (graph compatibility), 
(d) M- I ~ 0, N~ 0 (regularity), 
(e) f(M - IN) =f(M)f(N) (graph equality). 

Proof. (a): If i =1' j, then m ij ~ 0, n ij ~ O. 
(b): If i =1' j and a

ii 
= 0 then mij = nij = O. 

(c): Follows immediately. 
(d): Well known. 
(e): By Lemma 2.2. • 
If A = M - N is a graph compatible splitting, then f( N) <;;; f( M) U f( A) <;;; 

f(A). Thus graph compatible splittings are characterized by f(M, N) <;;; f(A). 
It follows and that every splitting of an irreducible matrix is graph compati­
ble. Graph compatible splittings are easily described in terms of Frobenius 
normal forms; see Section 4, where such splittings will be applied. 

Let A = M - N be a splitting of A E Rnn. To aid intuition, arcs of f(M) 
will be called red, those of feN) blue. We call the pair (f(M), feN»~ the 
colored graph of A. Note that arcs of f(M)nf(N) are both red and blue; 
they will be called red-blue. Arcs of f(N)\f(M) will be called pure blue. 

We now make a simple but fundamental observation relating the graph of 
M- I N to the colored graph of A. 

LEMMA 2.5. 

(a) Let A = M - N be a splitting of A E Rnn. If(i, j) E f(M-IN), then i 
has access to j in f(M, N) by means of an initial red path followed by a 
single blue arc. 

(b) If there is a nonempty path from ito j in f(M-IN), then there is a 
path from i to j in f( M, N) which ends in a blue arc. 

Proof. (a): By Lemma 2.1, f(M-IN)~ fCM-I)fCN)<;;;f(M)fCN). Let 
(i,j)Ef(M- IN). Then (i,k)Ef(M) and (k,j)Ef(N) for some kEY. 
But then there is a path from i to k in f(M) and (a) is proved. 

(b): Follows immediately. • 

COROLLARY 2.6. Let A = M - N be a graph compatible splitting. If i has 
access to j in f( M- IN), then i has access to j in f( A). 
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Proof. Since f(A)~f(M,N)<::;;;f(A), the access relations in f(M,N) 
and f( A) coincide. Now use Lemma 2.5(b). • 

THEOREM 2.7. Let A E IR nn
, and let A = M - N be a M-splitting. Let 

i, j E V. 

(a) The arc (i, j)E f(M-1N) if and only if there is a path in f(M, N) 
consisting of a red path followed by a single blue arc. 

(b) There is a nonempty path from i to j in f( M- 1 N) if and only if there 
is a path from i to j in f(M, N) which ends in a blue arc. 

Proof. ( a): Let (i, j) E f( M- 1 N). By Lemma 2.5 there is a path 13 in 
f(M, N) from i to j consisting of an initial red path followed by a single blue 
arc. 

Conversely, suppose i has access to j in f(M, N) by means of an initial 
red path from i to k followed by a blue arc (k, j). 'Then (i, k) E f( M), and so 
(i, j)Ef(M)f(N)= f(M-IN): see Lemma 2.4(e). 

(b): Suppose there is a nonempty path from i to j in f( M- 1 N). By (a) it 
follows immediately that there is a path from i to j in f( M, N) whose final 
arc is blue. 

Conversely, suppose there is a path 13 from i to j in f( M, N) which ends 
in a blue arc. Let io = i, and let i I , ••. , ip = j be the end points of the blue arcs 
of 13. Then 13 may be decomposed as (f3I>''' ,f3p )' where 13k is a path from i k - 1 
to i k , k = 1, ... ,p. Then 13k is a path in f(M, N) consisting of initial red arcs 
followed a final blue arc. Hence (ik_I,ik)Ef(M-IN), k=I, ... ,p, by (a), 
and (b) follows. • 

We cannot replace f(M, N) = f(A)U d by f(A) in Theorem (2.7), for 
consider the splitting [0] = [1] - [1]. There is a nonempty path from 1 to 1 in 
f(M-1N) but not in f(A). 

