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O. QUOTATIONS 

"For what is the theory of determinants? It is an algebra upon algebra; a 
calculus which enables us to combine and foretell the results of algebraical 
operations, in the same way as algebra itself enables us to dispense with the 
performance of the special operations of arithmetic. All analysist1 must 
ultimately clothe itself under this form. 

"I have in previous papers2 defined a 'Matrix' as a rectangular array of 
terms, out of which different systems of determinants may be engendered, 
as from the womb of a common parent; these cognate determinants being 
by no means isolated in their relations to one another, but subject to certain 
simple laws of mutual dependence and simultaneous deperition." 

J. J. Sylvester3 (1851) 

"It will be seen that matrices (attending only to those of the same order) 
comport themselves as single quantities3

; they may be added, multiplied or 
compounded together, &c.: the law of the addition of matrices is precisely 
similar to that for the addition of ordinary algebraical quantities; as regards 
their multiplication (or composition), there is the peculiarity that matrices 
are not in general convertible; it is nevertheless possible to form the powers 
(positive or negative, integral or fractional) of a matrix, and thence to arrive 

t This article is based on a talk given at the California Institute of Technology on 
October 5, 1976. 

Research for this article was partly supported by the National Science Foundation 
under grant MCS 76--{)6374. 

t Superscripts refer to notes collected in section 5. 
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198 OLGA TAUSSKY-TODD 

at the notion of a rational and integral function, or generally of any algebraical 
function, of a matrix." 

A. Cayley (1858) 

"A matrix ... regarded apart from the determinant ... becomes an empty 
schema of operation, ... only for a moment looses the attribute of quantity 
to emerge again as quantity, ... of a higber and unthought of kind, .. . in a 
glorified shape-as an organism composed of discrete parts, but having an 
essential and undivisible unity as a whole of its own .. . . The conception 
of multiple quantity thus rises on the field of vision. 3 

Apotheosis of Algebraical Quantity 
Sylvester (1884) 

"The members of a hierarchy, like the Roman god Janus, all have two faces 
looking in opposite directions: the face turned towards the subordinate levels 
is that of a self-contained whole; the face turned towards the apex, that of a 
dependent part. One is the face of the master, the other the face of the servant. 
This 'Janus effect' is a fundamental characteristic of sub-wholes in all types 
of hierarchies." 

A. Koestler (1967) 

1. OLGA TAUSSKY'S DIRECT AND INDIRECT CONTRIBUTIONS 

I would like to begin with some remarks concerning mathematics and the 
contribution of individual mathematicians. 

Nineteenth century mathematics appears to me like a collection of isolated 
mountains; some higher than others. Twentieth century mathematics seems 
like a continuous mountain range, where it is hard to isolate individual peaks. 
Perhaps this is partly a matter of perspective, the foothills of present day 1 
mathematics may obscure the mountains of the previous generation. But, 
I think, there is another effect. Obviously there are far more active mathe- - I 
maticians today than a hundred years ago, and the following model may 
apply: what might in the nineteenth century have been tbe work of one man 
over a period of twenty years, is today the work of four in five years. One 
mathematician's good idea is picked up by others and immediately developed. 
Thus in assessing the work of a mathematician, one must ask the classical 
questions: "what theorems did he prove ?", "what theories did he initiate?", 
but one must also ask: "what is his influence on others ?". In this talk I wish 
to concentrate on Olga Taussky's influence on matrix theorists, and hence on 
matrix theory, for I believe that her influence in this area has been outstanding 
and unmatched. One might call this her indirect contribution to mathematics. 
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Everyone who has had students (and Taussky has had 11 at California 
Institute of Technology) has had some influence on others, but Taussky's 
influence has been far wider than this. Yet it is hard to document her indirect 
contributions, for the source of ideas is usually only hinted at in mathematical 
papers, and quite often no indication is given how or why an author began 
his investigations. Though there are a few ways of documenting Olga 
Taussky's influence [e.g. at least five of her research problems in the Bulletin 
of the AMS have led to publications, see also Cooper (1975) for her role in a 
paper by Stein and Rosenberg (1948)], by necessity, I must stress her influence 
on those whose work I have seen in actual progress; and this explains the 
word personal in the subtitle of this talk. I hope you will not think me 
particularly self-centered if the last part of this talk examines some ways 
Olga Taussky has influenced the research of my former students and myself. 

But first I will briefly list her most important direct contributions to matrix 
theory. Note that her work in number theory including class field theory, 
group theory, topological algebra and differential equations is omitted. 
(I thank Jack Todd for helping me construct this list.) 

Olga Taussky's direct contributions to matrix theory 

I. Algebraic Commutativity and generalized commutativity, properties 
L & P, commutators, Shoda's theorem concerning commutators. 

II. Analytic Positivity, Gershgorin circles, Lyapunov-Stein theory. 

III. Number Theoretic Integral matrices, integral matrices connected 
with number theory, integral group rings, norms for algebraic number fields, 
quadratic forms. 

IV. Also: Cramped matrices, Hilbert matrices, etc. 
Everyone will have his own opinion which of these contributions might be 

emphasized. Let me quote one view: 

However, for me, the central core of her work is best typified by her continuing interest in 
the relationship between "classical" mathematics, especially algebra and matrix theory, 
and her insistence on the relevance of beauty in mathematics. In particular, I think her 
work on commutativity and generalizations, and on the form of certain mappings, are 
most representative. She poses a simple question-what does a particular form of com­
mutativity imply? What are the characteristic polynomial, the characteristic roots and 
vectors, of a particular operator; be it X ->- AX - XA, X ->- AX + X'A', or X ->- TXT', and 
then answers the question, in an elegant manner, ever mindful of the proper algebraic 
setting, and the classical origins of the topic. 

David Carlson (letter, September 1976) 

N ow I shall turn to the main subject of my talk: Olga Taussky's influence on 
matrix theory. Had I chosen to talk about her direct contributions I would 
have selected some of her papers for detailed examination different from those 
that are discussed in sections 2, 3 and 4. All the selected papers are in the 
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area I called "analytic matrix theory" in the list above, a type of mathematics 
that Wisconsin algebraists occasionally call "hybrid analysis"-for they do 
not quite consider it within algebra, a point which I shall return to and which 
has some relevance to my main theme. 

2. DIAGONAL DOMINANCE 

2.1 In (1949) Olga Taussky published her five page note "A recurring 
theorem in determinants" in the American Mathematical Monthly. Her 
theorems were well-known, and the proofs were so easy as to be accessible 
to undergraduates, or so it seems in 1977. But the apparent simplicity conceals 
unsuspected depths. Let us begin with the fundamental result, her Theorem 1. 

DIAGONAL DOMINANCE THEOREM Let A be a complex n x n matrix and let 
Ai be the sum of the absolute values of the non-diagonal elements in the i-th row: 

Ai = L laijl, i = 1, ... , n. 
j';'i 

If A is diagonally dominant, viz. 
i = 1, ... , n, 

then 
det A # 0. 

Proof Assume that det A = 0. Then the system of equations 
n 

L aijxj = 0, i = 1, ... , n, 
j=l 

has a non-trivial solution Xl' •.• , x •. Let r be one of the indices for which 
Ix;!, i = 1, ... , n, is maximal. The rth equation implies 

I a" II xr I ~ L I a'j I! Xj I ~ Arlxrl, 
j';', 

which contradicts the hypothesis. 
The diagonal dominance theorem was first published by L. Levy (1881), 

under the assumption that ail < 0, aij ~ 0, i # j, i,j = 1, ... , n. In a sub­
sequent paper, Des'planques6 (1886) gave a proof of the general case, which in ... 
essence was the same as Olga Taussky's, paraphrased above. In Nekrasov 
(1892) the theorem is all but stated, that is it results from a combination of 
two theorems quoted in the paper. One of these is to be found in a letter 
from Mehmke (1892) to Nekrasov: if A is diagonally dominant, then an 
associated Seidel iteration converges. The diagonal dominance theorem was 
rediscovered independently, if the absence of references is an indication by 
Hadamard (1903) and a related theorem was found by Minkowski (1900, 
1907). He showed that with the assumptions' ail > Ai' aij ~ 0, i # j, 
i,j = 1, ... , n, in Theorem I, one may conclude that det A > 0. (We shall 
call matrices satisfying these assumptions Minkowski matrices). 
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Some subsequent papers in this area derive from Minkowski (1900). His 
proof was not particularly illuminating and this occasioned Artin's (1932) 
remark, the first sentence of which seems truly amazing today: 
A frequent objection to the use of this theorem on determinants (Minkowski's dingonal 
dominance theorem) is that its proof is too complicated. But this is by no means the case. 

