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On the singular graph and the Weyr characteristic of an M-matrix 

DANIEL 1. RICHMAN and HANS SCHNEIDER 

Abstract. Let A be an M-matrix in standard lower block triangular form, with diagonal blocks Ai; 
irreducible. Let S be the set of indices a such that the diagonal block A"" is singular. We define the 
singular graph of A to be the set S with partial order defined by a > (3 if there exists a chain of 
non-zero blocks A,,;, A;i' .. . , AIi3" 

Let Al be the set of maximal elements of S, and define the p-th level Ap' p = 2, 3, ... , inductively 
as the set of maximal elements of S\(A I U . .. U Ap_I ). Denote by Ap the number of elements in Ap. 
The Weyr characteristic (associated with 0) of A is defined to be w(A ) = (WI' W2" •• , wh ) , where 
WI + ... + w p = dim Ker AP, p = 1,2, ... , and W. > 0, W.+I = O. 

Using a special type of basis, called an S-basis, for the generalized eigenspace E(A) of 0 of A, we 
associate a matrix D with A. We show that w(A) = (AI' ... , Ah) if and only if certain submatrices 
Dp•p + t ' P = 1, ... , h -1, of D have full column rank. This condition is also necessary and sufficient for 
E(A) to have a basis consisting of non-negative vectors, which is a Jordan basis for -A. 

We also consider a given finite partially ordered set S, and we find a necessary and sufficient 
condition that all M-matrices A with singular graph Shave w(A) = (AI" .. ,A.). This condition is 
satisfied if S is a rooted forest. 

1. Introduction 

In this paper, we study the structure of the elementary divisors associated with 
tl1e Perron-Frobenius root of a non-negative matrix P (see §2 for definitions). It is 
clearly equivalent to consider the elementary divisors associated with 0 of a 
singular M-matrix and for technical reasons we state our results for M-matrices. 
Let A be a singular M-matrix in standard lower block triangular form with 
diagonal blocks Aii irreducible (§2), and let S be the set of indices a for which 
A"" is singular. Then, there is a natural partial order or graph corresponding to S, 
which we call the singular graph of A. The general problem is this: To what 
extent is the structure of the elementary divisors of A (associated with 0) 
determined by the singular graph S? 
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Schneider [1956, Theorems 2 and 5] (also cf. Carlson [1963, Theorem 3], 
Rothblum [1975, Corollary 3.4]) proved two results in this area: 

(1.1) the elementary divisors are all linear if and only if S is trivially ordered; 
0.2) there is exactly one elementary divisor if and only if S is linearly 

ordered. 

Schneider also showed, by an example, that S alone does not always determine 
the elementary divisor structure. 

Cooper [1973, Theorem 3] proved 

(1.3) the number of linearly independent eigenvectors of A equals the 
number of maximal elements of S, if S is a rooted forest. 

This also generalized one direction of (1.1) and (1.2). 
In the present paper, we introduce level numbers (A t> .. . , Ah) for the singular 

graph of A and we describe necessary and sufficient conditions for the Weyr 
[1890] characteristic associated with 0 to be (A t> . . . , Ah) ' These conditions are 
stated (Theorem (4.7)) in terms of the singular graph of A and of the nullity of 
certain rectangular matrices which are induced by the action of A on a special 
basis for the generalized eigenspace E(A) (associated with 0). An equivalent 
condition (Theorem (6.5)) is that E(A) has a basis consisting of non-negative 
vectors which is a Jordan basis for -A. We deduce necessary and sufficient 
conditions (Theorem (5.6)) on a graph S that every M-matrix A with singular 
graph S should have Weyr characteristic equal to (A 1, ••• , Ah ). In particular 
(Corollary (5 .7)), this condition is satisfied when S is a rooted forest, and hence 
the results quoted from Schneider [1956] and Cooper [1973] are special cases. 

Our chief tool is the construction of a sequence of generalized eigenvectors 
with special zero properties (see §3). A special case of this construction was stated 
in Theorem 6 of Schneider [1956]. Rothblum [1975] has independently carried out 
the construction of the general case (and this came to our attention after we 
had obtained the main results of this paper) . We formulate the results explicitly, 
but the essentials may be found in the proof of Rothblum's main theorem, 
Theorem (3.1), Parts 1 and 2. We require somewhat finer structure than 
Rothblum and we do not use all the positivity properties of Rothblum's sequence 
of generalized eigenvectors until §6. By means of this construction we associate 
with each singular M-matrix A a strictly lower triangular matrix D which has the 
same Weyr characteristic and the same singular graph as A. Thus the problems 
we are considering may be discussed in terms of matrices of a much simpler type . 

2. Preliminaries 

Let IR be the real field and let IR mn be the set of all m x n matrices with 



210 D. J. RICHMAN AND H. SCHNEIDER AEO. MAlM. 

elements in IR. Let A E IRm". We use the following terminology and notation : 

A~O (A is non-negative) if aij~O, i = 1, ... , m; j= 1, .. . , n ; 

A> 0 (A is semi-positive) if A ~ 0 and A ~ 0; 
A» 0 (A is strictly positive) if aij > 0, i = 1, . .. , m; j = 1, ... , n. 

Then A ~ B will mean that A - B ~ 0, etc. 

Remark. Unfortunately, the terminology and notation in the subject of non­
negative matrices is not standardized, d. Gantmacher [1959], Schneider [1956], 
Carlson [1963], Cooper [1973], Rothblum [1975]. We have followed Barker 
[1973] (who discusses a more general situation), except that we have sacrificed 
economy for the sake of clarity by avoiding the variously used term "positive" 
without any prefix. 

Let A E [R"" . We will make continual use of a standard form for A developed 
by Frobenius [1912]. Since we require some details not found explicitly in the 
principal references, we sketch in the next few paragraphs a construction of this 
form (apparently first found in Doeblin [1938 , pp . 81-82]). On {I, ... , n} we 
define a relation by i - j if aij ~ 0, and then a transitive relationship by i > j if 
there exists a sequence i = i1 - i2 - ... - i, = j, where 1 ~ it( ~ n, q = 1, ... , r. 
We also define an equivalence relation on {I, ... , n} by i - j if either i = j or both 
i > j and j> i. We define a partial order on the set G of equivalence classes for -
by X> Y if X ~ Y and there exists i E X, j E Y such that i > j. The matrices 
A[X]=(ajj ), i, jEX, are irreducible (e.g., Varga [1962, p. 19]). 

Let S = {X E G: A[X] is singular}. Then S is partially ordered by the order 
induced from G. We define recursively the p-th level Ap of S, P = 1, . . . by 
Al = {X E S : X is maximal in S} and, if Ap - 1 has been defined, Ap = {X E S: X is 
maximal in S\(A 1 U . .. u Ap - 1)}' We let h be the largest integer such that Ah ~ cp, 
and call h the number of levels of S. 