The following example shows we cannot omit "nonempty" in Theorem 
2.7(b). Let 

A~P -1 -1] M~ [1 -1] 
N= [: 

1 . ] 1 -1 , 1 -1 , .. 
1 1 

Then 

M-1N= [: 
1 

:J. 
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Thus there is an (empty) path from 1 to 1 in M- 1 N, but there is no blue arc 
ending at 1. 

The above example also shows that the converse of Corollary 2.6 is false 
even for M-splittings of an M-matrix. Note that 1 has access to 3 in f( A) but 
not in f(M-IN). However, we now prove a partial converse, which will be 
applied heavily in Section 4. 

THEOREM 2.8. Let A = M - N be an M-splitting of A E IR nn. Let i, j E V, 
and suppose that j is a vertex of a nonempty circuit of f( M-1N). Then i has 
access to j in f( M- 1 N) if and only if i has access to j in f( A). 

Proof. In view of Corollary 2.6, we need only show that if i has access to 
j in f( A), then the same is true in f( M- IN). In this case, there exists a path 
f3 from i to j in f( A). Since j lies on a nonempty circuit of f( M- 1 N), it 
follows from Theorem 2.7(b) that there is a nonempty path y from j to j in 
f( M, N) which ends in a blue arc. But then (f3, y) is a path from i to j in 
f(M, N) which ends in a blue arc. Hence, by Theorem 2.7(b), i has access to 
j in f(M-1N). • 

A stronger fonn of Theorem 2.8 holds for irreducible A, as will be shown 
in Section 3. 

3. THE CIRCUIT AND SPLITTING-CIRCUIT INDICES 

If IX is a path in f(A), let la be the number of arcs in IX (the length of IX). If 
A = M - N is a splitting and IX is a circuit of f( M, N), we denote the number 
of blue arcs of IX by ba and the number of pure-blue arcs by Pa' Thus P a ~ ba • 

DEFINITION 3.1. Let A E IR nn. 

(a) The circuit index c(A) of A is defined by 

c( A) = gcd ( la.: IX is a circuit of f( A) } . (3.i) 

(b) If A = M - N is a splitting, the colored-circuit index of A is defined by 

d(M, N) = gcd{ Pa , Pa. + 1, ... ,ba : IX is a circuit of f(M, N)}. (3.ii) 
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Since every closed path can be decomposed into circuits, it is easy to 
prove that 

c( A) = gcd { 1a: a is a closed path in r( A) }, (3.iii) 

d(M, N) = gcd{ Pa' Pa + 1, ... ,ba: a is a closed path in reM, N)}. 

(3.iv) 

To prove (3.iv) note that the gcd involved equals 1 if Pa < ba for some circuit 
a and that any integer which divides ba for all circuits a must also divide b{1 
for any closed path /3. 

LEMMA 3.2. Let A E ~ nn, and let A = M - N be a splitting. 

(a) Let y be a nonempty closed path in r(M-IN). Then there is a closed 
path a in reM, N) such that Pa ~ 1y ~ ba. 

(b) Further, d(M, N) divides c(M-IN). 

Proof. (a): Let y = (io,"" i k ), where io = ik • By Lemma 2.5(a) there 
exist paths /3q in reM, N) from iq- I to iq such that the last arc of /3q is blue 
and all other arcs are red, q = 1, ... ,k. Hence there is a closed path a in 
r( M, N) with at most k = ly pure blue arcs and at least k blue arcs, viz. 
Pa ~ k ~ ba • 

(b): If c( M- I N) = 0, there is nothing to prove. Otherwise, it is enough to 
show that d(M, N) divides 1 for every nonempty closed path in r(M-IN). 
But this follows immediately from (a). • 

In general, we cannot replace "closed path" by "circuit" in Lemma 
3.2(a). 

THEOREM 3.3. Let A = M - N be an M-splitting of A E ~nn. 

(a) Let y be a nonempty circuit of f(M, N), and suppose k is an integer 
such that Py ~ k ~ by. Then there exists a circuit a in f(M-IN) with la = k. 

(b) Further, d(M, N)= c(M-IN). 