It is most interesting to observe that HopfB (1929), who may have dis­
covered the theorem independently, used the theorem to give an elementary 
proof that an affine map of the n-simplex into itself has a fixed point. Bankwitz 
(1930), who refers to Perron-Frobenius, proved the theorem, and applied it 
to knot theory, cf. also Reidemeister (1932, p. 32). 

DIAGONAL DomKANCE TI!EOREM 

r LEVY ____ + DESPLANQUES I 1881 1886 
HADAMARD 

1903 

I 
ROf/RBACH 

1931 

A.BRAUER 
1946/47/48 

14 

GERSHGORTN 
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~* 

ARTlN 
1932 

, OSTROWSKI + " FURTWANGLER 
1937 1936 

+* 
----j TAUSSKY 

1948/49 
* 

Collatz 
1942 

/ 
Wielandt 

1950 

Capital letters : Diagonal dominance or circles theorem 
Lower case letters: Perron-Frobenius theorem 
.: Irreducible matrices 
t: Minkowski matrices and det A > O. 

FIGURE 1 

* Rom:movsky 
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The theorem was also rediscovered independently on several other oc­
casions. One of these9 deserves mention. A Belgian civil engineer, C. 
Massonnet (1945), rediscovered Minkowski's theorem and proved as a 
corollary that det A is positive if alla22 ••• ann is positive and 

~ aij 
L. ~=== ~ 1, 

i#'l fla .. a·1 
j:::::.l'V H JJ 

i = 1, ... , n. 

(He does not distinguish between "positive" and "non-negative".) We 
should not be too critical that Massonnet failed to search the mathematical 
literature for references, for the paper bears the address and date Ofiag II 
(prenzlau), 1942. 

It should be noted that from the time of Perron-Frobenius and Markov 
(1908) until Ostrowski's papers (l937a, 1937b) there were no new results in 
this area, (the Gerschgorin circles theorem, first published in this gap was 
apparently known much earlier, cf. (2.2) and (2.3) below). We display the 
relations of the various papers in a diagram. Lines denote references to or 
use of that paper-but here I may have missed some connections. Also 
there is no attempt to list all papers referenced by Taussky (1949). 

2.2 We now turn to a second feature of Olga Taussky's paper: it goes 
straight to an important point, which most previous authors had ignored 
and none had made as simple. We call a complex n x n matrix irreducible if 
it cannot be transformed into the form 

[
All A12] 
o A22 

where All, A22 are square, by the same permutation of rows and columns. 
The following result is called Olga Taussky's theorem in Parodi (1959): 

THEOREM II (diagonal dominance theorem for irreducible matrices) Let A 
be a complex n x n matrix such that 

laill ;,. Ai' i = 1, ... , n 
where the equality holds in at most n -1 cases. If A is irreducible, then 
det A i' O. 

The first appearance of the theorem seems to be in Markov (1908); however 
the hypothesis of irreducibility must be inferred there from the proof and 
other circumstances [see Schneider (1977)]. The result is stated and proved i 

in Bankwitz (1930, p. 156) and in Hilde Geiringer (1949, p. 379) where it is 
applied to the solution of linear equations by iteration methods. It may also 
be fO\lnd in Ostrowski (1937a, p. 89), where it is derived from a more general 
result (see p. 88). Since it was not Ostrowski's purpose to go straight to the 
theorem, it would require an astute reader to spot Taussky's simple proof 
of her Theorem II. The point is not unimportant, for the diagonal dominance 
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theorem is connected with the Perron-Frobenius theorem, and to make this 
connection one must consider irreducible matrices: if A is an irreducible 
Minkowski matrix then all the equalities hold in Theorem II if and only if 
A is singular. 

Markov (1908) used precisely this argument to prove the simplicity of 
the eigenvalue 1 of an irreducible stochastic matrix, and a much subtler 
form of the argument is the basis of Wielandt's (1950) proof of Perron­
Frobenius. Taussky does not mention Perron-Frobenius, but the essential 
tools for understanding Wielandfs paper are there, see the beginning of 
(8.29) in Taussky (1962). 

2.3 A simple consequence of the diagonal dominance theorem is the now 
famous: 

CIRCLES THEOREM Let A be an n x n complex matrix. Then the spectrum of A 
is contained in the union of the n circles in the complex plane: 

i = 1, ... , n. 
n 

The weaker inequality \..1.1 ~ max { L lajjl: i = 1, ... , n} was presumably 
j=l 

known to Frobenius [one combines a remark in Frobenius (1908) with 
another in (1909)]. It seems that the circles theorem was known to Schur 
[cf. Brauer (1973, p.v)]; the theorem is certainly stated and proved in 
Rohrbach (1931) in the course of a proof of Minkowski's theorem attributed 
to Schur : For a Minkowski matrix the circles lie in the right half plane, 
hence the real eigenvalues are positive, the complex eigenvalues occur in 
conjugate pairs. Nowadays the theorem is usually called the Gershgorin 
theorem in view of Gershgorin (1931), where indeed the result is published 
for the first time as a separate theorem. 

Gershgorin's paper is imprecise. It begins with a statement of Taussky's 
Theorem II, but without the hypothesis that A is irreducible. (I have often 
wondered how this could have happened.) This omission now appears 
glaring, but neither of the excellent reviews in the Zentralblatt (Wegner) or 
lahrbuch (Wielandt) noted it (or a resulting mistake). One can only suppose 
that the omission was far from obvious in 1931. Taussky is obviously aware 
of the mistake, she does not comment on it, but quietly states the result 
correctly. 

Though (for stochastic matrices) the result can be found in Frechet (1933, 
1938) [he refers to Tambs-Lyche (1929)] and the result was undoubtedly 
known to several mathematicians in the 1930s and 1940s, I know of no further 
developments until Brauer (1946, 1947, 1948) and Taussky (1948, 1949). 
In particular, I have found no published reference to Gershgorin (1931) 
before Taussky (1949) with the exception of Wittmeyer (1936). Perhaps this 
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point illustrates the very great change that has occurred in the status of 
Gershgorin's theorem since 1949. 

