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1. INTRODUCTION

In our previous paper [3], we have shown that there is a close connection between
the cyclic products of matrices and diagonal similarity. In this paper we consider
diagonal similarity for matrices, which may be infinite, and whose elements lie in
a (possible non-commutative) group G with 0.

Let H be a subgroup of a group G and let A be an irreducible square matrix with
entries in G° In Theorem 3.4, we give necessary and sufficient conditions for the
existence of a matrix B with entries in H° which is diagonally similar to A. If H is
a complete lattice ordered group whose positive cone H™ is normal in G, we give
necessary and sufficient conditions for the existence of a matrix B in (H*)° which
is diagonally similar to A; see Theorems 4.1 and 4.2. Our Theorem 4.1 reduces
to a result due to AFRIAT [1], [2] Theorem 2 and FieDLER-PTAK [4] Theorem 2.2
in the case when G and H are the additive group of reals, there is no absorbing (zero)
element and A is a finite matrix.

Let A be a rectangular matrix, possible infinite, with entries in G°, such that each
row and column has at least one element in G. We construct a square matrix A"
of larger sizs, which is always completely reducible, Corollary 5.4. In Theorem 5.6, we
show that two rectangular matrices A and B are diagonally equivalent if and only
if A and B'? are diagonally similar. Thus it is possible to derive theorems on
diagonal equivalence for arbitrary rectangular matrices from theorems on the
diagonal similarity of irreducible square matrices, e.g. Theorem 6.3. In particular,
as a corollary to either Theorem 6.2 or Theorem 6.3 we obtain a slightly improved
version of the remarkable result by LALLEMENT-PETRICH ([6], Theorem 1 (b) <> (e),

*) The research of this author was supported in part by NSF Grant GP-37978X. This paper
was presented at the First Santa Barbara conference on Theoretical Matrix Theory, December
1973 and at the Gatlinburg meeting, Munich, December 1974.
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or [7], Theorem 4.13) which motivated our construction of A*. Lallement-Petrich
apparently were the first to prove a theorem relating products of elements of a matrix
to diagonal equivalence, without an additional hypothesis on the matrix, such ag
a full indecomposability.

As an application in § 7 we derive a non-iterative algorithm for the optimal scaling
of a real or complex matrix by diagonal similarity and give an example with detajlg
(Example 7.4). In the Appendix, we include an executable APL statement for the
mapping A — A'?, with some examples.

2. PRELIMINARY DEFINITIONS

Definitions 2.1. By @ and t we shall always denete sets and we shall assume
leonrTt.

(i) A path of length m is a finite sequence 8 = (iy, iy, ..., i,,) Where m is a positive
integer, m > 1, and i;ew for s =1,2,...,m. If i =i and j =i, we say 8 is
a path from i to j. We say a path f = (i, i,, ..., i,) is a path without repetitions if
Iy, 09 ..., im—, are distinct.

(ii) A closed pathis a path § = (i, iy, ..., i,,) with i, = i,.

(iii) A cycle is a closed path without repetitions.

V) If B = (i, iy - by and @ = (jy, jo, ..., J,) are paths with i, = j, then Sa
will denote the path (iy, i3, ..., Iy J2s <o Ju)-

Definition 2.2. If G is a group, we shall always assume that 0 ¢ G and define the
semigroup G° = G U {0}, where 0g = 0 = g0 for all ge G°.

Definition 2.3.

(i) If E is a set, let E, . denote the set of @ x t matrices with elements in E, viz,
A€E, if Ais a function (i, /) » a;; of  x 7 into E. We denote E,, , by E,,.

(i) Let G be a group and let § = (i, iy, ..., i,,) be a path. For A€ G2 = (GY),
m-1
we define ITg(A) = [] a;,,,,- 1f B is a cycle, II4(A) is said to be a cyclic product.
Ji=1
(iii) I B is a path such that IT;(4) € G, we call § a non-zero path for A.

(iv) Let Ae G2 If for all i, j € w, i # j, there exists a non-zero path from i to j,
we call 4 irreducible.

