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This article reports on a talk given by the second-named author which is 
based on the partly expository paper [1]. The paper contains statements and 
proofs of determinantal identities ascribed to the mathematicians whose 
names occur in the title of [1], including the "laws" of Muir and Cayley. This 
account is followed by a formal treatment of determinantal identities which 
permits us to state the laws as mathematical theorems. The proofs of the 
theorems obtained in this way are not given in the formal setting in the 
original paper, since the informal treatment given there was thought suffi
cient. Here we give the statements of the laws of Muir and Cayley-now 
theorems-in the formal setting, and we present proofs. The proof given here 
for Cayley's law is simpler than the proof which is implicit in [1]. Thus we 
concentrate here on those aspects of the talk which are not fully covered in 
[ 1]. 

We begin by summarizing those parts of [1] required for our purpose. 
Let A be an n X n matrix over a field F which is partitioned as 

where E = A [1, ... , k \1, .. . , k] is the leading principal k X k submatrix of A 
and 1 ~ k ~ n. Starting with the two basic facts that Gaussian elimination 
does not change the value of a determinant and a determinant has a Laplace 
expansion, we give a collective derivation of some classical and important 
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determinantal identities. These include: 

SCHUR'S IDENTITY. If E is invertible, then 

det A = (det E) ( det A j E) , (1) 

where AjE = H - GE-1F is the Schur camplement of E in A. 

JACOBI'S IDENTITY relating the minors of a matrix to those of its inverse. 
If A is invertible, then 

d t A[ ., ., I" .,] 
=(_lfl + " ' +is+ h + "'+ j, e Js+1''' ' ,J" ts+1,···,tn (2) 

det A ' 

where each of the four sequences above are strictly increasing sequences 
taken fram 1,2, ... ,n, and {i1, .. ·,is,i;+1, .. ·,i~} = U1,· .. ,js' j;+1,· .. ,j~) = 

{l, ... ,n }. 

The Schur complement enjoys a quotient property: if K is a leading 
principal square submatrix of E, then AjE = (AjK)j(EjK). Two proofs 
are given in [1], one relying directly on Gaussian elimination and the other on 
quotient formulas for the entries of the Schur complement. 

Muir and Cayley each formulated a method for obtaining from a given 
determinantal identity another determinantal identity. Muir called his method 
the "law of extensible minors" and called Cayley's method the "law of 
complementarities." A formal treatment of determinantal identities of the 
minors of a matrix enables us to give a precise statement and formal proof of 
these laws. The essential parts are as follows. 

Let integers k ~ ° and l ~ 1 be given. For p = 0,1, ... , l, Sr I' or for 
brevity Sf, denotes the set of all sequences of integers a = (i l' ... , ip) where 
k + 1 ~ i 1 < ... < ip ~ k + l = n. Let III be a set of pairwise commuting, 
algebraically independent indeterminates 7T [a I PJ over F, indexed by the set 
of ordered pairs [a I f3] with [a I f3] E U~_o(Sr X Sf). Then a formula is any 
element of the polynomial domain F[IItJ generated over F by the inde
terminates in III' Every nonzero formula f can be written as 
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where 0 * Cq E F and I/; q is a term of the form 

for some t ;. O. The formula f is called t-homogeneous if each of its terms I/; q 

has the same number t of factors. 
Now let X = [Xij] be an 1 X 1 matrix whose entries are ZZ pairwise 

commuting, algebraically independent indeterminates over F. We assume its 
rows and columns are indexed by k + 1, . . . ,n. The mapping 

'IT [ a I P] -> det X [ a I p] 

induces a homomorphism from FrIll] to F[Xk + 1 k + l' Xk + 1 k + 2"" ,x",,], which 
we call the determinantal homomorphism. The formul~s in its kernel are 
called the 1 x l determinantal identities. 

We can now formulate and prove Muir's and Cayley's laws. 

MUIR's LAW. Suppose 

p 

L Cq'IT [a~q) I Plq)] · . . 'IT [a )q) I p,<q )] (3) 
q~l 

is a homogeneous determinantal identity. If y = {l, ... , k }, then 

p 

L cq'IT(yua~q)lyuPfq)] "''IT(yua;q)yup/q») (4) 
q ~ 1 

is also a homogeneous determinantal identity. 

Proof. Applying the determinantal homomorphism, we obtain 

p 

L cqdetX[a~q ) IPlq ) ] .. · detX[a)q)IP/q)] =0. (5) 
q ~ l 

Let A = [a i j] be an n X n matrix whose entries are pairwise commuting 
indeterminates over F. Let S = A/A [ y I y] = [s i j], the Schur complement of 
A[ y I y] in A. Since Xij -> Sij induces a homomorphism of F[xk + l.k + 1''' ' , X,.,,] 
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into the field of rational functions in the a ij over F, we have 

p 

L cqdet S (a\q) I Pfq>j.· . det S [a~q) I ~t(q) j = O. (6) 
q=l 

But by Schur's identity 

det S [ a I ~] = det A [y U a I y UP] 
det A[ y I y] 

Using (7) in (6) and multiplying through by (det A[ y I y]) - l, we obtain 

p 

(7) 

L cqdetAhuaiq)\yu~fq)j· .. detAhua)q)lyuP/q)j =0. (8) 
q=l 

Now (8) implies (4) is a determinantal identity. • 
For a a strictly increasing sequence taken from 1,2, ... , n, we denote by a' 

the complementary sequence consisting of those integers in (l,2, ... , n} not 
appearing in a and arranged in strictly increasing order. 

CAYLEY'S LAW. Suppose (3) is a homogeneous determinantal identity 
where we now assume k = O. Then 

p 

L Cq'IT [~fq)/1 a\q)/j . .. 'IT [P/q)1 I a)q)/j (9) 
q=l 

is also a determinantal identity. 

Proof. From (3) we again obtain (5). Let B = DX - 1D = [hij ], where 
D = [d ij ] is the diagonal matrix with d i • = (-1)', i = 1, ... ,n. Since Xij -+ hi ' 
induces a homomorphism of F[ x 11' X 12' ... , X n n 1 into its field of rationcJ 
£urictions, we have 

p 

L cqdet B [ a~q) I fil q) j ... det B [a\q) I P/q) j = O. (10) 
q=l 
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Applying Jacobi's identity, we obtain that for a = {i l , .. · • is}. ~ = {il"" ,is}' 

det B[ al p] = ( _1) il + ... + i ,+ 11 + "' j' det X- l [al p] 

= (_ )2( i 1 + ... + i , + il + ... + j , ) det X [W I a'] 
I det X ' 

or 

(ll) 

Using (ll) in (10) and multiplying through by (detX)-I , we obtain 

p 

L cqdetX[pfq)llaiq)l] ···detX[Nq)l \alq )l] =0. (12) 
q = l 

Now (12) implies (9) is a determinantal identity. • 

References to the literature and some historical remarks can be found in 
[1]. 
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