2.4 There are few occasions where a mathematician records in print the 
events that led him to study a certain problem. Thus most accounts of the 
development of a topic omit a certain level of personal history, as anyone who 
is active in research surely knows. I was most curious about the events that 
resulted in Olga Taussky's (1949) note,lO for I knew only that somehow her 
interest in this subject was connected with her war-time work for the British 
Ministry of Aircraft Production. I have asked her to describe how she got 
interested in the (Gerschgorin) circles theorem, which she calls r. 
r: First of all, I seemed unusually interested in Vienna in the "recurring theorem" as soon 
as Furtwangler got to it in his course on algebraic number theory, when proving Dirichlet's 
unit theorem. He proved it by induction and it is really quite an interesting proof, but 
I did not like it then. I think the next proof was by Artin (1932). I observed people refinding 
this theorem. The one evening Aronszajn visited our apartment in London during the war 
and application of functional analysis to numerical analysis was the main issue. I suddenly 
pricked my ears when he mentioned there was a good approximation to eigenvalues via 
T-theorem, and I questioned him for I thought that such a result for flutter matrices 
would interest my boss, R. A. Frazer. He gave me the year 1931 and the Zentralblatt 
review. This is a very well written review. I saw the actual paper much later in the British 
Museum. I immediately tinkered with the theorem, applying it to a very nasty looking 6 x 6 
matrix of complex elements given with many decimals, revealing off hand nothing about its 
stability (which for practical purposes means, no eigenvalues with large negative real parts, 
for a plane is not required to fly at 00 speed). I am enclosing zerox copies of the circles. 
Number I gives the 6 circles, one containing points with large negative real part; Number 
II comes after a diagonal similarity which already excludes a large part of the negative 
real axis; Number III then shows what happens if we expand the shrunk circle again and 
shrink the other 5. This seemed great fun. I then realized an optimum for this process 
must be possible, this was carried out much later by Henrici, Jack 11 (1965), Varga (1965), 
etc. At the time I wrote a report for the Aeronautics Research Council (1947) which con­
tains most of what is in the monthly article, apart from the equality case which I carried 
out under prodding from G. B. Price. It was he, who in 1947 pushed me into writing the 
article. 12 

2.5 To appreciate the wider significance of Taussky's (1949) note, we briefly 
and necessarily inadequately, discuss the history of matrix theory. Recent 
historians [Kline (1972), Hawkins (1975, 1977)] have stressed that even 
before Sylvester's (1850) definition of matrix there were results which today 
are considered matrix theoretic, though obviously they were then expressed 
in different terms. There was a well developed theory of determinants, and 
there was some spectral theory, for example, the remarkably early Cauchy 
(1829) interlacing theorem for the eigenvalues of submatrices of a symmetric 
matrix. Both of these belong to an aspect of the subject I shall call inward 
matrix theory. The choice of name is nicely illustrated by the second part of 
the quotation from Sylvester (1851) in section 0: here matrices look down­
ward and inward to their children the minors. While I am not ready to give 
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a characterization of inward matrix theory, one may describe some attributes: 
one is usually concerned with properties of a single matrix (e.g. the location of 
its spectrum), consideration of its elements is important (so one tends to 
forget that the matrix is also a linear operator on some space), while mUltipli­
cation of matrices plays little role and addition hardly any at all. For the 
sake of contrast, we shall also speak of outward matrix theory, though as 
we shall presently explain, the outward aspects of the subject have largely 
ceased to be part of matrix theory, as presently understood. 

In the 1850s there was an outward turn of matrix theory, and one may 
speculate that this was due in part to the profound psychological effect of 
the definition of "matrix" as a separate and independent entity-I am 
tempted to say matrix theory turned outward at least partly because matrices 
had been named. 13 In distinction to its previous role, a matrix was no longer 
merely a "schema" for writing a determinant or linear substitution but a 
"quantity", "if it be allowed that that term is properly applied to whatever 
is subject of functional operation" [in the words of Sylvester (1884)]. The 
future is foreshadowed in our quotation from Cayley14 (1858), see section 0, 
and the magnitude of the change as it appeared to his contemporaries is 
stressed in Sylvester's (1884) "Apotheosis of Algebraic Quantity". 

At first undifferentiated from their content, matrices came to be regarded as susceptible 
of being multiplied together, the word multiplication, strictly applicable at that stage of 
evolution to the content alone, getting transferred by a fortunate confusion of language 
to the schema ... , but the full significance of this fact lay hidden until the subject-matter of 
such operations had dropped its provisional mantle, its aspect as a mere schema, and stood 
revealed as bona-fide multiple quantity .... This revolution was effected by a forcible 
injection into the subject of the concept of addition ... a notion, as it seems tome, quite 
foreign to the idea of substitution, the nidus in which that of multiple quantity was laid, 
hatched and reared. 1 5 

A revolution indeed! In outward matrix theory, matrices ("single quanti­
ties") look outward and upward to those great societies of groups and algebras 
of which they are members. A good example is the theory of (linear associ­
ative) algebras in the late nineteenth century culminating in Wedderburn's 
(1908) structure theorem on simple and semi-simple finite dimensional 

f. algebras. 
In this century, new levels of abstraction have transformed mathematics. 

In algebra, the lectures of E. Artin and Emmy Noether in Goettingen in the 
1920s led to v. d. Waerden's (1930) famous book Moderne Algebra-and 
the abstract axiomatic approach to algebra continued to be known by the 
name of modern algebra until quite recently [see Birkhoff (l976a,b) for an 
interesting account]. Matrices play an important role here, but they are the 
servants,16 not the masters. Thus outward matrix theory was absorbed by 
modern algebra and disappeared as an area of mathematics. For example, 
the proper setting of Wedderburn's structure theorem is now no longer 
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finite dimensional algebras but Artinian rings. It is even possible to view the 
theorem as a special case of the Jacobson density theorem for primitive 
rings1 7 [e.g. Herstein (1964, Ch. 2)] . 

Abstract algebra represents one of the major advances in mathematics in 
the first half of this century. Yet it implied a restriction of the term "algebra" 
and a completion of the separation 18 of "algebra" and "analysis". Inward 
matrix theory, which had flourished through the time of Perron- Frobenius, 
drew much of its strength from classical analysis. [Observe that Perron­
Frobenius first appeared in Perron's (1907a) paper on continued fractions, 
see also Lyapunov's (1892) theorem discussed in section 3.] Thus inward 
matrix theory could not be axiomatized in the modern manner, and since 
algebra was now identified with modern algebra, the former became home­
less,19 old-fashioned and unimportant, and thus it withered. In the period 
1918--45 there were few significant papers, and, unlike in the nineteenth 
century, the exceptions were written by men who were primarily analysts: 
Ostrowski (1937a), and Gantmacher and Krein (1937). 

Those of us who worked on matrices in the 1950s and early 1960s had a 
feeling of being in a no-man's land in the center of a triangle whose vertices 
were algebra, analysis (e.g. generalizations of Perron-Frobenius in functional 
analysis) and applied mathematics (e.g., applications of diagonal dominance 
to economics). Somehow, we were being ignored by other mathematicians. 

In 1976, matrix theory may still be in the center of this triangle, but the 
center is now a vantage point from which one may stimulate research in the 
areas of algebra, functional analysis and applications, and is again a discipline 
in its own right. 20 Undoubtedly the need for numerical linear algebra 
adapted to computers has inspired much study of the theory of matrices 
[cf. Birkhoff (1976b)] . The subject is now "classical" rather than "old- r 

fashioned" -two words without a difference in meaning but reflecting , 
different attitudes. A fresh Ph.D. in matrix theory is more in demand than I 
a group-theorist, and I shall let the reader decide whether this is cause or 
effect. But there is no doubt about one phenomenon: the period since 1950, 
particularly since 1960, has seen a spectacular increase in publication of 
papers concerning properties of a single matrix.21 This resurgence of inward 
matrix theory can be traced directly to papers we have mentioned 22

: A. 
Ostrowski (1937a), A. Brauer (1946, 1947, 1948), O. Taussky (1948, 1949) 
and H. Wielandt (1950). We may note an interesting phenomenon: none of 
these papers used a major result unknown to Frobenius (1912). Thus the 
branch point of inward matrix theory from abstract algebra, is not 195.0 but 
1907 or earlier. For, surely Perron-Frobenius belongs to inward matrix 
theory, but Frobenius' (1908) proof depended critically on the intermediate 
value property of a continuous function which is by no means algebra in the 
modern sense. 
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A renaissance must start with a renewed and novel appreciation of the 
classics. This was provided by Olga Taussky's (1949) note and that is the 
significance in the development of matrix theory of that short contribution 
in a journal largely devoted to exposition at the college level. 

2.6 We make no attempt to trace the history of the "recurring theorem" 
beyond 1949, for it is virtually impossible to make a complete bibliography 
of related results that have appeared since then. However, as a footnote to 
the influence of Olga Taussky's (1949) note, we point to a paper whose title 
is reminiscent of Taussky's note and which may be as influential to the next 
generation of mathematicians as Taussky's note was to the last. We refer 
to Varga's (1976) "On recurring theorems on diagonal dominance". 