It is easy to prove that we may label the equivalence classes Xl , .. . ,Xg of G 
to satisfy the following conditions: 

(2.1) If Xj>Xj , then i>j; 

(2.2) If Xi E A" Xi E Aq, r < q, then i > j. 

We may cite Harary [1969, Theorem 16.3] to prove (2 .1), and the proof of 
(2.2) is essentially the same as that of Schneider [1956, Theorem 1]. We shall 
assume that G has been labelled to satisfy the above conditions. 

Let ni = lXii, the cardinality of Xi' i = 1, .. . , g. We may apply a permutation 7f 

to {1 , ... , n} so that 1T(XI U ... U X,) = {1, ... , n i + . . . + n,}, r = 1, .. . , g. If P 
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is the corresponding permutation matrix and B = PApT
, then 

B11 0 0 

B2l B22 

B= 

where Bii = A[X;], i = 1, .. . , g. 
Thus B is in lower block triangular form with its diagonal blocks irreducible. 

Such a form is called standard form . We may assume that A is given in standard 
form since the properties we are investigating are invariant under A ~ PApT, 
where P is a permutation matrix. Further we shall now denote by i the equival­
ence class Xi E G. Thus S = {i E G: Bii is singular} and (2.1) and (2.2) become 

(2 .1)' If i>-j, then for i > j,l::=:;i, j::=:;g; 

(2.2)' If i E A" j E Aq, r < q, then i > j, for I::=:; i, j::=:; g. 

Remark. The existence of the standard form and its uniqueness up to permu­
tations of equivalence classes is due to Frobenius [1912] (cf. also Gantmacher 
[1959, Vol. II, p . 75] and Varga [1962, p. 46] who use the name "normal form") 
The partial order on G has also been defined in Schneider [1956], Carlson [1963], 
Cooper [1973], and Rothblum [1975]. Schneider and Carlson write Rij = 1 for 
i?: j, Rothblum following Karlin [1966, p. 41] says "i has access to j," and Cooper 
uses i::=:; j for our i >- j. 

We have constructed a standard form for an arbitrary A E/R M
• We shall 

consider only the case where A is a singular M-matrix. 

(2.3) DEFINITION. A matrix A E [R"" is an M-matrix if there is a non­
negative P E [Rn" and an r?: p(P) such that A = r1 - P. (p(P) is the Perron­
Frobenius root of P, e.g., Varga [1962, p. 46, Theorem 2]). 

Clearly an M-matrix A is singular if and only if p(P) = r in the above 
definition. 

The equivalence of Definition (2.3) with the original definition of M-matrix in 
Ostrowski [1937] is well-known, e.g. Schneider [1953], Fiedler-Ptak [1962]. See 
also Plemmons [1977] for many other equivalent conditions when A is non­
singular. 

Two fundamental properties of the standard form of a singular M-matrix A 
will be used subsequently without further remark. These are : 

(a) the diagonal blocks Ai;' I::=:; i::=:; g, are irreducible M-matrices. Several 
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standard results about irreducible M-matrices of importance to us are 
summarized in Lemma (3.2); 

(b) the blocks below the main diagonal , A ij, 1 ::s j < i::s g, are non-positive, i.e., 
-Aij;:::O . 

(2.4) Notations: 

(a) We shall generally denote elements of S by a, (3, . ... 
(b) For a E S, we define 

S(a) = {j3 E S: 13 >- a}. 

(c) Similarly G(a)={iEG:i>-a}. Also G*(a)=G(a)U{a}. 
(d) For a E S, we denote by L1(a) the minimal elements of S(a). More 

generally, for A s;; Ap , 1::s p::s h, we shall write .::1 (A) = U a EA L1 (a). 
(e) For a E S, G 1(a) = G*(a)\(U IlE..:I(a) G*({3». 
(f) Ap = IApl, p = 1, .. . , h. These numbers are called the level numbers of S. 

We may consider S as a directed graph with arcs given by (a,j3) such that 
[3 E .:1 (a). 

(2.5) DEFINITION. The partially ordered set (S, ~) is called the singular 
graph of the M-matrix A. 

Similarly, we may consider G as a directed graph with arcs given by (i, j) such 
that j is a minimal element of GO). 

Remark. Although results as early as Frobenius [1912, §1l] have natural 
formulations in terms of G and S, Cooper [1973] was apparently the first to 
describe these sets as graphs (cf. his y(A) and J.L(A) resp.). 

2.6 DEFINITION. Let T be a finite partially ordered set. By ~(T), we shall 
denote the set of all M-matrices (of all possible orders) whose singular graph S is 
isomorphic to T, i.e ., S becomes T after relabelling. 

0 0 
Example. Let -1 1 

·1 0 1 
0 -1 -1 0 

A= 0 0 0 0 0 
0 ·1 -1 -1 -1 1 

-1 0 0 0 0 0 0 
-1 0 0 -1 0 -1 0 0 
0 0 -1 0 0 -1 0 0 0 6 
0 0 0 0 -1 0 0 0 0 1 



Vol. 17, 1978 On the singular graph and the Weyr characteristic of an M-matrix 

The graph Gis: 

The graph Sis: 

G*(l) = {l, 2, 3,4,6,7,8, 9}, 

G(l) = {2, 3, 4, 6, 7,8, 9}, 

G I (1) = {l, 2, 3}, 

S(l) = {4, 7, 8, 9}. 
~(1) = {4, 7} 

A 1 ={7,8,9} A 2 ={4,5} 

If T is 

then A E 2t(T). 

10 

A3 = {l}. 

213 
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3. Construction of an S-basis for E(A) 

(3.1) Conventions: 

(a) We shall denote by A an M-matrix in W n
, and by S the singular graph of 

A. Also lSI = s. 
(b) We shall assume that A is in standard form, with g irreducible diagonal 

blocks. 
(c) The terms eigenvector, eigenspace, etc., will refer to the eigenvalue 0 of 

A. 
(d) If x E IR n, then x is partitioned conformably with the standard form of A, 

and we let Xi denote the i-th block component. Thus, 

i 

(AX)i = L Aijxj, 
j = l 

i = 1, ... , g. 

We begin by stating some standard results for irreducible M-matrices (see 
Ostrowski [1937], cf. Schneider [1956 , Lemmas 5 and 7]). If X is a vector, we use 
u(x) for the sum of the (actual) 1 x 1 components of x. 

(3.2) LEMMA. The following hold for an irreducible M-matrix BE IRnn. 

