
L I N E A R  ALGEBRA AND I T S  APPLICATIONS 7, 301-335 (1973) 301 

Cyclic and Diagonal Products on a Mat r ix  

GERNOT M. ENGEL* AND HANS SCHNEIDER 
University o[ Wisconsin 
Madison, Wisconsin 

ABSTRACT 

We unify the theory of cyclic and diagonal products of elements of matrices. We 
obtain some new results on diagonal similarity, diagonal equivalence, complete 
reducibility and total support. 

1. I N T R O D U C T I O N  

Cyclic products  of e lements  of matrices have been considered by  

Fiedler and  P tak  [4]. Diagonal  products were considered b y  Sinkhorn 

and Knopp  Elll. We a t t emp t  to give a unified t r ea tmen t  of bo th  concepts, 

thereby obta in ing  some new results. 

In  Sec. 2 we introduce the equivalence relations c and  s on the set 

Dn of all n × n matrices wi th  elements in an integral  domain  D. Here A c B  

if all corresponding cyclic products  for A and B are equal (2.6), and A s B 

if all corresponding diagonal  products  are equal (2.8). We then  introduce 

the operators A -~A c and  A ~ A  s. We obta in  A c from A by  set t ing 

equal to 0 all elements tha t  do not  lie on a nonzero cyclic product,  and  

similarly, we obta in  A s using diagonal products. We int roduce a part ial  
0 

order ~ on D~. I t  is not  hard  to show tha t  A 8 = sup{P,~-I(PoA)c: aesop,} ,  

where S¢nl is the symmetr ic  group on {1 . . . . .  n}. We prove considerably 

more. If A has a k × (n + 1 - -  k) block of zeros, and  m = max{k, n + 1 - -  k}, 

This author's current address is IBM, 101BM54, Owego, N. Y., 13827. This 
work was completed while on educational leave of absence from IBM. 

The research was supported in part by NSF Grant GP-17815, and by the 
Mathematics Research Center. University of Wisconsin, under Contract No. DA-31- 
124-ARO-D-462. 

© American Elsevier Publishing Company, Inc., 1973 



302 G.M. ENGEL AND H. SCHNEIDER 

then there exist permutat ion matrices Q1 . . . . .  Qm such that  0 = 
s u p { Q i - l ( Q i A ) c :  i = 1 . . . .  , m } ,  Lemma 2.33. Further,  the bound m is 

sharp, (2.35). If A ' = 0, it follows tha t  there are permutat ion matrices 
Q1 . . . . .  Q~ such that  A s = s u p { Q i - l ( Q i A ) c :  i = 1 . . . . .  n} (2.37), and the 

bound n is sharp (2.38). If  A s # 0, then there is a permutat ion matr ix P 

for which A ~ = P I ( P A ) c  (2.37). 

In  Sec. 3, we present a unified theory of irreducible and fully indecom- 

posable matrices. Using our definitions, we present proofs of some known 

results, e.g. (3.14). Other  results in this section are intuit ively obvious, 

but  have not been stated before, since they  require the definitions of 

Sec. 2 for a formal s tatement,  e.g. (3.15), (3.16). 

In  See. 4 we find necessary and sufficient conditions for two matrices 

with elements in a field to be diagonally similar and to be diagonally 

equivalent. We prove the following result (4.1), which is closely related 

to Fiedler and P tak  [4, Theorem 3.121. The following are equivalent:  

(1) A £ B and (2) A c and B ~ are diagonally similar. An analogue is proved 

in (4.11). The following are equivalent :  (1) A s B and (2) there exist 

diagonal matrices D1 and D2 such tha t  A s = D I B S D 2  and per D 1 D  2 = 1. 

We show, (4.5), tha t  A is irreducible if and only if, for all B, A c B implies 

tha t  A and B are diagonally similar; and we prove an analogous condition 

for full indecomposability, (4.12). 