Remark 2.4. Let Ae G2. Let § = (i, iy, ..., i,,) be a non-zero closed path (cycle)
for A. Then,for1 £ r < m,y = (i, iy 41y -ces Im—1s Iy, - .-, I,) is als0 @ non-zero closed
path (cycle) for A.
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Definitions 2.5.

(i) Let G be a group and let Be G). Then B is called a diagonal matrix if for
all i,j € w, b;; € G implies i = j. We write B = diag (b,)).
(i) When G is a group, a diagonal matrix B € G¢ is non-singular if b;; € G for
all i € 0.
(iii) If Ae G2, and Be G, is a diagonal matrix we define C = B4 e Gy, by

w,t

¢;j = bua;j for icw, jet. If Be Gy we define C = ABe G, . by c;; = a;;by; for

jew, JET.

Definitions 2.6. Let 4 € G .

(@) Let® + o < ©,0 + v < 1. Then B = A[e’, «’] denotes the matrix in G2. ..
obtained by restricting 4, to o’ x ', viz b;; = a;, for (i, e o’ x 7.

(i) We call {w, : k€ K} a partition of w where K is an index set if @, + 0, for
xeK, o, nw, =0, for kx + k', with x and x’ € K, and finally Y{w, : k€ K} = .

(iii) Let {w, : x € K} and {r, : k € K} be partitions of w and t respectively. Then 4
is the direct sum of the Alw,, 1,], x € K (we write A = @, ¢ Alw,, 7)) if a;;€ C
implies there is a x € K such that iew, and jer,. If K = {1, 2}, we may write
A= Alw,, 1,] ® Al[w,, 1,].

(iv) A matrix A € GJ is chainable if there are no partitions {@,, @,} of @, {1}, 75}
of 7 such that A = A[w,, 1,] @ A[w,, 1,].

Comment. The term chainable was introduced by SiNkHORN-KNoPP [8]. It follows
from Corollary 5.4(ii) that our definition is equivalent to that of [8].

Definitions 2.7. Let 4 € G2, Then A is completely reducible if there is a partition
{o,:xeK} of w such that A = @, Alw,, ®,] and A[w,, w] is irreducible for
kekK,

Remark 2.8. Let 4 € G°. It is well-known and easily proved that A4 is not irreducible
if and only if there exists a partition {w,, w,} of @ such that A[w,, w,] = 0.

3. DIAGONAL SIMILARITY FOR IRREDUCIBLE MATRICES

In § 3 and § 4, the results are trivial when 4 is the 1 x 1 matrix 0. In the proofs
we therefore assume that 4 is not that matrix.

We begin by proving a lemma, which is related to [3], Lemma 2.4. By means of
this lemma, we are able to replace conditions on products on closed paths by condi-
tions on cyclic products, provided that we are considering a normal subgroup (or
a subsemigroup invariant under conjugation).
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Lemma 3.1. Let G be a group and let H be a semigroup contained in G such thg;
x 'HxeGforallxeG. Let Ae GJ. If 1(A) € H® for all cycles'y, then [1,(4) e O
Sfor all closed paths f.

Proof. Let § = (i, i, ..., i) be a closed path. The proof is by induction on n, "7

The result is true if m = 2. So, suppose that m > 2 and that the result is true for
all closed paths @ = (j,, js, ..., j,) with 2 £ p < m. If f§ is a cycle there is no more

to show. Otherwise, there exist integers g and r with 1 < g < r £ m such thy
y = (ip .. 4,) Is a cycle. Let 6 = (i}, ..., i), € = (i,,..., i,.). Then B = dye. Let -}
x = HA), y = HJ(4), z = II(A). Then II4(4) = xyz. Since the inductive
hypotheses hold for the closed path &e, we have IT,(A) = xz € H. Hence alsg ¥
zx = x"Yxz) xe H. Thus yzx € H, whence [15(4) = xyz = x(yzx) x~ ' e H. The k.

lemma follows by induction.