(a) If B is non-singular, then B - 1 » o. 
(b) If B is singular, then there exists a unique u E IR n such that Bu = 0 and 

u(u) = 1. Further, u» o. 
(c) If B is singular and Bx~O or Bx:sO, then Bx=O (e.g., Schneider [1956, 

Lemma 5]). 
(d) Let y, Z E IR" and suppose y > O. Then there exists c E IR and x E IR n such that 

and 

Bx = cy + Z (e.g., Schneider [1956, Lemma 7]). 

(3.3) Definition. We call a set {v" E IR n 
: a E S} an S-set (for A) if 

(a) u(v~) = 1, 
(b) vf=O if iltG*(a), 
(c) there exist scalars dfl" E JR, a, {3 E S, such that 

d fl" = 0 if (3lt S(o') 

Av" = - L dfl"vfJ. 
fleS 

(The empty sum is 0 by convention.) 

(3.3.1) 
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We shall say that the scalars {d/3a: a, {3 E S} are associated with the S-set 
{va: a ES}. 

Suppose S = {at, . .. , as} where at < a2 < . . . < as. This indexing will remain 
throughout the rest of this paper. 

Define D E IRss by 

and define for 1:5 p, q:5 h, the '\p x'\q submatrix 

Dpq = (d/3a
)QEA a E A • 

t-' 1" .q 
(3.3.2) 

For the sake of notational convenience, we shall index the entries of D by the 
elements of S. Thus we shall refer to d/3a as the ({3, a) entry of D, and, for a E Aq, 
the a-th column of Dpq will mean the column with entries (di3a

)(3EA
p

' etc. 
By (2.2)', 

Dpq =0 if P :5q. 

Observe that 

0 0 

D= 
Dh- 1,h 0 

the unusual order being natural for this problem. We call D the matrix associated 
with the S-set {va : a E S}. 

Let V be the matrix 

V = [va" . .. , vex.] E IR ns
• (3.3.3) 

Then (3.3.1) is equivalent to 

AV=-VD. (3.3.4) 
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In the example at the end of §2, we may write the elements of S in the order 1, 
4, 5, 7 , 8, 9. Then D must have the form 

1 4 5 7 8 9 

1 0: 0 , 0 
- ---t- --- - ---- -:- ----- ---- --, , o : , , 

+ : o 4 
5 , , 

----T---------~------------

7 +: 
8 

9 

, 
x : + , 
x : + 

+ o 
+ 

where' indicates a zero element, + a positive element, and x a real element. (In 
Lemma (3.8), we will show that d(3a > 0 if {3 E .1(a». 

The generalized eigenspace E(A) (associated with 0) of A consists of all x E [R " 

such that A "x = O. It is clear that dim E(A) = s. 

(3.4) LEMMA. Every S-set for A is a basis for E(A). 

Proof. Let {v a : a E S} be an S-set for A. We first show linear independence. 
Suppose there exist Ca E IR such that L aE S cava = 0 and some Ca f:. O. Let {3 = 
min {a: Ca f:. OJ. If a E S and a > {3, then {3e G*(a) , whence by Definition (3.3b) , 
v~ = O. Hence 0 = La « /l cav~ = c(3V~ which contradicts u(v~) = 1. We have proved 
linear independence. 

To show that va E E(A) for a E S, observe that if D is the matrix associated 
with {v a : a E S}, then since D is in strictly lower block triangular form, Dh = 0 
where h is the number of levels of S. Hence (_A)hV= VD h = 0, where Vis given 
by (3.3.3), and so A hV

a = O. Since dim E(A) = s, the result follows. 

In view of this Lemma, an S-set for A will be called an S-basis for E(A) . 
Before proving the existence of S-bases, we will exhibit some of their properties. 

Let {v a: a E S} be an S-basis for E(A). For kEG, (3.3.1) is equivalent to 

AkkV~+(dkav~) = Yk - L d (3av~ , (3.5) 
/l ES(a ),/l < k 

where the term in parenthesis occurs only if k E S and where 

k- l 

Yk = - L Akjvj, (3.6) 
j=a 

with the summation starting at j = a since vi = 0 for j < a. 
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The following is also a consequence of Theorem 2 [Schneider, 1956], and we 
include a proof for the sake of completeness. The notation used here was 
introduced in (2.4). 

(3.7) LEMMA. Let {va: a E S} and {va: a E S} be S-bases for E(A). Then, for 
each a ES, 

(a) Vk»O, for kEG1(a), 

(b) Vk=Vk, for kEG1(a) . 

Proof. Let a E S. The proof is by induction on k. Observe that a is the smallest 
element in the natural order of G 1(a). Hence, for k = a, (3.5) reduces to 
Aaav~ = 0, and (a) and (b) follow from Lemma (3.2b) and Definition (3.3a). 

So suppose that k > a and that (a) and (b) hold for a, ... , k -1. If kEt G 1(a), 
the assertion is vacuously satisfied. Assume k E G1(a). Then Akk is non-singular 
and thus A k"l »0. Let as j S k - 1. If H G(a), then vj = ° and so AkjVj = 0. If 
jEG(a), then jEG1(a) and so -Akjvj::::O by induction. Further, since kEG1(a), 
there is an i, asisk-1, such that -Ak'>O. Hence Yk2=-Ak,vf > O. 

Note that k < (3 for (3 E S(a). Hence (3.5) reduces to AkkVk = Yk· Thus vk = 

Ak"lYk »0, and we have proved (a). 
To prove (b), let Yk = - If':-~ AkjVj. Our inductive assumption and Definition 

(3.3b) give Yk=Yk and hence vk=Ak"lYk=Ak"lYk=Vk'. The inductive step is 
complete and the Lemma follows. 

(3 .8) LEMMA. Let {va: a E S} and {iia : a E S} be S-bases for E(A) with 
associated scalars {d 13a : (3, a E S} and {d 13a : (3, a E S}, respectively. Then for each 
aES, 

(a) dya > O, for 'YEL1(a), 

(b) dya =dya, for 'YEL1(a). 

Proof. Let 'Y E L1 (a) and suppose a S j < 'Y. If Ayjvj ~ 0, then a <. j <. 1', whence 
j E G1(a) and it follows by Lemma (3.7) that - Ayjvj:::: 0. Hence for all j, as j < 1', 

we have - Ayjvj 2= 0. Further there exists an i E G1(a), as i < 'Y, such that - Ay, > 
0. Hence Yy > 0. Since 'Y E L1(a), 'YEt G*«(3) for (3 E S(a)\{,.}. Hence v~ = ° and 
(3.5) becomes 

If d ya sO, then Ayyv~ > 0, which contradicts Lemma (3.2c). Therefore d'l'a > 0. 
This proves (a). 
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Observe that by Lemma (3.7), Yy = Yy since Ayjvj = 0 unless j E G 1(a). Hence 

and so A-yy(v~- ii~) = (d ya 
- dya)v~ since ii~= v~ by Lemma (3.7b). Thus Lemma 

(3.2c) gives dya 
- d ya = 0, and this completes the proof of (b). 