Proof. (a): The circuit y may be decomposed into k consecutive simple 
paths /31'''' ,13k with a final blue arc and all other arcs red. Suppose the 
chosen blue arcs end at vertices iI' i2 , ••• , ik = io. Then it follows by Theorem 
2.7(a) that (io, ... ,ik ) is a circuit of r(M-IN). 

(b): In view of Lemma 3.2 it is enough to prove that c(M-IN) divides 
d(M, N). For this, it is enough to show that if y is a circuit of f(M, N) and 
Py ~ k ~ ly, then c(M-IN) divides k. This is a consequence of (a). • 



M -SPUITINGS 415 

Let WI,W2~V= {1, ... ,n}. If AERnn, we denote by A[WI,W21 the 
submatrix whose rows are indexed by WI and colwnns by W2 , each set being 
taken in its natural order. If WI = 0 or W2 = 0 then A[Wi' W21 = 0, which 
will be considered to be both zero and nonzero. We normally write Aij = 

A[W;, ""';], i , j = 1,2. 
As usual, A E R nn is called irreducible if rCA) is strongly connected. 

LEMMA 3.4. Let A E R nn be irreducible, and let A = M - N be a nontriv­
ial M-splitting. Let W2 be the subset of V = {I, . . . , n} consisting of those 
j E V for which the jth column of N is nonzero, and let WI = V \ W2• 

Let T = M-iN. Then 

Tn = 0 and TZi = 0, 

every row ofTi2 is nonzero, 

T 22 is a (nonempty ) nonzero irreducible matrix. 

(3.v) 

(3.vi) 

(3.vii) 

Proof. Let i E V and j E Wi' Then there is no blue arc ending at j. 
Hence by Theorem 2.7(a), (i, j) is not an arc of r(M-IN), and (3.v) follows. 

Now let i E V and j E Wz, which is nonempty. By asswnption there is a 
k E V for which (k, j) is a blue arc. Since A is irreducible, there is a path from 
i to k in r(A)~ reM, N). Hence by Theorem 2.7(b), there is a nonempty 
path from i to j in reM-iN). It follows that there is an arc (i, k') in 
reM-iN) for some k' E V, and hence no row of Tis O. This proves (3.vi), 
since Tn = O. Also if both i, j E Wz, then i and j have access to each other in 
reM-iN), which proves (3.vii). • 

Lemma 3.4 implies that after a similarity transformation by a permutation 
matrix, T = M- iN is of form 

[~ (3.viii) 

where every row of TI2 is nonzero and T22 is a square nonzero irreducible 
matrix of order IW21, the nwnber of elements in W2 • Here WI may be empty, 
in which case T = T22• We also remark that (3.v) holds for any splitting 
A=M-N. 

Our next theorem reduces to a well-known result of Frobenius [1, p. 32; 
19, p. 38] when M = I. 

THEOREM 3.5. Let A = M - N be a nontrivial M-splitting of an irreduci­
ble matrix A. Let p = p(M-IN) and d = d(M, N). Then p > 0, and the 
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eigenvalues A of M-1N with IAI = p(M-1N) are pe 2"ilr, k = 0, ... ,d -1, and 
each is a simple eigenvalue. 

Proof By Lemma 3.4, T = M- 1 N can be put in fonn (3.viii) by a 
similarity with a pennutation matrix, where T22 is nonzero irreducible non­
negative and Tn = 0, TZI = O. Hence P(T22) = p(T) > 0 and c(T22 ) = c(T) = 

d(M, N) by Theorem 3.3. Also, if IAI = p, then A is an eigenvalue of T22 if and 
only if it is an eigenvalue of T. The theorem follows from Frobenius' theorem . 

• 
There exists an irreducible M-matrix A and a regular slitting A = M - N 

for which d(M, N)';= c(M-1N), as is shown by the following example. Let 

A~ [ =: 
1 

=: 1 
-2 

3 
"4 4 , 

1 3 
-"4 "4 

M~[ -; 
1 

-! 1 N~[~ 
0 n -"2 

.a 0 
4 4 , 

_1 1 .a 1 
2 4 4 2 

ThenA=M-N, 

M-' ~ [: 1 H M-'N~ (~ 
1 n 2 

2 0 
0 1 

Further, c(M- 1N)=2, while d(M,N)=I, since r(A) has a circuit a= 
(2,3,2) with Pa = 0, ba = 2. 