Lemma 3.2. Let A €G2 be irreducible. Let H be the subgroup of G generated

by all IT)(A), where [ is a non-zero closed path. Then there exists a non-singular

diagonal matrix X € G2 such that X '4X e H..

o —

b Y3
- Ty o

Proof. Since 4 is irreducible, there exist non-zero paths §; from 1 to i and y, =

fromito |, foralliew. Let x; = Hﬂ_(A). Since f;y;is a non-zero closed path, we have
Hy(A)I1,(A) = I1;,,(4) = h;e H. Let Il;(A4) = x;. Suppose that a;; = 0. Then
xa;x;7 ' =11, (A) a;;I1, (4) hy ' = I1(4) h; ', where & is the non-zero closed path

Bi(i, /) v, Hence I1(4) € H, and so x;a;;x; ' e H. If X = diag (x,) € G, it follows
that XAX 'e HC.

Remarks and Examples 3.3. (i) It is clear from the proof of Lemma 3.2, that we
may choose X = diag (x;), where x; = I1; (A4), for any non-zero path §; from 1 to i.
(ii) Let G be the free group with generators a, b. Let

a* b
A= l:b a{l €G-

Let H be defined as in Lemma 3.2. Then H is generated by a2, b% and ba?b. If X = -

= diag (a?%, b) then

(iii) We now show that in general there is no diagonal X € G2 such that X4X '€
e K2, where K is the group generated by the cyclic products I1(A). For let G and 4
be as in (i). Then K is generated by a®, b, We proceed by contradiction. For let
X = diag (sb?, tb’)eG(om} where either s = 1 or the canonical expression for s
ends in a, and ¢ satisfies the same conditions. Then

shla?p s~ sprTrr gl jl

-1
XAX _l:tb""“s_l th'a*b~17 1
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By considering an off diagonal element we see that either r or g is odd. But by inspec-
ting the diagonal elements we see that this is impossible.

Theorem 3.4. Let A € GO be irreducible. Let H be a normal subgroup of G. The
following are equivalent:

(i) For all cyclesy, I1,(4) € H°.

(i) There exists a non-singular diagonal matrix X € G°, such that XAX ™" € HJ.

Proof. (i) = (ii). By Lemma 3.1, I14(4) € H for all non-zero closed paths f.
The result follows from Lemma 3.2.

(i) = (i). Let X = diag (x)e G2 Let y be a non-zero cycle. Then for some
iew, xJJI,(4) x;* = I(X *AX) € H, and (i) follows.

For example, if A€ G2 is an irreducible matrix whose entries are quaternions
such that all cyclic products are real, then 4 is diagonally similar to a real matrix.

If w is finite and G is commutative, our next theorem reduces to [3], Corollary
44, (1) = (3).

Theorem 3.5. Let A, B € G2 be irreducible. Then the following are equivalent:

(i) There exist u;e G, for i € w, such that for every closed path B from i to i,
My(B) = u; 'Iy(A) us.

(it) There exists a non-singular diagonal X € GJ such that XAX™* = B.

Proof. (i) = (ii). For i€ w, we define the paths f; and y; as in the proof of
Lemma 3.2. Since f;y; is a closed path from 1 to 1, it follows that

I,(B)I1,(B) = u; ‘I, (A) I, (A) u, .

Let x; = [T, (B)™* uj* Iy (A). Hence x;'' = I, (4) u, IT,(B)™". Since Bi(i,))7,
is a closed path it follows that

M, (B) b;; I, (B) = uy * I (A) a;; IT, (A) u, .

Hence b;; = x,a;;x; ", and (ii) follows.

(ii) = (i). By straightforward computation of the path products the results follows
with u; = x; !, i € . When G is commutative, we obtain a corollary, where we can

[

replace closed paths by cycles in statement ().

Corollary 3.6. Let G be an abelian group and let A, B e G2 be irreducible. Then
the following are equivalent:

(i) For all cycles y, IT,(B) = I1,(A).
(ii) There exists a non-singular diagonal x € GJ such that XAX™ ' = B.
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4. DIAGONAL SIMILARITY OVER PARTIALLY ORDERED GROUPS

In this section we shall consider lattice ordered groups H (cf. Fucus [5] p. 66).
The partial order in H will be denoted by £ and we write H* = {h eH:h 2> 1}_
For the main result in this section we shall require a (conditionally) complete lattice

|
ordered group H ([5] p. 89). j’
Theorem 4.1. Let G be a group and let H be a subgroup of G such that l,
(a) H is a complete lattice ordered group.

(by xH*x™* < H* forall xeG.