Let  a ~ 5 be a mult ipl icat ive mapping of the field, and let B t be the 

transpose of B. We then apply  the results of this section to determine 

necessary and sufficient conditions for a matr ix  to be diagonally similar 

to a matr ix B where B = B t, Secs. 4.14 and 4.19. Corollaries 4.20 and 

4.22 generalize results of Par ter  and Youngs [9] concerning necessary and 

sufficient conditions for a matr ix  to be diagonally similar to a symmetr ic  

or skew-symmetric matrix.  

In  Sec. 5 we show tha t  a fully indecomposable matr ix A is diagonally 

equivalent to a (0, 1) matr ix  if and only if all nonzero diagonal products  

equal a constant  with an n th  root in the field (5.2). When  A is a nonnegat ive 

matrix,  this result is due to Sinkhorn and Knopp  [ l l j .  Analogously, an 

irreducible matr ix A is diagonally similar to a (0, 1) matr ix if and only 

if all nonzero cyclic products  equal 1 (5.8). 

In  Sec. 6 we consider real and complex matrices, and present characteriza- 

tions of full indecomposability, (6.10), and total  support  (6.13) : Let  A >~ 0. 

Then A is total ly supported if and only if, for all B, tBI ~< A and ]per B t -- 

per A imply there exist diagonal matrices D1, D 2 whose diagonal elements 

have absolute value 1, such that  A = D 1 B D 2 .  As Corollary 6.14, we obtain:  
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Le t  A >~0.  If  I B I ~ A  a n d  Ipe rB[  = p e r A ,  t hen  A* = D I B * D 2  where  

IOll = IDd = I .  Th i s  co ro l l a ry  pa ra l l e l s  Os t rowsk i  [8, Z u s a t z  zu Sa t z  I I :  

L e t  A be  a n o n s i n g u l a r  M - m a t r i x .  If  B is a m a t r i x  w i th  Ibiil <~ aii a n d  

Ibijt >~ - a .  a n d  Idet B I = de t  A then  B * = D1A*D2, where  D1, D2 are  

d i agona l  m a t r i c e s  w i t h  IDl] = ID2I = I .  

SECTION 2 

DEFINITIONS 2.1. L e t  n be  a p o s i t i v e  in teger .  

(i) A path o/ length m is a sequence  fl = (il ,  io. . . . . .  ira) w h e r e  m is a 

pos i t ive  in teger ,  1 ~ is ~< n for  s = 1, 2 . . . . .  m a n d  m > 1. I f  i = i l  a n d  

j = i,,  we  say fl is a path /rom i to /. W e s a y  a p a t h f l  = ( i l ,  i2 . . . . .  ira) 

passes through the pair  (i, ~) if for  some  in tege r  s, i ~< s ~< m - -  1, is = i a n d  

i~+1 = i. 
(ii) A closed path is a p a t h / ?  = (il, i2 . . . . .  ira) wi th  im = i l .  

(iii) A cycle is a c losed  p a t h  7 = (il, i2 . . . . .  i~) where  is # it if 

2 ~ s < t ~ m .  
(iv) I f  fl = (il ,  i2 . . . . .  ira) a n d ~  = (il ,  i2 . . . . .  /'r) a re  p a t h s  w i t h i ~  = i l  

t hen  fix wil l  d e n o t e  the  p a t h  ( i l ,  i2 . . . . .  i,~, 1"2 . . . . .  ],).  

COMMENT. F i e d l e r  a n d  P t a k  [4] s a y  " c y c l e "  where  we s a y  "c losed  

p a t h , "  a n d  " s i m p l e  cyc l e "  where  we say  " c y c l e . "  

DEFINITIONS 2.2. (i) If  t3 is a set,  le t  G ,  d e n o t e  the  set  of n x n 

m a t r i c e s  w i t h  e l e m e n t s  in  G. 