In order to show the existence of an S-basis for E(A), we first prove an 
extension lemma. 

(3.9) LEMMA. Let 1 E S and suppose that for (3 E S(1), there is a vector vf3 E IR" 
such that 

v~» 0, 

and 

v~ = 0, if kt G*({3). 

Then there exist U E IR" and scalars cf3 for (3 E S(1) such that 

(a) O-(U1) = 1, 

(b) Uk = 0 for kEt G*(1), 
(c) Au = -Lf3 E S(l) cf3v f3. 

Proof. We define the block-component vectors Uk, k = 1, . . . , g and the scalars 
ck

, k E S, by induction on k. Observe that (c) is equivalent to 

AkkUk + (CkV~) = Yk - L cf3v~, 
f3 ES(l),f3 < k 

where the parenthesis indicates that this term occurs only if k E S(1), and 

k - 1 

Yk = - L Akjuj' 
j = l 

(3.9.1) 

(3.9.2) 

For k = 1, let U1 be the vector satisfying All U 1 = 0 and o-(u1) = 1. Let k > 1 
and suppose that u1, • .. , Uk-1 and cf3, (3 E S(l), (3 < k, satisfy (3 .9.1) and condition 
(b). There are two possibilities: either kEt G*(l) or k E G(l). 

Suppose kEt G*(1). In this case, kEt S(l) and we define Uk = 0, which satisfies 
(b). Let 1 ~ j ~ k -l. If j E G*(1), then A kj = O. If jt G*(l), then u j = O. Hence 
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Yk = O. Further, if (3 E S(1), then kEt G((3), and so v~ = O. It follows that Uk satisfies 
(3.9 .1) . 

Otherwise, k E G(1). If kt S, then Akk is non-singular, and we may solve 
(3.9.1) for Uk' If kES, then kES(1) , and by Lemma (3.2d) , since v~ » O , there 
exist Uk and ck satisfying (3.9 .1). This completes the inductive step . 

Remarks. (i) Observe that S(1) may be empty in Lemma (3.9). In that case, 
Au=O. 

(ii) If S = </>, then A is a non-singular M-matrix, and E(A) = {a}. We consider 
the empty set to be an S-basis for E(A) . 

Our next theorem summarizes results on S-bases. For a list of properties of 
S-bases, Definition (3.3) should be adjoined to Theorem (3 .10, II and III). 

(3.10) THEOREM. Let A be an M-matrix with singular graph S. 

(I) There exists an S-basis for the generalized eigenspace E(A) (associated 
with 0). 

(II) Let {v" : a E S} be an S-basis for E(A), with associated scalars 
{d 13" : a, {3 E S}. Then, for a E S, 

(a) vk » 0, forkEG 1(a), 
(b) d 13"> O, for (3EL1(a). 

(III) Let {v" : a E S} also be an S-basis for E(A) with associated scalars 
{d13" : a, {3 E S}. Then, for a E S, 

vk = Vk, for k E G1(a), 
d13" = d 13", for (3 E L1(a). 

Proof. In view of Lemmas (3 .7) and (3.8), we need only prove (I) . The proof is 
by induction on g, the number of elements in G. If g = 1, then A is irreducible, 
and the result follows immediately from Lemma (3.2a). So assume g > 1, and let 
B = (Ai;), i, j = 2, ... , g. 

Then the singular graph of B is S' = S\{I}, and by induction there exists an 
S'-basis {(vi), i = 2, ... , g : a E S'} for E(B). 

We consider two cases. If 1 t S, put vi = 0 for all a E S. Then {v" : a E S} is an 
S-basis for E(A). 

If 1 E S, we put v~ = 0 for {3 E S' . The vectors v13, {3 E S(1), satisfy the hypothesis 
of Lemma (3.9). So let u and c13, (3 E S(I), be given by Lemma (3.9). Put Vi = U, 

d13 l =c13, for (3 ES(I), and d13 I =O, for (3 ES\S(1) . Then {v" : aES} is an S-basis 
for E(A) with associated scalars {d 13" : a, {3 E S}. 

Remark. If DE~ss is a matrix associated with some S-basis for E(A), we may 



220 D. J . RICHMAN AND H. SCHNEIDER AEQ. MATI!. 

refer to D as an S-matrix for A. Observe that if D is an S-matrix for A, then, by 
Theorem (3.10 III), the submatrices D p,P+l' P = 1, ... , h-1, do not depend on 
the choice of S-basis. 

(3.11) COROLLARY. Let D be an S-matrix for A. Then, for p = 1, ... , h -1, 
each column of Dp,p+ l is semi-positive. 

Proof. By Theorem (3.10 II) and Definition (3.3c), D p,p+l2= O. By the defini­
tion of Ap+1, for each a E Ap+1 , .1(a) n Ap;c cp and so each column of D p,p+l has a 
positive entry. 

4. Applications of S-bases for E(A) 

(4 .1) LEMMA. Let D be an S-matrix for A. If P > 0 and DP is partitioned in 
the same manner as D, then: 

(a) (DP)rq=O forr>q-p,andq, r=1 , ... ,h; 
(b) (DP)q_ p,q 2= 0, and each column of this matrix is semi-positive, if p < q, 

q = 1, ... , h. 

Proof. The proof is by induction on p. For p = 1, the result follows by 
Corollary (3.11). 

So suppose the result holds for p. By inductive hypothesis, Dr! = 0 if t:5 r, and 
(DP),q = 0 if t> q - p. Hence, 

, =1 t=r+1 

It follows that (DP+l) rq = 0 if r> q - p - 1 and (a) is proved. 
Further, if q - P -1> 0, 

and so (DP+l)q_p_l ,q2= 0 by inductive assumption. Let a E Aq• Observe that the 
inductive assumption implies that there is a {3 E Aq _ p such that (DP)/3a > 0, where 
(DP)/3a is the ({3, a) element of DP. There exists 'Y E Aq_ p- 1 such that d'Y/3 > O. 

Hence, (DP+lpa 2= d'Y/3(DP)/3a > 0, and so the a-th column of (Dp+l)q_P_l ,q has a 
positive element. Thus (b) is proved. 

We define the integers wp(A) (usually written as wp) by WI + ... + wp = 
dim Ker AP, p = 1, 2, .... It is well-known (e.g., Weyr [1885], [1890, pp. 184-
186]) that wp 2= 0 and WI2= W2 2= W3:2= •• '. The integer k such that Wk > 0, but 
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Wk + 1 = 0, we call the index of A. Thus k is the smallest integer for which 
Ker A k = E(A). The sequence (W1> ••• , Wk) is called the Weyr characteristic of A 
(associated with 0), e.g., MacDuffee [1933, p. 73]. 