3. INERTIA THEORY 

3.1 We shall let Olga Taussky tell what led her to work on Lyapunov's 
theorem, which she calls 1\. 
You asked me concerning the origin of my interest in Lyapunov's theorem. This is a strange 
story. Well, this theorem really closed in on me from various sides, actually before I saw 
it in Gantmacher (1953), Bellman (1960), W. Hahn (1955, 1959). It had an unusual attrac­
tion for me. By the way, from Arrow and McManus (1959) papers I took over only the 
concept of D-stability. However, there was a paper by D. C. Lewis (1951) in American J. 
Math. and which comes somehow near to it. I do not know whether I learnt about D. C. 
Lewis's paper via Bass' report or vice versa, or through a M.R. review. I immediately 
realized that I could reprove Lewis' theorem and in my joint paper with him we found a 
much simpler approach. I suppose you heard Antosiewicz' talk at Argonne in 1967 at the 
T-A conference and maybe you saw my remarks about his work in my Besan90n (l968a) 
lecture. He pointed out that the needs of the analysts are much more complicated. He 
wanted me to do more on the algebraic side. In, I think, 1960 I gave a course on matrix 
theory mainly to geophysics students (the algebraists did not come to a matrix course) and. 
it suddenly came to me to lecture on A. By then Gantmacher (1953) and Bellman's (1960) 
books existed and I saw some of Hahn's work and Arrow's papers (which I think Jack" 
pointed out to me) and while preparing my course I wrote my littie note (1961a) for the 
Bellman Journal (J. Math. Anal. Appl.) which pleased me a lot. I showed it to Ostrowski who 
made no comments, but as I found out later, was quite interested. Givens noticed my 
abstract in the Notices about it and you wrote to me for a preprint. Then Householder 
invited me to lecture on it at Gatlinburg23 and I tried to complete something new. I com­
pleted this about a day before our departure. We had to give a party in our house and 
Antosiewicz was present at it and I remembered that I made him check what later became 
my SIAM note (1961 b) in our kitchen during the party. The remainder is known to you. 
However, there is still one other sign of my interest in A a year prior to my matrix course. 
Zassenhaus visited here during that year and Erdelyi needed a proof of a A-related equation 
for general matrices, in stability, found in a book by Lefschetz. Zassenhaus proved what 
was needed in an algebraic way and I think, if you want it, I ought to be able to dig it out. 
But, what is an1Using, is the fact that I felt really excited about it. 

Somewhat later, in February 1977, she wrote: 
when I write to you I sometimes forget to mention the most important facts. One of these 
concerns A. The reason why A fascinates me so much is two-fold: 

(1) My interest in criteria (computational if possible) for the stability of a complex 
matrix. This was stimulated in my war work. 
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(2) The much bigger reason is that the A expression is a generalized Jordan product!4 
There I have some great unfulfilled dreams (which I was able to transmit to Givens who 
studied Jordan and Lie algebras). Soon after I wrote my first A-paper I wrote to Jacobson 
asking whether generalized Jordan products had been used and he said "yes", in representa­
tion of Lie algebras. He gave me a reference to his own work. Two years ago in his retiring 
address at San Francisco he had expressions like the Lyapunov, or Stein transform. Now 
this appeared in Advances of Mathematics (1976), but is much more abstract, I have not 
studied it. [A more accessible thing for me is a paper by U . Hirzebruch (1974) published 
inLAA.J 
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! • Several years ago I became more than excited when I heard about a Minnesota report 
by Koecher linking Jordan products with positivity. I feel strongly that this, when trans­
ferred to generalized Jordan products, would give a wonderful insight into A. He gave an 
invited address at Nice (1971), and both Givens and I think there may be related ideas in it. I 
3.2 "Lyapunov's theorem"25 here refers to a result in the great memoir on 
the stability of solutions of differential equations-Lyapunov (1892, Ch. 2, 
section 20, Theorems 1, 2, 3). A special case can be formulated in terms of 
matrices [e.g. Gantmacher (1953, Chelsea Ed. vol. 2, p. 189, Theorem 3' and 
Note, p. 190)] and then the theorem deals, as in the case of the Gershgorin 
circles theorem, with the location of the spectrum of a matrix. But in this 
case the question concerns the location of the spectrum in the right (or left) 
half plane. Taussky's interest led to the papers Lewis-Taussky (1960) -and 
Taussky (1961a), which were quickly followed by papers by herself (1961b, r' 
1964a) and Taussky-Wielandt (1962) and by others: Givens' (1961) report, 
Ostrowski-Schneider (1962), and Carlson-Schneider (1963). After this, the 
papers become too numerous to list, though we must mention Taussky's 
general review of the state of the theory in her (1968a) Besant;on lecture, see 
also her surveys (which always add something new) (1967, 1968b). For the I' 
years 1972-7, I have counted 17 paper.s in this area in just one journal .. 
(perhaps not chosen entirely at random, for the journal is Linear Algebra 
and its Applications). The subject takes its importance not least from its f:': 

applications to other fields, e.g. control theory, see Barnett (1971). The 
generalizations of Lyapunov's theorem are often called "inertia theory", 
and the name derives from the fact that a theorem in Taussky (1961b) and 
the slightly more general, Ostrowski and Schneider (1962, Theorem 1) 
contain not only Lyapunov's theorem but also the even more classical 
Sylvester (1852) inertia theorem,26 which can be found in any textbook 
on matrices. For this reason we called Ostrowski and Schneider (1962, 
Theorem 1) the Main Inertia Theorem. 

It should be recorded that there were others who proved results closely 
related to the main inertia theorem, even before the work I have just de­
scribed. First, a similar result was known to M.G. Krein in the U.S.S.R. in 
the 1950s and though he circulated some notes, his work was not published 
till Daleckii and Krein (1970, Ch. I, §7). Krein's work influenced the theory 
of operators on Hilbert space, but as far as I can tell, did not lead to results 
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analogous to the many finite matrix theorems found in the West. Second 
Wielandt's (1951) report contained an extension of Sylvester's inertia theorem, 
and though Lyapunov's theorem was not mentioned by Wielandt, it is not 
hard to deduce the second part of the main inertia theorem from this result. 
His report, however, was not published till 1973, for a short-sighted (if not 
blind) referee rejected his paper. Thus the work in this area by Krein and 
Wielandt was hardly known in the decisive decade of the 1960s and Olga 
Taussky's influence was paramount. 

The debt that Ostrowski and I owe her is acknowledged in our (1962) 
paper, which was written before we knew of her overlapping (l961b): 

The equivalence of Lyapunov's theorem with some of the results of Arrow and McManus 
(958) was noticed by Olga Taussky (1961a), who let us see her unpublished manuscript 
and thereby sparked this (1962) investigation. 

When a "theorem closes in from various sides" (cf. 3.1), it is always 
possible to ask what might have happened "if": if Wielandt (1951) had been 
freely available in the 1950s, would someone have realized the link between 
Lyapunov and Sylvester inertia, and so would the main inertia theorem 
have been found several years earlier?27 But there is no doubt about what 
actually happened. It was Olga Taussky who was aware of the role of 
Lyapunov's theorem in differential equations in the 1950s, it was she who 
pulled together the various strands (Lyapunov, Sand D-stability), it was she 
who took the initial step beyond Lyapunov's theorem. In the initial stages 
of the revival of inertia theory, Olga Taussky's impact was clearly greater 
than that of any other single mathematician, and probably as great as that 
of all others combined. 