(ii) L e t  D be  a ( c o m m u t a t i v e )  i n t e g r a l  d o m a i n  a n d  le t  fl = (il, i2 . . . . .  ira) 
be a p a t h .  F o r  A ~ D~ we def ine  

m--1 

l l a (A  ) = I-I  aijij+r 
j - 1  

If  f l i s  a cyc le  Ha(A ) is s a id  to  be  a cyclic product .  If  f l i s  a p a t h  a n d  

Ha(A ) # 0 we call  fl a nonzero pa th /or  A .  
(iii) L e t  S(~) d e n o t e  t he  s y m m e t r i c  g r o u p  on {1, 2 , . . . ,  n}. F o r  

a ~ S(n~ a n d  A E D n we d e f i n e H , ( A )  = I - I i ~  1 aio(ir Also ,  I I , (A )  is sa id  to  be  
a diagonal product. 

REMARK 2.3. L e t  A E D , .  Le t  fl -- (il . . . . .  i,~,) be  a nonze ro  c losed 

p a t h  (cycle) for  A.  Then ,  for  1 ~ r ~ m, ~ = (it, ir+l . . . . .  ira-l, il  . . . . .  it) 
is also a nonze ro  c losed p a t h  (cycle) for A and  HB(A ) = HT(A ). 
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LEMMA 2.4. (i) Let fl be a closed path. Then  there exist cycles 

Yl, 7~,. • ", Y* such that 

IIB(A ) -= [ I y , ( A ) . . . l l y t ( A  ), /or all A ~ D,,. 

(ii) Let l ~ i, f ~ n. Let  /3 be a closed path through the pa ir  (i, 1"). 

Then there exist cycles Yl, 7'2 . . . . .  Yt such that Yl passes through (i, j) and 

Ha(A)  = l l r , ( A ) ' " I I ~ t ( A  ), /or all A ~ D, .  

Proo/. (i) Let  f i  = ( i l ,  i2 . . . . .  ira) be a closed pa th .  The  proof is by  
induc t ion  of m. If  m = 2, then  fl is a cycle. Assume m > 2 and  t h a t  the  

result  is t rue  for all closed pa th s  :¢ = (1"1, 1.2 . . . . .  1"~) wi th  2 ~ p < m. If  

/3 is a cycle there  is no more  to show. Otherwise,  there exist  integers  q 

and  r with 1 < q < r ~ m  such t h a t  Yt = (iq . . . . .  i~) is a cycle. Thus  

(~ = (il . . . . .  iq, ir+l . . . . .  ira) is a closed p a t h  and  satisfies our  induc t ive  

hypothes is .  Thus  there  exist  cycles Yl . . . . .  Yt-1 such t h a t  Ho(A)  = 
H ~ ( A )  • • • Hvt_I (A ) for all A ~ Dn. Clearly 

IIB(A ) = l lo(A)H~t(A)  = Hy , (A )  . . .  Hy, (A)  

for all A E D~. 

(ii) Le t  D be the  integers,  and  let the  e lements  of A be d is t inc t  
primes.  The  l emma  follows by  un ique  factor izat ion.  • 

COROLLARY 2.5. Let A E Dn. Let  i # 1.. The /o l lowing  are equivalent. 
(1) There is a nonzero path fl / rom i to i. 

(2) There exist a cycle y = (il, iu . . . .  , it), r ~ 3, such that i = i 1 = it, 

i = Jr--1 and 
r - - 2  

I - I  aisi~+ l # O. 
s = l  

Proo/. (2) ~ (1). This  is immed ia t e  since a cycle is a path .  (1) ~ (2). 

Suppose  fl is a nonzero  p a t h  f rom i to i. T h e n  ~ = fl(i, i) is a closed p a t h  
t h r o u g h  the  pair  (j, i). B y  L e m m a  2.4(ii) and  R e m a r k  2.3 there  exist  

cycles Yl, Y2 . . . . .  Yt such t h a t  Yl = (il . . . . .  i~), i = i l  = i~, I" = Jr-1 an d  
l l~ (E)  = I I ~ I ( E ) . . . l l ~ t ( E  ) for all E ~ D, .  Le t  K be the  m a t r i x :  

k~, = a,.~, (r, s) ~ (i, i), 

k~i = 1. 
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Then Hc,(K) # O. Hence Hv,(K ) # O. Thus 

r - - 2  

I-[ai,~,+l ¢ O. • 
S ' ' I  

DEFINITION 2.6. Let  A, B ~ Dn. Then A c B if and only if for all 
cycles p, H~(A) = H~(B). 