Let A€ G be irreducible. Then the following are equivalent: '
(iy For all cyclesy, 1.(4) e (H™)".

(i) There exists a non-singular diagonal X € G2 such that XAX ' e (H")?.

Proof. (i) = (ii). By Lemma 3.1, ITg(4) € (H™")°, for all closed paths 8. For each
i€ w let y; be a non-zero path from i to 1, and let P; be the set of non-zero paths
from 1 to i. Define 4; = {[I;(4) I1,(4) : B; € P;}. For each pair i, j € @ such that [
a;€G we define 4;; = {I1y(4) a;; 1T, (4) : ;e P;}. Since 4 is irreducible, 0 +
+ A; € 4; < HY, where inf4;; 2 inf4; = 1. Let w;; = inf4;;, z; = inf 4;. Let

B:€ P, Then
Mg (A)ag; 1T, (4) = I (A) IT,(4) (A ay; 1, (4).

Let 11, (A) = s,. It follows that s 'a;;s; € H. Hence, taking the infinum over P,
we obtain (cf. [5] p. 90)

We deduce that
zi(sy tags) = z;. '
Let x; = z;5; . Then x;a;;x] ' € H*, and (ii) is proved.

(ii) = (i). The proof is similar to the proof of Theorem 3.4, (ii) = (1).

For example, if A € G2 is a matrix whose entries are quaternions such that all
cyclic products are in the real interval [0, 1]. Then 4 is diagonally similar to a matrix

whose entries are in [0, 1].
When w is finite we do not require the lattice ordered group H to be complete,

Theorem 4.2, Let G be a group, and let H be a subgroup of G such that:
(a) H is a lattice ordered group.
by xH*x"'e H* forall xeG.
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Let A€ G2 be irreducible. Then the following are equivalent:

(i) For all cycles y, 1 (A) e (H™)°.

(i) There exists a non-singular diagonal X € GJ suxh that XAX ' e (H")°.

Proof. We repeat the proof of Theorem 4.1, and we use the symbols defined
there. We need only show that inf 4;;, and inf 4, exist. Let f; € P; and suppose that
B: = den, where ¢ is a closed path. Let x = II4(4), y = II(4), z = I (4) I, (4).
Then

Hp(A)I,(A4) = xyz = xyx~* . xz 2 xz = [1,(4) I1,(4) .
1t follows easily that
4; = inf {II; (A) 11,(4) : B; e P}

where P; is the set of non-zero paths from 1 to i without repetitions. This infimum
exists since P; is a finite set. Similarly,

4;; = inf {II;(4) a;; I, (A) : B;e P} .

As an example let w be finite and 4 a matrix of quaternions whose cyclic products
are rational numbers in [0, 1]. Then 4 is similar to a matrix whose entries are rational
in [0, 17].

5. THE CONNECTION BETWEEN DIAGONAL SIMILARITY
AND DIAGONAL EQUIVALENCE

The following lemma is intuitively obvious, but since it is crucial to our argument
we give a formal proof.

Lemma 5.1. Let A€ GJ, have a non-zero element in each row and column.
Then there is a partition {o, : k € K} of w and a partition {t, : x € K} of t such that

A= ®kEK A[wm Tx]
and Alw,, ] is chainable for all xk e K.

Proof. Let iew. For ke w we define k ~ i if for all partitions {w, : k€ K'},
{1:," :k €K'} of w and 7 respectively such that 4 = @, A[wy, T.] there is a ke K
such that i€ w,, k ew,. It is easily seen that ~ is an equivalence relation on o.
Let {w, : k € K} be the set of equivalence classes. Let 7, = {j et :3ie w,, a;; + 0}.
Since each column of A4 has a non-zero element, it follows that U{z, : ke K} = 1.
Let j e 1, n .. Then there exists i € @,, i € w,. such that a;; + 0, a; ; + 0. Let
{03 A e L}, {t}: A€ L} be partitions of @ and t respectively such that

A= @AEL A[w;{> TIA,] .
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Suppose j € 7). Then it follows that both i € ), i' € w]. Hence i ~ ', whence x = «’
and it follows that {z, : x e K} isa partition of 7. Clearly A = @,k AL, 7). Let 1 €
€ K. Since any partition of w, for which A4 is a direct sum, can be extended to a parti-
tion of w for which A is a direct sum by uniting it with {w, : x € K\ {4}}, it follows
that A[w,, t,] is chainable.