In each of Corollaries 3.6-3.10 (to Theorem 3.3) below we asswne that 
A = M - N is a nontrivial M-splitting of an irreducible Z-matrix A. Theorem 
3.5 may then be used to infer that p > 0 is the only eigenvalue on the spectral 
circle and that it is simple. 

COROLLARY 3.6. Suppose there exists a circuit a of f(M, N) with a 
single arc in f(N)'- r(M). Then c(M-1N) = 1. 

Proof Pa = 1. • 
COROLLARY 3.7. Suppose for senne i, j E V both mjj .;= 0 and njj .;= O. 

Then c(M-1N)= 1. 
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Proof. Since A is irreducible and f( M, N) -;;2 f( A), it follows that 
f(M, N) is strongly connected. Hence (i, j) is a red-blue arc of a circuit a of 
f(M, N). Hence Pa < ba. • 

COROLLARY 3.B. Suppose there exist i, j E V such that mij "" 0 and 
nji "" O. Then c(M- 1N)= 1. 

Proof. Either Corollary 3.6 or 3.7 applies. • 
COROLLARY 3.9. Suppose there is an arc (i, j) of f(N) such that 

f1 = f(M)U{(i, j)} is strongly connected. Then c(M- 1N)= 1. 

Proof. The arc (i, j) lies on a circuit of f1 ~ f(M, N). Either (i, j) is 
pure blue, in which case Corollary 3.6 applies, or (i, j) is red-blue and 
Corollary 3.7 applies. • 

COROLLARY 3.10. If M is irreducible then c(M- 1N)= 1. 

Proof. By Corollary 3.9. • 
For the R-splittings defined by him, Rose [5, Corollary 2] has proved a 

result similar to Corollary 3.B. Note also that condition (iv) in the definition of 
R-splitting implies that f( A) has a circuit with Pa = 1. 

4. THE INDEX OF THE ITERATION MATRIX 

Let A E IRnn. By mult;\,(A) we denote the algebraic multiplicity of A as an 
eigenvalue of A, viz. the number of factors (A - 7") in det( 7"1 - A), where 7" is 
an indeterminate. As usual we define the index of A for A E IR nn by 

ind;\, ( A ) = min { k ~ 0: Ker (A - A I) k = Ker (A - AI) k + 1} . 

Observe that ind;\,(A) is the size of the largest Jordan block belonging to the 
eigenvalue A. (The index of A should not be confused with the circuit index 
previously defined.) An M-matrix A with ind o(A) ... 1 is sometimes called an 
M-matrix with property c; see [1, p. 153]. 

We require some graph-theoretic definitions, most of which are standard 
(or at any rate, reformulations of standard definitions); see [19, p. 46], [1, p. 
43], or [13]. 
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A class of A is the vertex set of a strongly connected component of f( A). 
It is well known that the classes of A may be ordered Vi"'" v. so that i E ~ 
has access to j E Vh only if g ~ h. When ordered thus, we shall call (Vi' ... , v.) 
a normal partition (of V) for A [or f(A)]. Equivalently, by a similarity with a 
permutation matrix, we may put A into (Frobenius) normal form: 

(4.i) 

o 

where Agg = A[~, ~l is irreducible, g = 1, ... ,s. (Without loss of generality 
reader may suppose that the matrix denoted by A subsequently is in normal 
form.) 

Let Wi' W2 be subsets of V = {I, ... , n }. We say that Wi has access to W2 
in f( A) if some i E Wi has access to some j E W2 in f( A). A sequence of 
classes (~l'''''~) of A is called a chain of classes in f(A) of length t if 
Vg 0# Vg and Vg has access to Vg , h = 1, ... , t - 1 (in which case the Vg 

h h+l h h+1 h 

are pairwise distinct). 
A class ~ in a normal partition is called final if it has access to no other 

class. If 'A is an eigenvalue of Agg, we call ~ a 'A-class. To avoid confusion we 
call ~ a singular class if Agg is singular. If Agg = 0 we call ~ a null class 
for A. 