REMARKS 2.7. Let  A, B e Dn. Let D e D~ where D is an invertible 

diagonal matrix.  The following statements  are easily verified. 

(i) c is an equivalence relation on D~. 
(ii) D - l A D  c A.  

(iii) A c B if and onlyi f  for all permutat ion matrices P, P-XA P c p -1Bp .  

(iv) A c B implies A 1 c B 1 where A 1, B1 are corresponding principal 
minors of A and B respectively. 

(v) A c B if and only if for all closed paths ~, HB(A ) = IIB(B), see 
Lemma 2.4(i). 

DEFINITION 2.8. Let  A, B E D~. Then A s B if and only if for all 

e s(.~, no (A)  = I L ( B ) .  

REMARKS 2.9. Let  A, B e D,.  Let D 1, Dz e D~ be invertible diagonal 

matrices. The following s ta tements  are easily verified. 

(i) s is an equivalence relation on D~. 

(ii) If per(DID2) -= 1 then D1AD 2 s A. 
(iii) If A s B then PA s PB, for all permutat ion matrices P.  

D E F I N I T I O N  2 . 1 0 .  

implies blj = alj. 

0 
Let A, B e  D~. Then A ~ B if and only if bij # 0 

REMARKS 2.11. Let  A, B E Dn. 
0 0 

(i) The relation ~< is a partial order on Dn. We write A < B if 
o 

A ~ < B a n d A  # B. 
0 0 

(ii) If  A ~< B then for all permutat ion matrices P and Q, PA Q <~ PBQ. 
0 0 

(iii) If  A ~ B, and D1, D 2 a r e  diagonal matrices, then D1AD2 ~ D1BD2. 

(iv) If  D 1 and D 2 are nonsingular diagonal matrices, D1AD 2 = B 
0 

a n d A  ~ B t h e n A  = B. 
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0 
(v) Let oW = DntJ{¢}. D e f i n e ¢ ~ A  for a l l A e D n .  T h e n ~ , f i s a  

o 
complete lattice with respect to ~< (e.g. [3, p. 211). All suprema and infima 

o 

in this paper refer to the relation I ~<. 

0 

DEFINITION 2.12. I f A e D n ,  w e d e f i n e A ~ = s u p { B : B c A ,  B > / A } .  

REMARKS 2.13. (i) A * £ A. This is a consequence of 

(ii) a~j = ai~ if there is a cycle ~ which passes through the pair (i, ]') 

such tha t  Hy(A) # O. Otherwise a~s = 0. 

(iii) Let aij # O. Then ai~ = aij if and only if there is a closed nonzero 

path  through the pair (i, I'), see Lemma 2.4. 

(iv) For  e v e r y r E D , ( A  ~ + rI) = (A + rI)~. 
(v) Let 6c = ¢. Then .~ is a closure operator  on ~o (e.g. [3, p. 421). 

DEFINITION 2.14. The matr ix  A ~ D~ is said to be totally reducible 
if A ~ = A. We will denote by  c~ the set of all elements A ~ D,  such tha t  
A ~ = A .  

REMARKS 2.15. (i) A ~ D~ is total ly  reducible if and only if for each 

pair (i, j) such that  aii # 0 there is a cycle ~ which passes through the 
pair (i, j) such that  H~(A) # O. 

(ii) ~ IJ {¢} is the closure system corresponding to the operator .* 
0 

(iii) A* = inf{B ~ f :  B > / A }  (see Theorem 1.1, E3, p. 43]). 
0 

(iv) A is totally reducible if and only if for all B ~ D~, B ) A and 
B c A i m p l y B  = A. 