The following corollary is also proved in Rothblum [1975, Theorem 3.1, Part 
2]. 

(4.2) COROLLARY. Let A be an M-matrix with singular graph S, and let h 
be the number of levels of S. Then the index of A is h. 

Proof. By (3.3.4), -AV= VD, where the columns of V are an S-basis for 
E(A). By Lemma (4.1), (_A)hV= VDh=O, but (-A)h-IV= VDh- I,cO since V 
has full column rank and Dh- I;c O. 

In view of this Corollary, the Weyr characteristic of A is (WI' ... , Wh)' We 
now begin Ollr investigation of the relation of the Weyr characteristic to the 
sequence (AI, ... , Ah), where Ai = IA;j. 

Remark. Let V be the matrix of an S-basis for E(A), and let 

f= 

be partitioned conformably with an S-matrix D for A. By Lemma (4.1a), 
(DP),q=O for q=l, ... ,p, and r=l, ... ,h. If fp +l=O, ... ,fh=O, then 
(-A)PVf = VDPf = 0 since (DPf), = I~= I (DP),qfq = 0, and so the vector Vf E 
Ker AP. 

Let Ep={Vf:fEW and fp+I=0, ... ,fh=0}=span{v":exEA1U ... UAp}. 
Then observe that 

Ep~Ker AP; 

dim Ep = A I + ... Ap. 

(4.3) 

(4.4) 

Also note that the space Ep is independent of the particular choice of S-basis, 
since we can define B as the matrix obtained from A by replacing A"" by the 
identity matrix of the same order, for ex E Ap+l U ... U Ah. Then 
{va: ex E Al U ... U Ap} is a (AI U ... U Ap)-basis for E(B), whence Ep = E(B). 
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(4.5) COROLLARY. Let A be an M-matrix with singular graph S and with 
Weyr characteristic (Wb' .. , Wh)' Then: 

(a) WI+'" +wh=s=A I+'" +Ah, i.e. Eh=KerAh; 
(b) WI+ ···+wp:s:;s - h+p, forp=l, . .. ,h ; 
(c) WI + ... + wp 2: AI + ... + Ap, for p = 1, ... , h. 

Proof. 

(a) Clear, since both sums equal dim E(A). 
(b) Follows from Wq 2: Wh 2: 1, for q = p -1 , ... , h. 
(c) Immediate from (4.3) . 

It is interesting to investigate when equality occurs in Lemma (4.5c). 

(4 .6) LEMMA. Let A be an M-matrix with singular graph S and with Weyr 
characteristic (WI> " " Wh), and let D be an S-matrix for A. Let 1:s:; p < h. If 
Al + ... + Ap = WI + .. . + wP' then Dp,p+1 has full column rank. 

Proof. Suppose Dp,p + 1 does not have full column rank. Then there exists 
r = [0, ... ,0, tJ+I' 0, ... ,0] where fp+1 "I- ° and Dp,p+dp't l = 0. Thus (Df\ = 0, 
q=p, . .. ,h. Hence VDfEEp _1 and so by (4.3), VDfEKerAP- t, whereby VfE 
Ker AP. But Vfe Ep. Thus by (4.4), WI + ... ' + wp > Al + . .. + A". 

(4.7) MAIN THEOREM. Let A be an M-matrix with singular graph S, and 
I let the Weyr characteristic of A (associated with 0) be (Wb" " Wh)' Further let 
(AI, . .. , Ah) be the level numbers of S, and let D be an S-matrix for A. Then the 
following are equivalent: 

(i) Wq = Aq, q = 1, . .. , h; 
(ii) Dp,p + l has full column rank, p = 1, ... , h-1. 

Proof. (i) =? (ii) Immediate by Lemma (4.6). 
(ii) =? (i) Assume (ii) does not hold. By Lemma (4.5c), there is a 

smallest integer p for which WI + . . . + wp > AI + . . . + Ap. Hence, by (4.3) and 
(4.4), Eq = Ker A q, for q = 1, ... ,p -1 , and Ep"l- Ker AP. Let v E Ker AP\Ep' Let 
{va : ex E S} be an S-basis for E(A) and let V be the matrix as in (3.3.3). Then by 
Corollary (4.5a) , v = Vf, where for some r, p < r ~ h, fr+l = 0, . .. , fh = 0, but fr'l- 0. 
Thus (Df)r- l = Dr- I,.!r' But - VDf= Av E Ker AP- I = Ep- b whence (Df).- l = O. 
Hence Dr- l,rfr = O. Since fr'l- 0, Dr- I,r does not have full column rank. 

Remark. Result (1.1) in the Introduction corresponds to the case h = 1. Result 
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(1.2) corresponds to the case Ap = 1, P = 1, ... , h, in which case D p.p+. is a 
positive scalar for p = 1, ... , h - 1. 

5. The class of M -matrices with singular graph S 

(5.1) DEFINITIONS. 

(a) Let a E ~m and let a?c O. We define the (0, 1) vector 1T(a) E ~m by 

1T(a)j = 1, if aj > 0, 

7T(a)j=O, if aj=O. 

(b) Let a i E~m, a i ?cO, i = 1, ... , I. We call a\ ... , a l combinatorially depen­
dent if either a i = 0, for some i, 1:::; i:::; I, or there exist non-empty disjoint 

subsets <1>., <1>2 of {1, ... , I} such that 1T(IiE4>, a i
) = 7T(IiE4>2 a i

). Otherwise, 
we call a·, .. . , a I combinatorially independent. 

LEMMA. Let al, . . . ,a' be non-negative vectors in ~m. The following are 
equivalent: 

(i) a 1
, ••• , a I are combinatorially dependent; 

(ii) There exist linearly dependent non-negative b l
, ... , b l in ~m such that 

1TW) = 7T(at i = 1, . . . , l. 

Proof. (ii) ~ (i). Suppose that (ii) holds for b l, ... , b l
• 

If bi = 0, for some i, then a i = 0 and the result follows. So assume that 
b 1 , •.• , b l are semi-positive, and that 

, 
L /Libi = 0, /Li E IR and some /Li'l- O. 

i = l 

Let 

<1>. = {i E {1 , ... , I}: /Li >O}, 

<1>2 = {i E{l, ... , l}: /Li <OJ. 

Since bi > 0, 1:::; i:::; l, <1>1 and <1>2 are non-empty. Then 

L /Li bi = L (-/LiW, 
ietb. ie..p2 
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whence 

and so 

(i) =} (ii). Suppose (i) holds. If a i = 0 for some i, then a1
, ••• , a I are 

themselves linearly dependent. So suppose there exist non-empty disjoint subsets 
<1>1 , f/J2 of {1, . .. , I} such that 

Let d = IiE~\ a i 
- Ii E~2 a i

• We now define bI, ... , b' in ~ m. Let l=sj=s m. There 
are three possible cases: 

CASE I. If dj = 0, then we put bJ = aj, i = 1, . .. , /. 