Definition 5.2. (of A”) Let A€ G . Let ¢ = {(i, ) ew x 7 :a;; + 0}. We define
the matrix B = 4” € G° by
b = a5 -
Observe that if 4 = 0 then A" is empty (i.e. the 0 x 0 matrix). To avoid trivial
exceptions we assume that the 0 x 0 matrix is irreducible and chainable. In the proofs
of the results in § 5 and § 6 it is possible to assume that 4 € G2 has a least one element

in each row and column and then one may check that the results hold without that
restriction.

Theorem 5.3. Let {w, : k €K}, {t, : 1, € K} be partitions of w and t respectively
and put A, = Alw,, 1,1€G)_ ... If

) A = Dpex Ax

and

2 A, is chainable for keK
then

3 A7 = B (4,7

and

4) (4,)'"" isirreducible for xeK.

Proof. Let B = A", and let (4,)” € Gy, when o, S w, X 1,. Lot (i,)) € g,
(k,Deo,, x*x' Since icw,, let,, we have b;; = aj;'a; = 0. Hence B =
= @®,.x (4,)". So we need only prove that if 4 is chainable then A’ is irreducible.

Suppose B = A" € G; is reducible. Then there exists a partition {o,, 0,} of ¢
such that B[og,, 0,] = 0.

For k = 1, 2, define

w.={iew:3jer, (,))ea), t,={jer:dicn, (ij)eo,}.

Since {0}, 0,} is partition of o, it follows that w,, 7,, ¥ = 1,2 are non-empty and
0, U0, =0T, JT, =1 Wemust still prove that v, nw; =0 and 1, n 1, = 0.
Let iew, nw,. Then for some j,let, (i,j)eo,, (i,))eo,. Hence b, i1 =
'a; #+ 0, which is impossible since B[o,,0,] = 0. Hence w, N w, = 0.

= aij
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let jer, ﬂ‘[z Then for some i, kew, we have (i,j)ea,, (X,j)ec,. Hence

by = ai; = 1, which is impossible. Hence 7, n 7, = @, and the result is

proved.

Corollary 5.4. (i) For all A € G3, A'? is completely reducible.
(ii) If A € G, then A" is irreducible if and only if 4 is chainable.

Corollary 5.5, Let w = {1,2, . n} and let AeGﬁ. Then the following are
equivalent:

(i) There exist permutation matrices P, Q such that
A, 0
P4Q =("1
o=% ]
(ii) There exists a permutation matrix R such that

B, 0
pp—1 _ 1
RA"R l: 0 sz,

In the Appendix, we give some examples of 4" for some matrices 4 which may
be helpful for the understanding of the proofs of the resuits in the rest of this section.
If A€ Gm . we denote the support matrix of A4 by A*, viz A*¢ Ga, .and af =
ifa;egG, a}, = Oifa;; =0, for(i,)ew x 7.

where A, A, are rectangular.

where B, B, are square.

Theorem 5.6. Let A, C € Gy, and suppose that A* = C*. Let A" € G2, Then the
following are equivalent:

(i) There exist non-singular diagonal matrices Ye G2, Z € G° such that
C = YAZ.

(ii) There exists a non-singular diagonal X € G° such that X4"*X~' = C',

Proof. For a non-sigular diagonal Z € G? define Z = diag (Z;j) e G? by Z; =z
for (i,j)ea.
(i) = (if). If C = YAZ, then C'* = Z~'4'"Z, by straightforward computation.

(i) = (i). Let XA"X ™' = C', where X = diag (x;) € G2. Let B A" F = Cb,
Leti, ke w,jer. Since b; jyu. ) = al-J1 b= land f; ) = cU i = 1, it follows
that x; j = X, . Hence we may define z; = x;},, for jez. Now let iew, j, lex.
Then z;'a ,'j’a,,z, = ¢;;'¢;; whence c,juj“‘a,."jl = ¢,z; 'a;. Hence we may define

Vi=cizg aU , for ie w. Then y,a;;z; = ¢;; and the result follows.