We now make some observations concerning these definitions. First, if 
Wi ~ Vg and W2 ~ Vh, then Wi has access to W2 if and only if every i E WI 
has access to every j E W2 • Second, a null class ~ is necessarily a singleton 
{i}. Third, {i} is a null class if and only if i is not the vertex of a nonempty 
circuit of f( A). Fourth, the splitting A = M - N is graph compatible only if 
Mgh = M[~, Vhl = 0 for g > h (in which case also Ngh = 0 for g > h). Finally, 
if A = M - N is graph compatible, then each class of M (and N) is contained 
in a class of A. 

We may now restate some results from Section 2. Let A = M - N be a 
splitting of A E IR nn. Let (WI"'" We) be a normal partition of M- I N. If the 
splitting is graph compatible and Wg has access to Wh in f(M-IN), then by 
Corollary 2.6 Wg has access to Wh in f(A). Suppose now the splitting is an 
M-splitting and Wh is not a null class of M- I N. Then it follows from Theorem 
2.8 and the third observation above that Wg has access to Wh in f(M-IN) if 
and only if ~ has access to Wh in f( A). 

Lemmas 4.1 and 4.2 and Corollary 4.3 below are well known and are 
stated and proved here to emphasize their simple nature. A result stronger 
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than Lemma 4.1 appears in [7, Lemma 2.3], and Lemma 4.2 is part of [5, 
Theorem 6]. 

LEMMA 4.1. Let A be a nonsingular M-matrix, and let A = M - N be a 
weak regular splitting. Then B = I - M- 1 N is a nonsingular M-matrix. 

Proof. There exists x > 0 such that Ax> 0; see [8], [1, p. 136]. Hence 
(I-M-1N)x=M-1Ax>0, and since M-IN~O, it follows that B is a 
nonsingular M-matrix. • 

Suppose A is a singular M-matrix. It was known as early as 1953 that there 
exists an x > 0 such that Ax ~ 0 if and only if the singular classes of A are 
final, viz. each singular Ahh is isolated in its block row; see [15, Theorem 4]. 
Thus if there exists an x > 0 with Ax ~ 0, it follows easily that indo(A) = 1, a 
result also stated in [1, p. 155]. 

LEMMA 4.2. Let A be a singular M-matrix, and let A = M - N be a weak 
regular splitting. If there is an x > 0 such that Ax ~ 0, then B = I - M- 1 N is 
a singular M-matrix and indo(B) = 1. 

Proof. Evidently B = M-1A is singular. We have Bx = M-1Ax ~ 0, and 
the result follows, from the preceding remarks. • 

COROLLARY 4.3. Let A be an irreducible singular M-matrix, and let 
A = M - N be a weak regular splitting. Then B = I - M- 1 N is a singular 
M-matrix and indo( B) = 1. 

Proof. There exists an x > 0 with Ax ~ 0, [8; 1, p. 156]. • 
A weak regular splitting satisfies the conclusion of Lemma 4.2 and 

Corollary 4.3 if and only if p(M-1N) = 1 and ind1(M- 1 N) = 1. 
The assumption on the existence of the vector x in Lemma 4.2 cannot be 

omitted, as is shown by the following example of a regular splitting due to 
Michael Neumann (private communication). 

Let 

M= [~ ~], N= [~ ~]. 
Thus 

A=M-N=[_~ ~]. 
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Then 

so that p(M- 1N) = 2. This example motivates our use of the graph-theoretic 
definitions above. 

We now state an important result which we shall apply. 

THEOREM (Rothblurn's index theorem for a nonnegative matrix [13]). Let 
p ~ 0, and let p = pep) be the spectral radius of P. Then indp(P) equals the 
length of the longest chain of p-clm;ses for P. 

(Rothblurn has proved another index theorem for a nonnegative matrix in 
[14].) 