4. THE TAUSSKY UNIFICATION PROBLEM 

4.1 Throughout her mathematical career, Olga Taussky has posed and 
published many research problems, some of which have become well-known. 
On page 124 of the Bulletin of the American Mathematical Society (1958) 
there appeared three problems by Taussky, and we quote part of one of them: 
(Her examples 2 and 4 are omitted, but we have retained her numbering) 
A number of similar theorems are known for matrices with positive elements (positive 
matrices) and for positive definite symmetric matrices, but for which the available proofs 
are different. Can a unified treatment be given for both cases? Four examples of such 
theorems are: 

1. The dominant eigenvalue exceeds the diagonal elements. 
2 .... 
3. The inequality 

det i,k; 1 ••• • ,n(a;.) <: det i,k; 1, •• . ,P(ai.). deti,bp+ 1, •• • ,n(ai.) 

for matrices with non-negative minors of all orders and for positive definite symmetric 
matrices. 

4 .. .. 
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The problem will be called the Taussky unification problem by us. A similar 
problem appears in Taussky (J 962). As far as I know, Taussky has not 
published any solution to the problem, nor has she written papers which 
deal specifically with this problem, though she mentions it in a forthcoming 
(1978) review paper. 

Yet, her problem is famous, and has influenced much subsequent research. 
It should be observed that the problem is not specific, and cannot be solved 
by a "yes" or "no" . It is precisely the vagueness inherent in the problem 
that has led to its fruitfulness, for it is unlikely that any single theorem will 
ever be considered the solution of the unification problem. Thus there are 
several possible solutions, depending on which common features of the 
classes of matrices are considered. Two different solutions are presented in 
(4.3) and (4.4); there have been others. Perhaps the best solution of the 
Taussky unification problem is yet to come. 

4.2 Before we discuss the unification problem, we shall introduce some 
definitions, most of which are standard. In these A will always denote a 
square matrix with complex elements. We write <n) = {1, ... , n} and for 
<P S;; ct, fJ S;; <n) , A[ctlfJ] is the submatrix of A indexed by the rows ofct and 
columns of fJ (in their natural orders), while A(ct/fJ) = A[ct'lfJ'] where 
ct' = <n)/ct, fJ' = <n)/ fJ. Also A[ct] = A[ctlct] and A(a) = A(ctlct), in the case 
of principal submatrices. The determinant of a sub matrix will be called a 
minor. Further we say 

A is positive (A > 0): aij > 0, all i,j 

A is nonnegative (A ~ 0): a lj ~ 0, all i,j 

A is a Z-matrix: aij :( 0, i =P j, all i,j 

A is Hermitian: aij = ajl, all i,.i 
A is a P-matrix : all principal minors of A are positive 

A is a (nonsingular) M-matrix: A is a Z-matrix and a P-matrix 

A is positive definite: 

A is totally nonnegative: 

A is Hermitian and a P-matrix 

all minors of A are nonnegative 

A is totally positive: all minors of A are positive. 

The above terminology of P and Z-matrices can be found in Fiedler and 
Ptak (1962), who, however, denote the class of M-matrices by K. Of course, 
lL is elsewhere used to denote the integers but we have avoided this symbol. 
Also note that in Ostrowski (1937a) and many subsequent papers, M-matrices 
are allowed to be singular. 

Some other classes of matrices will be mentioned later. Observe that for 
the sake of simplicity our notation does not indicate the order of the matrices 
involved. When necessary, we write e" for the set of all (n x n) complex 
matrices. 
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4.3 For A E en and 4J cae <n) , the inequality in Part 3 of Taussky's 
unification problem can now be restated as 

det A :::;; det A[a]. det A(a). (HF) 

For positive definite matrices, this inequality is due to Fischer (1908), and 
we sh~ll call it the Hadamard-Fischer (HF) inequality for it generalizes the 
inequality 

det A :::;; all ... ann (H) 

proved by Hadamard (1893), and which is always calIed the Hadamard (H) 
inequality. In fact, an easy consequence, for all real matrices A, 

Idet AI :::;; S l S2 •.. s., 
where 

i = 1, ... , n, 

was conjectured in 1885 by Lord Kelvin (Sir William Thompson) and proved 
by Sir Thomas Muir that year, but Muir's work was not published28 till 
(1901 /2). By now there are many proofs of (H) or (HF) for positive definite 
matrices, and we shall not attempt to outline them, but see Ostrowski (1937b) 
or Bodewig (1953, Ch. I) for a proof based on the inequality between the 
geometric and arithmetic means. 

The inequality (HF) was known to hold for M-matrices, a consequence 
of Ostrowski (1937a, Th I). In the case of totally nonnegative matrices, see 
Gantmacher and Krein29 (1935, 1937) or (1960, Theorem 8, p. 108) for the 
special case a = {I, . .. , k}, 1 :::;; k :::;; n. To deduce the inequality for all a, 
4J c a £ <n) requires a little work, for the totally nonnegative matrices are 
not closed under simultaneous permutation of rows and columns, see 
Engel and Schneider (1976) for further details. 

As in the arts, in mathematics the past is encapsuled in the present, though 
in our field this has not been exploited to a sufficient extent. Thus, I shall now 
indulge in one of my favorite activities without further apology. That is, I 
wiII examine some classical proofs to see what results one may see there with 
hindsight; results which the author probably did not observe. In this case 
the hindsight is provided by Taussky's unification problem, and the first 
proof we shall examine is Hadamard's (1893) original proof of his inequality 
(H). Actually Hadamard proved an inequality for positive definite matrices 
intermediate between (H) and (HF), which we shall denote by (H'): 

det A :::;; all det A(I). (H') 

Hadamard's proof of (H') for positive definite (n x n) matrices: 

First observe that 

det A = all det A(1)+det B 
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where the matrix B is obtained from A by replacing all by O. So we must 
show that det B ~ O. The result is clearly true if the order of B is 1. Assume 
inductively that the result holds for matrices of order less than n. By means 
of "l'identite bien connue", 30 which turns out to be (a special case of) 
Sylvester's (1851) identity, 

det B.det B(l, 2) = det B(l) det B(2)-det B(112) det B(211). 

Some of the above submatrices are equal to the corresponding submatrices 
of A. Thus replacing B by A wherever possible, we have 

det B.det A(l, 2) = det A(l) det B(2)-det A(l12) det A(211). 

But det A(l, 2) > 0, det A(l) > 0, det B(2) ~ 0, by inductive assumption. 
Also det A(l12) is the conjugate of det A(211) since A is Hermitian, whence 
det A(l12) det A(211) ~ O. Hence det B ~ O. Induction completes Hadamard's 
proof of (H') for positive definite matrices. 

We now observe that in the above proof it is not necessary to assume that 
A is Hermitian. The following assumptions suffice: 

(WI) A is a P-matrix, 
(W2) the product of symmetricany placed almost principal minors of A is 
nonnegatived, 

where a submatrix of A[.Bly] is almost principal if .B = rx/{i}' y = rx/{j}, and 
4.J c rx c ( n) , i,j E rx, i i= j (viz. A[.Bly] is obtained from the principal sub­
matrix A[rx] by deleting the ith row andjth column, i i= j). Matrices satisfying 
(W2 ) were called weakly sign symmetric (w.s.s.) by Carlson (1967) and we 
shall adopt this name. The point of the above remarks is that there is no 
indication that Hadamard had observed that a w.S.S. matrix with positive 
principal minors satisfied his inequality, but that a proof of this result may 
essentially be found in his paper of (1893) (we define "essentially" to mean 
that any first year mathematics graduate student who is told the more general 
theorem could modify the proof in Hadamard's paper to prove the more 
general result). 

It is obvious that the class of w.s.s. P-matrices includes the class of totally 
positive matrices and the class of positive definite matrices. That the M­
matrices also belong to this class follows from the result that A -1 ~ 0 if A 
is an M-matrix [Ostrowski (l937a) our of Frobenius (1908)]. Since an M­
matrix A is also of the form A = sf-B, where B ;:, 0, the Hadamard-Fischer 
inequality for w.s.s. P-matrices constitutes a solution of part of Taussky's 
unification problem. . 