CASE II. If dj > 0, then there exists r E <1>1 depending on j such that aj> O. 
Put bj=aj+dj and bJ=aJfor i¥r, i=l, . . . ,I. 

CASE III. If dj < 0, then there exists q E <1>2 depending on j such that a7 > O. 
Put bJ=af-dj and bj=aJfor i¥q, i=l, ... , I. 

It is easy to check that bi 
2>: 0 and 7T(b i

) = 7T(a i
), i = 1, . . . , I. Clearly IiE tZ> \ bi = 

Li E tZ>2 bi, so b 1, • •• , b l are linearly dependent. 

Remark. Let A E IIl mn and suppose A 2>: O. We define ccr A (the combinatorial 
column rank of A) to be the maximal number of combinatorially independent 
columns of A The combinatorial row rank of A (err A) is similarly defined. (See 
CUlik [1960] for a somewhat different concept which applies to arbitrary A) 

If A E Ill"", Lemma (5.2) implies that ccr A = n if and only if crr A = n. This is 
false for a related definition of another type of column and row rank (see 
Plemmons [1971]). However, P. M. Gibson has provided us with the following 
interesting example of a rectangular matrix A for which ccr A ¥ crr A. 

EXAMPLE. Let A E lillO,S be a (0, l)-matrix defined thus: 

(a) each row of A contains three 1 's and two O's; 
(b) no two rows of A are the same. 

Thus the rows of A are all combinations of [11100]. 



Vol. 17, 1978 On the singular graph and the Weyr characteristic of an M-matrix 225 

Let A be obtained from A by deleting one row. The following properties are 
of interest: 

(i) ccrA=5; 
(ii) For any non-negative b E ~1O, ccr[A, b] = 5; 

(iii) ccr A = 4 ; 
(iv) ccr A = 4. 

Observe that if a I, • . • , a 5 are the columns of A (in any order), then 
7T(a l +a2

) has precisely one 0, and 7T(a 3 +a4 +a 5
) has no O. The proofs of (i)-(iii) 

rest on this observation. To prove (iv), observe that if B is any 5 x 5 submatrix of 
A, then (iii) implies that ccr B<5, and hence err B<5 (see . previous Remark) . 
Then (iv) follows by noting that the rows of 

[ ~ ~ ~ ~ ~J 
o 1 101 
10011 

are combinatorially independent. 

(5.3) LEMMA. Let A be an M-matrix with singular graph S and let D be an 
S-matrix for A. Let 1 ~ P < h. Then the following are equivalent: 

(i) There do not exist non-empty disjoint subsets 4>1> 4>2 of Ap+l such that 

(ii) The columns of Dp,p+] are combinatorially independent. 

Proof. Note that by Lemma (3.8a), for any 4> S;; Ap+ l and {3 E A p, L" E<1> d f3" > 0 
if and only if (3 E .::1(4)). We denote by d" the a-th column of D p,p+l' Observe that 
d" > 0 for a E Ap +], by Corollary (3 .11). 

(i) =? (ii). Suppose that the columns of D p,p+l are combinatorially dependent. 
Then there exist non-empty disjoint subsets 4>1 , 4>2 of A P+l such that 

7T( L d") = 7T( L da
) . 

a e <Pl ae4»2 

Hence for {3 E Ap, 

L d f3a > 0 if and only if L d f3" > 0, 
a E CPl ae 4>2 
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and so il (4)1) n Ap = il (4)2) nAp. 
(ii) ~ (i) follows by reversing the above steps. 

Let S be a non-empty finite partially ordered set and let s = [Sr. We determine 
conditions on S such that for every M-matrix A with singular graph S, the Weyr 
characteristic of A is (AI> ... , Ah ), where Ap is the pth-Ievel number of S. 

We remark that 2l(S), defined as in §2, is always non-empty, for we may define 
an M -matrix A E IR" as follows: 

For a , {3 E S, 

al3a <0, 
a13a ::; 0, 

a13a = 0, 

if {3 E il ( a); J 
if (3 ES(a); 

if (3eS(a). 

Then S is the singular graph of A, i.e., A E 2l(S). 

(5.4) 

Further, if ea
, a E S, is the s x 1 unit vector with e~ = 1 and e~ = 0, {3 'I a, then 

{eO< : a E S} is an S-basis for E(A) with D = -A as the corresponding S-matrix. 
We also remark that if A is a matrix in W(S) and D is an S-matrix for A, then 

by Lemma (3.8), for aEAp + 1, (3EAp, l::;p<h, d 13a >O if and only if (3Eil(a) . 
Hence '7T(Dp,p+l) depends on S only, and not on A, where for O::;CE~mn, 

'7T( C) E IR mn is defined by '7T( C)jj = 1 if Cjj > 0, '7T( C)jj = 0 if Cjj = O. 
Let A E 2l(S) n~nn. If BE IR m

", is any non-singular M-matrix, then observe 
that B E9 A is a matrix in 2l(S) n IRm + n,m+n. 

(5.5) LEMMA. Let S be a non-empty finite partially ordered set with level 
numbers (AI, ... , Ah)' Let 1::; p < h. Suppose that for all A E 2l(S), 
wl(A) + ... + wp(A) = Al + ... + Ap. Then there do not exist non-empty disjoint 
subsets 4>1, 4>2 of Ap+l such that 

Proof. Suppose there exist non-empty disjoint subsets 4>1> 4>2 of Ap+l such 

that il(4)1) nAp = il(4)2) nAp. Let A be an M-matrix with singular graph S. 
If fJ is an S-matrix for A, then by Lemma (5.3), the Ap x Ap+1 matrix Dp,P + l = 
(d13a

)l3 e Ap.ae!\p+l' has combinatorially dependent columns which we denote by 

da 
= (dl3a )I3 EAp' Hence by Lemma (5.2), there exist scalars dl3o< ~ 0, {3 E Ap, 

a E Ap+l> such that the vectors {d a
: a E Ap + 1} are linearly dependent and 7T(d a

) = 

'7T(da
), for a E Ap + 1, where da is the vector (d13a

)I3 EAp' 
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Define A E\Rss to satisfy (5.4) and a{3a = _d{3a, for {3 E Ap, ex E Ap+ I' Let 
D = - A. Then by the remarks preceding this Lemma, D is an S-matrix for A and 

Dp,p +l = (d{3<» {3 eA
p
,ae A

p
+

1
' Thus Dp.p + 1 does not have full column rank, and by 

Lemma (4.6), AI +··· +Ap;ewI(A) +'" +wp(A). 