THEOREM 4.4. Let A be a singular M-matrix, and let A = M - N be a 
graph compatible weak regular splitting. Then 

(a) p(M- IN)= 1, 
(b) multlM-IN)~ multo(A), 
(c) indI(M-IN) ~ indo(A). 

Proof (a) and (b): Let (VI'"'' Vf) be a normal partition for A . Let 
T = M- I N. Since the splitting is graph compatible, M and N are block 
triangular (more precisely, Mgh = Ngh = 0 if g > h). Hence also Tgh = 0 for 
g > h. Let S be the set of g E {I, ... , S} for which Agg is singular, and let 
CJ = lSI. Since A is singular, we have CJ ~ 1, and since multo(Agg) is 0 or 1 
according as g $ S or g E S, we have multo(A) = (1. By Lemma 4.1 and 
Corollary 4.3, Bgg = Igg - Tgg = Igg - M-;glNgg is a nonsingular M - matrix or 
a singular M-matrix according as g $. S or g E S. Hence B is an M-matrix and 
multo(B) ~ CJ. Since CJ ~ 1, it follows that B is singular Conclusions (a) and (b) 
now follow immediately. 

(c): Suppose indl(T) = 7", and let (WI'"'' W;) be a normal partition for T. 
By Rothblurn's index theorem there is a chain of 1~lasses W;,,"" W;T in 
f( M- I N). Since the splitting is graph compatible, W; is contained in a single 
class Vjq for A, q = 1, ... ,7". By the argument in the pr~vious part of this proof, 
each V). is a singular class. Since W; has access to W; in f( M- I N), 

q q-l q 

q = 1, .. . ,7", it follows from Corollary 2.6 that W; has access to W; in f( A). 
q-l q 

Hence V)' has access to V)' , q = 1, ... ,7", in f( A). 
q - l q 

We shall next show that V)' * V)., q = 1, .. . ,7", i.e., no two W; are 
q - l q q 

contained in the same V) . . For suppose otherwise. Then (W; , W; ) is chain 
q q - l q 

of 1 ~lasses for 7"jqjq Hence, by the index theorem (or the special case already 
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found in [16, Theorem 3]), ind1(Tjqj ) > 1, contrary to Corollary 4.3. It follows 
that V

J
, * V

J
, and hence (V

J
, , ... ,VJ' ) is a chain of singular classes for A. 

q-l q 1 T 

Hence indo( A) > T and the theorem is proved. • 

There is an example [5, p. 270] which show that when the hypothesis of 
graph compatibility is omitted in Theorem 4.4 the conclusions (a) and (c) may 
be false. For the special case of a regular splitting of A and indo( A) ~ 1, the 
conclusions (a) and (c) of Theorem 4.4 also follow from [5, Corollary 2]. 
However, our theorem does not cover the quoted result; see Open Question 
5.2. 

Note that any splitting of a singular matrix is necessarily nontrivial. 

THEOREM 4.5. Let A be a singular M-matrix, and let A = M - N be an 
M-splitting. Then 

(a) p(M-1N)= 1, 
(b) mult1(M-1N)= multo(A), 
(c) indlM-1N) = indo(A). 

Proof (a): By Theorem 4.4. 
(b): Each class for M- 1 N is contained in a class of A. By the argument in 

the proof of Theorem 4.4, each 1-class of M-1N is contained in a singular 
class of A and each singular class of A contains at least one 1-class of M- 1 N. 
It now follows from Lemma 3.4 that each singular class of A contains 
precisely one 1-class of M - 1 N. Thus (b) follows. 