Jr
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Lemma 5.7. Let H be a subgroup of G. Let A € ij,, and A € G. Then the
following are equivalent:

(i) There exist a non-singular diagonal y € G such that yA eH,S',.
(i) A'7e HC.

Proof. (i) = (ii). Let B = A". Then let (i, ), (k, Deo. If y = diag () €GY
then h pa,y = @80 = a;;'vi . ya, € HC.
(i) = (i). For each i€ there is a j et such that a;;€G. Let y, = a;;' €G at

let. Then yjay = b i € H® If y = diag (yy), it follows that y4 e HJ .

Lemma 5.8. Let H be a subgroup of G and let A € G , be chainable. Let A'? € G°.
Then the following are equivalent:
(i) There exist non-singular diagonal Ye G2, Z € G? such that YAZ € H ..

(i) There exists a non-singular diagonal X € G? such that XA"X ™' e H.

Proof. (i) = (ii). Immediate by Theorem 5.6.

(ii) = (i). Let XA'”?X *e H and let B = A". Since b, jujy = Lfor (i, j) (k, ) eo
it follows that x;;x.;' € H. Hence for i € w, j € T there exist z; ' € G and h;; € H such
that x;; = h;;z; . Define Z as ie the proof of Theorem 5.6. Then ZA*Z™' € HY.
If C=AZ, C"» =Z7A%Z 'e H], whence by Lemma 5.7 YAZ = YCe HJ, for,
some non-singular diagonal Y e G°.

6. APPLICATIONS OF 4'?

Theorem 6.1. Let A€ G .. Let H be the subgroup of G generated by all IT,(A')
where B is a non-zero path for A, Then there exist non-singular diagonal Ye G°
and Z € G? such that YAZ € H_,

Proof. Let A e G?. Since A" is the direct sum of irreducible matrices, we may
apply Lemma 3.2 to the irreducible blocks of B. Hence there exists a non-singular
diagonal X e G° such that XA'?X ™! € H?. By Lemuma 5.8, the result follows.

To obtain results in the other direction, we again need the hypothesis that H is
a normal subgroup of G.

Theorem 6.2. Let Ae G and let A" e G. Let H be a normal subgroup of G.
The following are equivalent:

(i) For all cycles y, I1(A") e H°.

(ii) There exist non-singular diagonal matrices Ye GS, Z € G° such that

YAZ € H?.
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Proof. Again, we need only consider the case when 4 is chainable and 4 is ir-
reducible. By Theorem 3.4 (i) is equivalent to

(i)’ There exists and X € G2 such that XA”X ' e H?, and by Lemma 5.8, (ii)’
is equivalent to (ii).

Theorem 6.3. Let A, C € G2, and suppose that A* = C*. Let A” e G?. Then
the following are equivalent:

(i) 1f (i,)) € 6 then there is a u;; € G such that for every closed path § from (i, j)
to (i, ), IT4(C™®) = uy;" My(A") uy,.
(ii) There exist non-singular diagonal Ye G2 and Z € G° such that C = YAZ.

Proof. Immediate by Theorem 3.5 and Theorem 5.6.

Corollary 6.4. Let A Gf,lr. Then the following are equivalent:

(i) For all cyclesy, IT(A') {0, 1}.

(1) For all closed paths B, IT,(A') € {0, 1}.

(ii) There exist non-singular diagonal Ye G° and Z e G® such that YAZ e
e {0, 1},

Proof 1. Put C = A* in Theorem 6.3.

Proof 2. Put H = {1} in Theorem 6.2.
Corollary 6.4 is the theorem by Lallement-Petrich [6], [7], mentioned in our
introduction.

Corollary 6.5. Let A, C € G° and suppose that A* = C* and a,; is in the center
of G for icw. Let A" € G°. Then the following are equivalent:

0 (@ a; = cy; Jor icw,
(b) if (i, )) € o then there is a u;; € G such that for every closed path f from (i, j)
to (i, ),

TC"% = uj! DA uy; .

(ii) There exists a non-singular diagonal X € GJ such that C = XAX ..

7. APPLICATIONS

Let C be the complex field, and R the real field, Also w will be a finite set in
this section.