The inequality (HF) for w.s.s. P-matrices is in fact known, and appears 
to be due to Kotelyanskii (1953), see also Gantmacher and Krein (1960, 
Theorem 9, p. Ill) (indeed w.s.s. P-matrices are called GKK matrices by 
Fan (1967), in honor of these authors who thus proved a unification theorem 
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before the appearance of Olga Taussky's Bulletin problem). Thus the result 
had to wait 60 years for discovery, presumably because no one had examined 
Hadamard's proof with the Taussky unification problem in mind. One 
should bear in mind that Hadamard's inequality was not neglected in the 
years 1900-20; Muir (1930) contains II pages of reviews of papers devoted 
to this inequality. 

It is surprising, but the inequality does not hold for all w.s.s. matrices with 
nonnegative principal minors, see Carlson (1967) for an example. Thus, if 
we denote by W the set of all w.s.s. (n x n) matrices with nonnegative principal 
minors, it follows that W strictly contains the closure of the W.S.s. P-matrices, 
i.e. there is a matrix in W which is not the limit of a sequence of W.S.s. P­
matrices. This suggests a problem (first mentioned to me by Carlson) which 
is so far unsolved: Describe the structure of the set W. 

At this point it should be mentioned that the w.s.s. P-matrices can be 
characterized by an inequality which is more general than Hadamard­
Fischer: 

THEOREM [Carlson (1967)] Let A be a P-matrix. Then A is weakly sign 
symmetric, if and only if for all a,p, 4> c: a,p ~ <n), 

det A[a n Pl. det A[a U In ~ det A[a] . det A[P]. 

One direction of this theorem is based on results by Gantmacher and Krein 
(1960, p. Ill, Satz 9 and Folgerung), and Kotelyanskii (1953). Carlson's 
work which completes the results of these Russian mathematicians, certainly 
influenced by Taussky's (1958) research problem, which is mentioned in his 
bibliography. But beyond that, Carlson recalls that I brought the problem 
to Wisconsin from Oak Ridge in 1961, where I had been talking to Alston 
Householder, who certainly was in touch with Olga Taussky. There was 
also some input from Ky Fan [and indeed some subsequent work (1967) by 
him as well as by Fiedler and Ptak (1966) we have not discussed], and he 
knew of Olga Taussky's (1958) announcement, and is, in fact, mentioned in it. 
Further acknowledgement of the influence of Olga Taussky's research prob­
lem can be found in Bauer (1975). 

4.4 We now turn to Perron-Frobenius theory. In two papers Perron 
(1907a,b) published proofs of his famous theorem on positive matrices. 
Frobenius gave proofs of Perron's theorem in (1908, 1909). In (1912) he 
extended the theorem to nonnegative matrices in a highly nontrivial manner. 
We shall not further discuss the nature of these theorems, except that we 
shall examine Frobenius (1908) proof3 1 of part of the theorem. 

THEOREM Let P be a positive (n x n) matrix. Then P has a positive eigenvalue 
pep) such that adj (rl - P) > 0 for r ~ pcP). 
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Here adj (rJ - P) is the usual adjugate (adjoint). (Frobenius also proved 
that pep) is the spectral radius of P; but we ignore this important point.) 

Frobenius' proof The proof proceeds by induction. So let us suppose the 

result holds for pel). We put A = - P, At = tl + A and following Frobenius, 
we expand as he did in (4.3): 

det At = (t+all) det At+det Bt 
where (again) Bt is obtained from At by replacing t+all by O. But now 
Frobenius uses a special case of what has become known as the Schur 
complement formula: 

det B t = -x' adj B,(I)y 
where 

x' = (alz, ... , aln), y' = (az l , " .. , anI) 
and y' is the transpose of y. 

Observe that B,(l) = At(l). But by the inductive hypothesis pel) = - A(l) 
has a positive eigenvalue p(P(l)) such that for t ~ p(PI)), adj At(l) > O. 
Hence for such t, also x' adj At(l)y > 0, whence det B, < O. We deduce 
that for t = p(P(l)), 

det At < (t+all) det A,(l). 
If t = p(PI)), then det At(l) = 0 and so det At < O. But for large t, 
det At> O. Hence there is a pcP) > p(P(I)), such that for t = pcP), 0= 
det At = det (tI-P). 

This argument does not finish the inductive step, for one still has to prove 
that adj At > 0, when t ~ pcP). This Frobenius does by a similar expansion, 
but we shall not discuss the argument in detail. 

We exclaim that a crucial step in Frobenius' proof is Hadamard's inequality 
(H') this time for matrices of form tl-P, where P > 0 and t is sufficiently 
large. There is no difficulty in adapting Frobenius' argument to nonnegative 
matrices or to restate the conclusion for A = - P, i.e. for Z-matrices. By 
means of a slight modification of his argument, we may break it up into two 
steps (a) and (b). Thus 

a) Let A be a Z-matrix. Then 
(H't-): for all real t, and all a,cp caS (n), such that A,[a] is a P-matrix, 

and all i E a, 
det A,[a] ~ (Ha,,) det A,[a\{i}]. 

b) If A is a matrix with real principal minors which satisfies (H't-) then 
(WI) Every principal submatrix A[a] of A has a real eigenvalue, and 
(W2) If A(A[a]) denotes the least real eigenvalue of A[a] and . 

cp c fJ caS (n), then A(A[a]) ~ A(A[fJ]). 

Clearly the Hermitian matrices satisfy (H't-) by Hadamard's result. Hence 
we have in (b) a unification of Hermitian and Z-matrices of the type desired. 
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The totally positive matrices also satisfy (WI) and (w2), Engel-Schneider 
(1976), but the weakly sign symmetric matrices do not satisfy (WI) (they are 
not closed under addition of positive numbers, thus this unification is some­
what different from the previous one. 

It can in fact be shown that the converse of (b) also holds. Indeed one can 
prove somewhat more. First let us state the required form of the Hadamard­
Fischer inequality as 

(HF+) For all real t and alllX,/3 c IX c(n) such that A,[IX] is a P-matrix, 
and for all P,r/J c /3 c ex, 

det A,[ex] ~ det A,[f1] det A,[IX\/3], 
where, as usual, A, = A + tl. We also denote by (w) the logical conjunction 
of (WI) and (w2). 

THEOREM [Engel-Schneider (1976, Theorem 3.12)] Let A be a complex 
(n x n) matrix with real principal minors. Then the three conditions (H~), 
(HF+) and (w) are equivalent. 

4.5 Engel and I thought the class of matrices satisfying the Theorem I have 
just stated was sufficiently important to justify our naming it. Se we called 
a matrix A satisfying (w) (or, of course either of the other two equivalent 
conditions) an w-matrix. An w-matrix all of whose principal minors are 
nonnegative we called a r-matrix. It is gratifying to note that there have 
already been two further papers on wand r-matrices, viz. Engel and Varga 
(1977) and Varga (1977). Just why we chose those particular names mayor 
may not be a mystery : 

w - - r, 

and will be left unsaid. Instead I would like to describe what led to the 
invention (discovery, identification; the choice of words is left to the reader) 
of w-matrices. 