(5.6) THEOREM. Let S be a non-empty finite partially ordered set with level 
numbers (A h • • . , Ah ) , and let ~(S) be the set of all M-matrices whose singular graph 

is S. Then the following are equivalent: 

(i) For all A E ~(S), wq(A) = Aq, q = 1, .. . , h. 
(ii) For all p, p = 1, .. . , h - 1, there do not exist non-empty disjoint subsets <1>1, 

<1>2 of Ap+ l such that 

Proof. (i) ~ (ii) . Immediate by Lemma (5.5). 
(ii) ~ (i). Let A E ~(S) , and let 1 $ P < h. If D is an S-matrix for A, then by 

Lemma (5.3) the columns of D p,P+ 1 are combinatorially independent, and hence 
by Lemma (5.2), also linearly independent. Thus (i) follows by Theorem (4.7). 

EXAMPLE. Let S be 

Then S satisfies condition (5.6ii), and hence any matrix A E ~(S) has Weyr 
characteristic (3, 3). 

(5.7) DEFINITION. Let S be a finite partially ordered set. Then S is called a 
rooted forest if, for each ex E S, the set {{3 E S: {3 sex} is linearly ordered. 

Cooper [1973, Theorem 3], who used the term inverted tree for our rooted 
forest, proved that if S is a rooted forest and A E ~(S) then W1 (A) = A1 . More 
generally we have: 

(5.8) COROLLARY. Let S be a rooted forest. If A E ~(S), then wp(A) = Ap for 
p = 1, .. . , h. 

Proof. It is enough to show that S satisfies condition (5.6ii). So let 1 $ P < h 

and let $]0 $2 be non-empty subsets of Ap+1' Let ex E.1 ($1) n.1( <1>2) ' Since 
{{3 E S: {3 :$ ex} is linearly ordered by hypothesis on S, there exist {3t E <1>1, {32 E $2 

with either {3t?:'{32 or {32?:.{31· But since {31 ' {32EAp+1' it follows that {31 = {32' 
Hence $1 and $2 are not disjoint. 
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Remark. Let S be a non-empty finite partially ordered set, and define S* to be 
the set S with the reverse partial order, viz., a ~ * {3 if as {3. It is easy to see that 
A E ~(S) if and only if ATE ~(S*). Hence, if S* satisfies condition (5.6ii), then 
(w1(A), ... ,wh(A))=(w](AT

), ••• ,wh(A T ))=(A!, . .. ,At) where A: is the p-th 
level number of S*, p = 1, ... , h. For example, if 

s= then S* = 

and so the Weyr characteristic of any A E ~(S) is (3, 1, o. 

6. Semi-positive Jordan bases 

In this section we complete our main theorem by considering pOSItIvIty 
properties of eigenvectors and generalized eigenvectors. In the case of eigenvec­
tors, this subject has a long history. By combining some results of Frobenius 
[1912, p. 563] with Schneider [1956, Lemma 1] one sees that the number of 
linearly independent semi-positive eigenvectors of the M-matrix A (belonging to 
0) is AI. This result is clearly implied by Carlson [1963, Lemma 2]. Further, 
Carlson [1963, Theorem 2] gives a complete description of all non-negative 
solutions x of Ax = c, where c ~ 0, in terms of the graphs G and S. From 
Carlson's theorem many special results are easily derived. For example, the follow­
ing are equivalent: 

(i) Ker A contains a strictly positive vector; 
(ii) Ker A can be spanned by strictly positive vectors; 

(iii) S consists precisely of the minimal elements of G. 

(Compare with Gantmacher [1959, Vol. II, p . 77, Theorem 6] and see Cooper 
[1973, Theorem 2(ii)], where, however, the result is not stated correctly.) 
Rothblum [1975, Theorem 3, Part 1] has proved that E(A) has a basis consisting 
of semi-positive vectors. A precise version of Rothblum's result is stated as 
Theorem (6.2) below after a necessary definition. 

(6.1) DEFINITION. Let {v"'ElRn:aES} be an S-set for A with associated 
scalars d/3"', a, {3ES. We call {v"'EIR":aES} an S+-set for A if: 

(a) vf»O, if iEG*(a), 
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and 

(b) d/l'" > 0, if (3 E S(ex). 

It is clear that every S+ -set is an S-basis for E(A), and so we shall refer to an 
S+ -set as an S+ -basis for E(A). 

Observe that if {v '" : ex E S} is an S+ -basis for E(A) , then it follows by Lemma 
(4.1) that 

(6.2) THEOREM. Let A be an M-matrix with singular graph S. Then there 
exists an S+ -basis for the generalized eigenspace E(A). 

Proof. The proof is by induction on g, the number of elements in G. As in the 
beginning of the proof of Theorem (3.10), the result is clear if g = 1 and the 
inductive step is obvious when g> 1 and 1 e S. 

So assume that g > 1, 1 E S. As in the proof of Theorem (3.10), we obtain an 
S-basis {w"': ex E S} for E(A), with associated scalars {ell"' : ex, {3 E S} where by 
inductive assumption, for ex ES\{I}, wi» O if iEG*(ex) and ell'" > 0 if (3ES(ex). 

Let "ES(I). We shall now define positive scalars gY, hY. If iEG*(,,) , then, by 
inductive assumption, w T» O. Hence we may choose one g Y to be sufficiently 
large so that for all 

iEG*(,,), w~+ gYwT » O. 

If (3 E S(,,) , then cllY > O. Hence we may choose h Y so that for all 

(3ES(,,) , 

Then we put r = max {gY, hY}. We now put 

VI = wl + L wYr, 
yE S(I) 

and for ex, {3 E S, 

d llY = cllY for "E S\{I}, 

df3 1 =c/l l + L e/lyr· 
y ES( l) 

(6.2.1) 

(6.2.2) 
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We claim that {v": a ES} is an S+-basis for E(A) with associated scalars 

{d ila : cr, {3 E S}. For a E S\{I}, the vectors v" and the scalars d/3" clearly satisfy the 

required conditions. It remains to show that Vi and dilt, (3 ES, satisfy the 
conditions of an S+ -basis . 

(i) vJ = 0 for ieG*(1): 

vJ= wJ+ L w?fY =0 because {w il :{3ES} is an S+-basis. 
YES(1) 

(ii) vJ» 0 for i E G*(I) and a(vt} = 1: 

There are two cases. If i E G 1 (1), then v: = wi and w J »0 by Theorem 

(3 .10.11). Also a(vD = a(wD = 1. If i~ G I (1), then there is a 8 E S(I) such that 
i E G*(cS). Since wi<::: 0 for l' E S(1), we have 

v:=w;+ L wi/Y<:::wJ+ L wigY<:::w;+wfgB » O, by (6.2.1) 
YES(1) yES(I) 

(iii) dill = 0 for (3~ S(I): 

d ill =C/3 I + L c/3YfY=O because {c/3a:a,{3ES} 
YES(l) 

are associated scalars of an S+ -basis. 