Definition 7.1.
(1) Let Ae C,. Let I' be the set of non-zero cycles for A. If y = (i}, ..., i) el
weput [y =m —1and j = {i;, iz .0, iy}
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(i) If 4 € C,, we put

4] = max {|a,;j:i jeo}.
Theorem 7.2. Let A € C,, be irreducible. Then

min {|X4X "] : C, is non-singular diagonal} = max {|IT(4)"'™ :ye T} .

[

Proof. If 4 is the 1 x 1 matrix 0, there is no more to prove so assume A4 is not
this matrix. Further, without loss of generality we assume that a;; = 0, for i, j € @,
Let

r(4) = max {|IT(4)|'""" :yeT}.

Since A4 is irreducible, r(4) > 0. Hence there exists a non-zero cycle § = (iy, ..., i)
such that r(A)" = ITy(4). Let B = r(4)"' 4. Then 4B) =1 and I1(B) < 1,
forye I'. By Theorem 4.2 there exists a non-singular X = diag (x;)e R,, x; > 0,
such that for U = XBX™!, we have 0 < u; £ 1, for i,jew. Since ITy(U) =

= I1y(B) = 1, we have uy = 1, where k = i;, | = i,.

Since XAX ™! = r(A) U, we have
XAX™' = r(A).

We still need to show that if ¥ = diag (y,) € R, y; > 0, is non-singular, then
r(A) £ YAY ™'

So let ¥ = Y 'AY. Then Iy (V) = M4(A4) = r(4)!¥!, whence we can find k, I such
that vy, = r(A4), where k = i,, | =i,,, forsome | £ r < m.

Remark 7.3. [t is easy to see that in Theorem 7.2 the assumption that A is irre-
ducible may be considerably relaxed and that the theorem still holds if A has a non-
zero cycle. Indeed, for all 4 € C,

inf {|XAX~"| : X non-singular diagonal} = max {|IT,(4)|'/"" : y e I'}

where the right hand side is defined to be 0 when I" = 9.

Example 7.4. Let

01 1 0
A= 0 .03 2.5
.05 .008 O

The non-zero cycles are

(1,1),(2,2), (2,3,2), (1,2,3,1) = B, say.
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An easy compuiation shows that
r(A) = DA = 5

where r(A4) is defined as in the proof of Theorem 7.2. Thus, by Theorem 7.2, there
exists X = diag (x;, x,, x3) such that the elements of XAX ! lie in the interval
[0, .5]. Furthermore, by the same theorem, the interval is minimal.

We have proved much more than an existence theorem. By Theorem 4.2 we can
actually find an X. For, 24 satisfies the hypotheses of that theorem (where H = G
is the multiplicative group of positive reals ordered in the opposite manner from
the usual one). We use the notation of the proof of Theorem 4.2. In fact if 8, =
=(1,2,3,1), f, =(1,2), B3 =(1,2,3) then P; ={B}, i =1,2,3. Hence x, =
= I1;,(24) = 1, x, = I;,2A) = 2, x3 = II;,(24) = 10. (Observe that it is un-
necessary to compute the IT,(24) for the cycles 7). We compute

.01 .5 0
XAX " '=(0 .03 .5
50 .04 0

In order to state the additive analogue of Theorem 7.2, we define Z,(4) =
=a;; +...+q , for any cycle f = (i, ..., im)-

igiy m—1im

Theorem 7.5. Let A€ R,, (w finite) and. let

(A
5(A) = max i ).
(vert |7
Then
s(4y = min ( max (x; + a; — x,)).
{xieR:iew) (i,flew X w

Theorem 7.5 is a sharpened version of the theorem of Afriat [1], [2] and Fiedler-
Ptdk [4], which was mentioned in the introduction.

APPENDIX. APL STATEMENT AND EXAMPLES

Suppose A is a finite real matrix: The following APL program may be used to
compute an approximation A'?. This approximation will be precise when there are
no round off errors.in the division.

VALP[O]V
VT~ ALP A; J;K: X

[ VI« X[K xLlJ+K)o. + 1+ (K—1loA)|J«J—1]=+
= X[Jo. +0 x J« (X +0)/ioX «, A]
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