A day or so before the Gatlinburg23 meeting held at Los Alamos in June 
1972, Engel and I were driving through New Mexico, admiring the scenery. 
We were discussing our paper on improvements of the Hadamard-inequality 
for M-matrices [viz. Engel and Schneider (1973)] which-if my memory 
serves me right-was already largely written up. Suddenly Engel said to me 
"Do you realize that our main result for M-matrices also holds for positive 
definite matrices?" I had not observed this point, so naturally I replied: "Of 
course, that's obvious. All we use in our proofs is a property [like the one I 
have here called (w)] which is shared by both classes of matrices". In other 
circumstances I might have dismissed this observation, or considered it as a 
minor addition to our paper, but instead I added "I think we have a solution 
to Olga Taussky's unification problem". I should be mentioned that, with 
the unification problem in mind, for some years previously I had been 
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staring at Frobenius' (1908) proof, convinced that it "really" proved a 
theorem for a class of matrices much wider than the class of positive matrices. 
But every attempt to identify the class or the theorem had failed or resulted 
in triviality. At that moment in the car I was convinced that (w) provided 
the clue to the desired unification. It would be going too far to say that r 
saw clearly how this was to be done in detail but I was sure that it was only 
a matter of time and energy to formulate the right property and that the link 
between Hadamard-Fischer and Perron-Frobenius was closer than I had 
previously suspected. It was the sort of obscure but strong conviction which 
I have had on a few occasions before and since, which I cannot explain but 
has never been substantially wrong. Yet the decisive moment would have 
passed, perhaps leaving no trace, had Engel and I not been strongly sensitized 
to the possibilities of various kinds of unifications by long familiarity with 
Taussky's problem. It might seem presumptious of me to report at such 
length on the origin of one of my papers, for it is just one of about 30,000 in 
mathematics that appear each year. But I am describing a phenomenon that 
is not confined to just one or two instances. And that is why this tribute is in 
order, for to express the point in the pop-psychological terms of the 1970s: 
Olga Taussky's work has altered the consciousness of several generations of 
matrix theorists. Long may her influence continue. 

5. NOTES 

[1] In 1852, the term "algebra" was not strongly differentiated from "analysis". In the 
1850s, papers in pure mathematics published in Crelle's journal were classified as 
analysis, geometry or mechanics. Thus some of Grassman's work appeared as geometry 
while Cayley (1855) was classified as analysis. 

[2] The first occurrence of the word "matrix" appears to be in Sylvester (1850). This 
paper gives some insight into the immediate reasons that led Sylvester to abandon the 
then customary practice of employing the term "determinant" without differentiating 
between a square matrix and its determinant. After taking an intermediate position 
("Imagine any determinant set out under the form of a square array of terms"), he 
considers an "oblong arrangement of terms", is thus forced to make an explicit 
distinction and so introduces the word "matrix", cf. Kline (1972) for a similar remark. 
The old practice, however, of using "determinant" where any editor would now insist 
on "matrix" persisted through Frobenius [cf. Schneider (1977, Note 12)] and can be 
found as late as Ostrowski (1937a), who spoke of "M-determinant" in place of the 
now standard "M-matrix". 

[3] By convention, a date enclosed in parentheses refers to a publication. Normally the 
author's name precedes the date, but in order to avoid tedious repetition, occasionally 
the author's name is omitted. 

[4] So much so, that the Cayley-Hamilton theorem (a matrix satisfies its own character­
istic equation), which is stated in Cayley (1858), was written for a (2 x 2) matrix 

M = (~ ~) 
in the remarkable notation 

I a-M b 1=0. 
c d-M 
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[5] The first part of the quotation is taken from (!) the first sentence of the "apotheosis" 
which fonns the introduction to Sylvester's (1884) lectures on universal algebra 
(viz. matrix algebra). The first paragraph bf the "apotheosis" is perhaps the most 
wonderful piece of mathematical prose in existence. Some might call it wonderfully 
obscure because of its Hegelian dialectic andXoestlerian hierarchies. If the three pages 
of the introduction were abridged to a few sentences like "The definition of addition 
of matrices is due to A. Cayley (1858)", its historical and mathematical content would 
be preserved, but its deep insight into the process of mathematical abstraction would 
be lost. 

[6] Desplanques describes himself as "eleve Ii i ecole preparatoire de Sainte-Barbe, classe 
de M. Andre". 

[7] For a real matrix A the assumption aiy .;;; 0, i '" j, i,j = I, ... , n is not needed here, 
see a note by L. L. (presumably L6vy) in Desplanques (1886), Furtwangler (1936), 
Parodi (946) Taussky (1948, Theorem IV), and the related result, Rohrbach (1931, 
Theorem 2). 

[81 The three references in this paragraph were communicated to me by Olga Taussky, 
and the references to Nekrasov(1892) and Janet (1920) were sent to me by A.Ostrowski. 

[9] Other independent discoveries are Janet (1920, pp. 145-151) and Tambs- Lynch (1928) 
(his proof proceeds via differential equations). It is rather hard to discover which of 
the theorems we have listed Gershgorin was familiar with; there is a laconic reference 
in (1931) to "Levy's Theorem". In Figure 1 we interpreted this as Levy (1881). See 
also Bodewig (1953) for further information. 

[10] Olga Taussky's first published remarks on this topic are to be found in a discussion on 
scholarship examination questions in the Mathematical Gazette, see Ref. 17 in her 
(1949), and Ref. 15 and 16 for previous remarks by other authors. 

[11] Jack Todd, Olga's husband . 
[12] Price's review of Massonnet (1945) in Math. Rev. 8 (1947), 499 lists eight references 

to the diagonal dominance theorem, see a forthcoming note by Price in this-journal. 
[13] "In names a mystic virtue lies 

Concealed but clear to loving eyes, 
And sounds have influence to control 
The inmost workings of the soul." 

Before the reader replies " ... a rose by any other name ... " and dismisses the senti­
ments of this anonymous poem, quoted by Sylvester in his Laws of Verse (1870, p. 91), 
he might recall that there are many examples of the importance of names and acts of 
naming in legend and drama. For example, in Wagner's Walkiire (poem completed 
1852), there are two scenes of namegiving. In one of them the new name expresses a 
man's transfonned character and pewer ("Siegmund heiss' ich und Siegmund bin 
ich"). If, as many think, the roots of creativity in mathematics and the arts lie in the 
unconscious, then it is not absurd to look for specific instances of similar effects. 
However that may be, Sylvester's invariant twin, Cayley [the phrase is Bell's (1937, 
Ch. 21)] made a remark in (1855) which could hardly have been made before matrices 
were identified as separate objects of study: "II y aurait bien des choses Ii dire sur cette 
theorie de matrices, laquelle doit, il me semble, preceder la theorie des determinants." 

[14] Cayley (1858) follows the sentences we have quoted at the head of this article by a 
statement of the Cayley-Hamilton theoren, cf. Note 3. This beautiful and famous 
theorem has both an outward and an inward component. If we ignore the latter we 
obtain as corollary : The algebra of (n x n) matrices is an algebraic algebra of degree n. 
We have stated this corollary not merely to mystify the nonexperts by technical uses 
of "algebra" and "algebraic" [see Herstein (1968, p. 14 and p. 155) for definitions], but 
to emphasize that a weak form of the Cayley-Hamilton theorem has a natural formula­
tion in terms of the concepts of the next higher level of the hierarchy. I do not know 
if this could be said of any major theorem which is now regarded as matrix theoretic 
and which was proved before Cayley-Hamilton. The point is worth making for recently 
Cayley has rightly been dethroned from his position of the founder of all matrix 
theory, which he has held in mathematical tradition, cf. Hawkins (1975, 1977) for a 
detailed discussion. Sylvester's emphasis on Cayley (1858) has been blamed for the 
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historically shallow view frequently found in the literature such as Schneider (1964, 
p. ix): "The theory of matrices goes back to Sylvester and Cayley, particularly to 
Cayley's famous memoir of (1858)." But I believe the mistake is not Sylvester's, but 
that of his interpreters. For today we tend to use "matrix theory" to denote results 
with a strong inward component (and thus exclude results on algebras like Wedder­
burn's theorem), while the British-American school of the late nineteenth century 
used the term "theory of matrices" in an outward sense. This is most explicitly shown 
in Taber's (1891) identification of "theory of matrices" with the nascent field of linear 
associative algebras. To assume that Sylvester's (1884) lectures intended to include 
both inward and outward matrix theory, is to imply that he considered his deter­
minantal identity of (1851) and his law of inertia of (1852) as of no account, since 
these are not mentioned in his lectures. This difference in emphasis in meaning of the 
term should be kept in mind when reading Sylvester and Taber. 