(c): Let indo(A) = w. By the index theorem there is a chain of singular 
classes V; ," . , Vw for A. Let Wj be the 1-class of M- 1 N contained in V;, 
q = 1, ... ,~. Every vertex of a l~lass of M-1N lies on a circuit of f(M-1N). 
Hence by Theorem 2.8 (or by a remark preceding Lemma 4.1) ""il'"'' Wj, is 
a chain of 1-classes for M- 1 N. Hence by the index theorem, ind l M- 1 N) > w. 
The result now follows from Theorem 4.4(c). • 

REMARK 4.6. In fact, more has been proved than stated in Theorem 4.5. 
Let L( A) be the singular graph of A as defined by Richman and Schneider 
[11]. If A=M-N is an M-splitting of a (singular) M-matrix A, then 
B = I - M-1N is a (singular) M-matrix and L(A) = L(B). As shown in [11], 
there is a close relationship between the Singular graph L( A) of an M-matrix 
A and the Weyr characteristic wo(A) for 0 (or equivalently the degrees of the 
elementary divisors for 0). In some cases, L( A) determines WO< A) completely 
[11, Theorem 5.6], for example when k(A) is a rooted forest; see [11, 
Corollary 5.8]. In these cases (in particular when L(A) is a rooted forest) we 
can conclude wo(A) = wo(B), which is stronger than conclusions (b) and (c) of 
Theorem 4.5. 
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5. OPEN QUESTIONS AND GENERALIZATIONS 

OPEN QUESTION 5.1. M. Neumann's example in Section 4 shows that a 
regular splitting A = M - N of an M-matrix A need not be graph compatible. 
We conjecture that under a mild additional condition a regular splitting of an 
M-matrix must be graph compatible. For example, if all diagonal elements of 
A (or of M) are positive, must the splitting be graph compatible? 

OPEN QUESTION 5.2. Neumann and Plemmons (5] have shown that if A 
is an M-matrix with indo( A) ~ 1 and A = M - N is a regular splitting, then 
(without the hypothesis of graph compatibility) conclusions (a) and (c) of 
Theorem 4.4 hold. However, in the general case some additional hypothesis 
(such as graph compatibility) is needed, as is shown by another example due 
to M. Neumann (private communication). For regular splittings is there a 
common generalization of (5, Corollary 2] and Theorem 4.4 or Theorem 4.5? 

OPEN QUESTION 5.3. Neumann's example of a regular splitting A = M­
N of a singular M-matrix A and the example on p. 270 of [5] of a weak regular 
splitting both have p(M-1N» 1 but ind1(M-1N)= indo(A). Does the 
inequality indl(M- lN)~ indo(A) hold in some interesting cases even if 
p(M-1N» I? 

OPEN QUESTION 5.4. Does Lemma 3.4 still hold for an irreducible 
M-matrix A when the splitting is assumed to be regular or weakly regular? 
(We have found a counterexample for a Z-matrix A.) H not, it may be possible 
to use a suitable counterexample to find an example for Theorem 4.4 where 
either or both the inequalities in (b) and (c) are strict. 

REMARK 5.5. It should be noted that all of our results on M-splittings 
hold under weaker assumptions. Let A = M - N be a splitting and put 

W: M- IN~O (weak), 

WR: M- 1 ~ 0, M-IN~O (weak regularity), 

GE: f(M- 1N)= f(M) feN) (graph equality), 

GC: r(M)~ f(A) (graph compatibility). 
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TABLE 1 

Lemma, Theorem, etc. 

2.7,2.8,3.3 
3.4,3.6-3.10 
3.5 
4.4 
4.5,4.6 

Hypotheses used 

GE 
CE, [GC] 
W,GE, [GC] 
WR,GC 
WR,GE,GC 
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By Lemma 2.4, an M-splitting satisfies W, WR, CE, and CC. In Table 1 
we list the hypotheses for various results which may replace the asswnption 
that the splitting is an M-splitting. We write [CC] where CC is implied by 
another hypothesis, viz. irreducibility. 

Suppose A = M - N is a nontrivial regular splitting of an irreducible 
Z-matrix with M- 1 > O. Then M is irreducible and CE holds. Hence by 
Corollary 3.10 (generalized as above) we have c( M- 1 N) = 1, which is a result 
closely related to that of Rose [12, Theorem 2]. 

As we pointed out in Lemma 2.4, only Z-matrices have M-splittings. 
However, it is easy to find an example of a matrix A which is not a Z-matrix 
and which has a splitting A = M - N satisfying WR, CE, and CC. 

We acknowledge gratefully the examples due to M. Neumann and helpful 
remarks by R. J. Plemmons and D. J. Rose. 
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