(iv) dill> 0 for (3 E S(1): 

There are two cases. If (3 E il(1), then d/3 1 = Cill and c/3 1 > 0 by Theorem 

(3 .10.11). If (3e il(I), then there is a 8 E S(I) such that (3 E S(8). Since, by inductive 
assumption, c/3y <::: 0 for l' E S(1), we have 

d ill =C/3 I + L c/3YfY<:::c/3 l+ L c/3"WY <:::c/3 1 +ci3Bhll >0, by (6.2.2). 
yES(1) yES(1) 

(v) Av 1 =- L d ill v/3 : 
/3 ES 

This follows by a direct calculation. 

(6.3) LEMMA. Let A be an M-matrix with singular graph S and level numbers 
(AI> ... ,A,,). The following are equivalent for p, 1:5 p:5 h: 

(i) Wj + ... + wp = Al + ... + Ap; 

(ii) Ker AP has a basis of semi-positive vectors. 
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Proof. (i) ~ (ii). By (4.3) and (4.4), (i) implies that Ep = Ker AP. By Theorem 
(6.2), there exists an S+-basis {V"': O'ES} for E(A). Then {va :O'EAIU'" UAp} 
is a basis for Ep, consisting of semi-positive vectors. 

(ii) ~ (i) . Let V be the matrix of an S-basis for E(A) with associated S-matrix 
D. Suppose WI + ... + wp > Al + ... + Ap. Then by (4.3) and (4.4), Ep C Ker AP. 
Let WE Ker AP\Ep ' We shall show that w is not semi-positive. Using the notation 
of the Remark preceding Corollary (4.5), w = Vf E Ker AP, where p < r$ h, fr,t- 0, 
and fr+I=O, ... ,fh=O. Then 0= APVf=(-l)PVDPf and hence O=DPf. Thus 
0= (DPn- p = (DP)r - p,rfr by Lemma (4.1a), and so by Lemma (4.1b), fr can not be 
semi-positive. Let a E tir• Then Wa = 1J",v~, where 1J", E IR and we have written 
fr = (1J",)", eA.· Hence, for some (3 E A" wf3 «0. Since Ker A P\Ep must contain a 
basis vector, the result follows. 

(6.4) DEFINITION. Let A E IR"" be a singular matrix and let 
{v Pi : p = 1, . . . , h; i = 1, . .. , w p }, where h > 0 and WI ~ ... ~ wh;::= 1, be a basis 
for the generalized eigenspace E(A) for the eigenvalue 0 of A. This basis for 
E(A) is called a Jordan basis for A if 

p = 2, ... , h; i = 1, ... , wP' 

and 

i = 1, ... , WI' 

We remark that (WI, . .. , Wh) in the definition is the Weyr characteristic of 0 
for A. 

Our final result completes the Main Theorem (4.7). 

(6.5) THEOREM. Let A be an M-matrix with singular graph S and level 
numbers (AI> ' .. , Ah)' The following are equivalent: 

(i) The Weyr characteristic for A (associated with 0) is (A1> ' .. , Ah ); 

(ii) There exists a Jordan basis for -A consisting of semi-positive vectors; 
(iii) For p = 1, ... , h, Ker AP has a basis consisting of semi-positive vectors. 

Proof. We observe that (ii) ~ (iii) is trivial and that (iii) ~ (i) is given by 
Lemma (6.3). So we need prove only (i) ~ (ii). 

We assume that (i) holds. Let {va: 0' E S} be an S+ -basis for E(A), which exists 
by Theorem (6.2). We shall construct a Jordan basis for -A, {w Pi :p= 1, .. . , h; 
i = 1, ... , Ap} by successively defining sets of vectors W h

, •• • , Wi satisfying the 
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following conditions for 1:s p :S h: 

(a) W P = {wPi
: i = Ap +l + 1, .. . , Ap} is a subset of VP = {v"': ex E A.p } (where, by 

convention, Ah +l = 0). 
(b) The set IP U U p- 1 is a basis for Ep, where we have put 

and 

IP=WPU(-A)Wp+IU ... U(-A)h- PWh={(- A)q- Pwqi:q=p, ... ,h; 

i = Aq+l + 1, . . . , Aq} 

(where by convention UO = cf» . 
We remark that U p- l is a basis for Ep- l , and, since (i) holds, Ep- l = Ker Ap- t . 

Since W q ~ vq ~ Eq \Eq- t , q = p, .. . , h, it follows by Lemma (4.1) that IP ~ 
Ep \Ep _ t • 

For q=p+1, ... ,h, and Aq +l<i:SAq, we shall put wpi =(-A)q- pwqi. Thus 
IP = {w Pi 

: i = 1, . .. , Ap} 
We first define W h = V h and I" = Who Clearly W h satisfies (a) and (b). Now 

suppose W h
, • •• , W P have already been defined satisfying (a) and (b). By (b), we 

have 

where we have written [JP UP- I] for the n x (AI + .. . + Ap) matrix whose first Ap 
columns are the vectors of IP, and whose last Al + . .. + Ap- t columns are the 
vectors of UP- I, and similarly for [VP Up- I]. Further, Q is a Ap x Ap matrix and 
I is the A) + ... + Ap- l square identity matrix. Since IP U Up- l is a basis for Ep, it 
follows that Q is non-singular. Hence, using -A V = VD, we obtain 

o 

where the D ij are submatrices of an S-matrix D associated with the S+ -basis 
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{v '" : a E S}. Thus, 

where Z is a (A 1 + .. . + Ap - 1) x A.p matrix. 
But Q is non-singular, and, by Theorem (4.7) and our assumption (i), Dp - l ,p 

has full column rank, whence Dp- l,pO has full column rank. Hence there exists a 
A.p - 1 x (A.P - 1 - A. p ) submatrix E of the Ap-l x A p - l identity matrix such that 
[Dp- l,pO E] is non-singular. We now put [WP -

l] = [VP- I]E. Clearly Wp- l is a 
subset of V p

-
1 and so satisfies (a). Also, by definition, JP- l = - AJP U Wp- t, and 

so [JP- l]= [-AJP WP-1]. Hence 

Since the matrix on the right is non-singular, JP-l U U p
-
2 is a basis for Ep - l ' Thus 

(b) is satisfied and the construction is completed . 
Clearly {w Pi 

: p = 1, ... , h; i = 1, ... , A. p } = P u ... U Jh is a Jordan basis for 
-A, and wPi > O since wPi is a column of (-A)q - PV, where A.q + l <i:5Aq , and 
q 2: p. 

In the case that S is linearly ordered , Theorem (6 .5) reduces to Theorem 6 of 
Schneider [1956]. 
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