[15] We suggest that "multiple quantity" as used by Sylvester has'a meaning very close to 
"mathematical halon", where "halon" is Koestler's name for a Janus-like entity and 
is defined in his (1967, p. 48) immediately following the quotation in section O. Further, 
the "forcible injection of addition" may be regarded as a bisociation, see Koestler 
(1967, p. 183) for definition. 

[16] The first occurrence of a matrix in v.d. Waerden's (1930, Vol. II) chapter on linear 
algebra is as the representation of a linear transformation, and in v. d. Waerden, 
Vol. I (groups, rings, fields, etc.) "matrix" is listed just once in the index-the reference 
is to an example. Contrast this with the chapter on matrices in what may be the last 
"old algebra" textbook-O. Perron (1927). 

[17] Unlike his successors, Wedderburn apparently considered his structure theorem 
part of matrix theory, for it may be found in Wedderburn's (1934) "Lectures on 
Matrices", but not in Gantmacher (1953) or any other modern textbook on matrices 
that I know. On the other hand, it would be surprising to find a textbook on non­
commutative rings which does not mention the theorem, see Artin (1950) and the 
Preface to Faith (1976) (a model of its kind) for the role of this structure theorem in the 
development of ring theory. 

[18] In his interesting survey of the rise of modem algebra, Birkhoff (1976a) writes, from a 
different point of view, of the "emancipation of algebra (from) proofs that depend 
on analysis" and lists some topics important in classical algebra that early modern 
algebra ignored (e.g. Sturm sequences). 

[19] It's impossible to reverse history, the fight has been won and lost; inward matrix 
theory is no longer in the mainstream of algebra, but it is a living branch of the tree of 
mathematics. For this reason I prefer the term "matrix theory" to its synonym "linear 
algebra"-which is often not linear, and rarely algebraic. But, in order not to overstate 
my case, it must be noted that there are traces of inward matrix theory left in graduate I 
algebra courses, for example see Jacobson (1974, p. 336-343) fora beautiful exposition of [ 
Sylvester's inertia theorem. Continuing in the vein of disclaimers, I am well aware that 
some of the most interesting results on matrices have both inward and outward . 
components. Cayley-Hamilton has already been mentioned; another such class of ! 
theorems are the property P theorems with which Olga Taussky has been associated, I' 
see Taussky (1957). Our formulation is based on Goldhaber and Whaples (1953): 
Let T be a subalgebra of knn where k is an algebraically closed field. Then the following 
are equivalent: (i) T/rad Tis conunutative (outward). (ii) Any pair of matrices in T 
have property P (outward-inward). (iii) The matrices of T may be simultaneously 
triangulated by a similarity (more inward than outward). 

[20] Here we are not asserting that matrix theory is disjoint from analysis or algebra. ' 
Rather we mean that there are matrix theoretic techniques and results which can be 
applied to problems in these fields and others [cf. Schneider (1967, p. ix) for a similar 
remark], and that this body of techniques and results constitutes a discipline because 
of their interrelations. We have a second meaning in mind, which we illustrate by an 
example. To regard the matrix version of Perron-Frobenius merely as a baby theorem 
in partially ordered topological vector spaces [for adult theorems see Schaeffer (1974)]1 
is to miss much that was latent in Frobenius (1908), see section 4 of this article. I 
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[21] For example, most of the 40 conditions equivalent to "A is a non-singular M-matrix" 
listed in Plemmons' (1977) survey have been found after 1950. Of course, M-matrix 
theory is just one branch of inward matrix theory. Also, U. G. Rothblum has counted 
about 100 papers referring to Perron- Frobenius in the 1960s. Many of these were in 
mathematical journals, but some are in journals devoted to econometrics, biometrics, 
ecology, operations research, computer science, genetics, nuclear engineering, 
statistics and physics. 

[22] Ledermann[1950] and Price [1951] also deserve mention, we do not include Gantmacher 
and Krein (1937) which was little known in the west before similar results appeared 
in the German translation of their book (1960). In recent years Karlin and others 
have heavily used the ideas of Gantmacher and Krein, e.g. Karlin (1968). 

[23] "Gatlinburg" refers to a sequence of meetings in numerical linear algebra, which 
take their name from Gatlinburg, Tenn., where they were held until A. S. Householder's 
retirement from Oak Ridge National Laboratory. For further information see House­
holder (1974). 

[24] See Remark 3 in Taussky (1961a). 
[25] In order to state the theorems discussed in this section, we first need a definition: 

DEFINITION Let A E Cnn, and suppose that A has rr eigenvalues in the open right half­
plane, v eigenvalues in the open left half-plane and 3 eigenvalues on the imaginary axis. 
Then the inertia of A is the triple 

In A = (rr,v,a). 

SYLVESTER'S (]852) INERTIA THEOREM (in part) Let H be Hermitian, and let S be non­
singular. Theil In (S" HS) = In H. 
LYAPUNOV'S (1892) THEOREM (matrix version) Let A E Cnn. Then there exists a 
positive definite H such that AH + H A" is positive definite if and only if In A = (n,O,O) 
(i.e. the spectrum of A lies in the open right half-plane) . 
THE MAIN INERTIA THEOREM [Taussky (1961b), Ostrowski-Schneider (1962)] (i) 
Let A E Cnn. There exists a Hermitian H such that AH+ HA* is positive definite if and 
only if In A = (rr,v,O) (i.e. A has no eigenvalues on the imaginary axis). 

(ii) If AH + HA" is positive definite, then In A = In H. 
[26] This containment is not explicitly mentioned before Carlson and Schneider (1963), 

though Sylvester's inertia theorem is used in the proof of the main inertia theorem in 
Ostrowski and Schneider (1962). The omission is curious, for the importance of the 
main inertia theorem is surely partly due to the fact that it contains two nineteenth 
century theorems which previously appeared merely rather similar in spirit. But in 
the early 1960s the impetus came from Lyapunov, not Sylvester. 

[27] Wielandt (1951) is referred to in Ostrowski and Schneider (1962), but the reference 
was inserted at a very late stage. 

[28] The story is told in Muir (909), where it is stated that a letter dated 1885 from Kelvin 
to Muir concerning the publication of the proof was shown to the President of the 
Royal Society of South Africa, but no cause for the delay in publication is given [see 
also Muir (1923, p. 32)]. Could it be that the inequality was so unrelated to the body 
of results on determinants that it seemed quite minor? 

[29] Contrary to our usual practice of giving references to first editions of books, in the 
date of Gantmacher and Krein (1960) we refer to the appearance of the German 
translation of the second edition. The first edition was published in the U.S.S.R. in 
1941, and I have never seen a copy. The second Russian edition appeared in 1950, 
and a typewritten English translation exists prepared by the U.S. Atomic Energy 
Authority. Weakly sign symmetric matrices do not occur in it. As noted in the preface 
of the German edition, there are some changes precisely in the section we are referring 
to; cf. also Kotelyanskii (1953) and Carlson (1967). 

[30] It seems unlikely that anyone would have called Sylvester's identity well-known in 
1950, or used it without reference or explanation. Fortunately, thanks to Gantmacher 
and Krein (1960) and Karlin (1968), its importance is again being recognized, see 
also Gragg (1972) and Householder (1972). The identity is one of a class known as 
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extensional identities can and be derived easily by means of Muir's (1883) meta­
theorem; cf. Aitken (1939, pp. 103-107). 

[31] This proof is very little known today, since most modem books follow Wielandt's 
(1950) proof, which is simpler, gives great insight into aspects of the theory and also 
lends itself to generalization, e.g. Barker and Schneider (1975), among others. Wielandt 
did us great service wirh his proof, but we have done ourselves disservice by ignoring 
Frobenius' proof, as, I hope, is shown by section 4.4. Frobenius' proof can be found 
in Gantmacher and Krein (1960), but as far as I know in no other post-1950 book 
which discusses Perron-Frobenius. 
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