LEMMA 2.16. Let A ~ D~. Then the/ollowing are equivalent. 
(1) A e 4 .  

(2) For all i, i, 1 ~ i, ] <.~ n, i/ there is a nonzero path (/or A) ]rom 
i to i, then there is a nonzero path ]rom i to i. 

Pro@ (1) ~ ( 2 ) .  Let  A~c~,  and suppose fl = (il . . . . .  ira). il = i, 

im = i i s a p a t h s u c h t h a t H B ( A  ) # 0. Let  1 ~ s < m .  Sincea~sis+l # 0, 
it follows by  Remark  2.13(iii) tha t  there is a nonzero path (~s from i,+ 1 to 

i s. Let  ~ = ~ _ 1 ~ _ 2 .  • • 81. Then 8 is a nonzero path  from ]' to i. 

0 
1 I t  is he lp fu l  to  r e a d :  A < B as " A  ha s  f e w e r  ze ros  t h a n  B. "  
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(2) -* (1). Suppose (2) holds, and let aij # O. Then there exists a 

nonzero path  fi from j to i. Hence (i, j)fl is a nonzero closed pa th  through 
the pair (i, ~). By Remark  2.13(iii), ai~ = aij. Hence A c = A, and so 

A • ~ .  • 

0 

DEFINITION 2.17. If  A • D.  we define A s = sup{B" B s A,  B >~ A}. 

REMARKS 2.18. (i) A .~s A. This follows from: 

(ii) a [ i =  a ,  if there is a permutat ion a e  S(.) such tha t  a(i) = ] 

and H , ( A )  # O. Otherwise ai~ = 0. 
(iii) If  we put  Cs = ~, then .'~ is a closure operator on oW. 

REMARKS2.19. Let  ~e be the set of (0, 1) matrices in D~. L e t A , B • ~ .  

(i) I f A ,  B ~ d a n d A  c B t h e n A  = B. 
0 

(ii) I f A • ~ a n d B c A ,  t h e n B ~ < A .  

(iii) Ac = s u p { B e ~ : B c A } .  

(iv) I f A  s B t h e n A  ~ = B '. 
0 

(v) I f B s A ,  t h e n B ~ A  s. 

(vi) A ~ =  s u p { B • ~ : B s A } .  

DEFINITION 2.20. The matr ix A • D~ is said to be totally supported 

if A = A '. We will denote by  .5~ the elements A • D~ such tha t  A = A ~. 

REMARKS 2.21. (i) A • D~ is total ly  supported if and only if for 

each pair (i, j) such tha t  aij # 0 there is a permutat ion a such tha t  a(i) = i 

and H~(A) # O. 
(ii) 5P tJ {¢} is a closure system with respect to the operator  .'~ 

0 
(iii) A ~ = i n f { B • 5 ~ : e > ~ A } .  

0 
(iv) A is total ly supported if and only if for all B, B >~ A and B s A 

imply B = A. 

D E F I N I T I O N  2.22. W = {A • Dn: I-L'--, ai~ # 0}. 

LEMMA 2.23. Let A,  B • Dn. 
(i) I /  A c B then A s B. 

(ii) Let A • dg'. I /  A s B and aii = bii, /or 1 ~ i < n, then A c B. 

(iii) Let X = diag(all  . . . . .  an,) and Y = diag(bll . . . . .  b~n). Let A • ,4 z. 

I /  A s B then Y A  c X B .  
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Proo/. (i) Assume A c B .  Let  (~•S( , ) .  Then there exist  cycles 

~1, ~'2 . . . . .  )Jr such tha t  Ho (M)  = 1-[~,(M)HT~(M). . .  I l y t (M ) for all M • D~. 

Hence I Io(A)  = H~(B),  and (i) follows. 

(ii) Assume A • J V ,  A s B  and aii = b ,  for 1 ~ < i  < n .  Clearly 

a,,,~ = b~,~. Let  )J be a cycle, say  ~ = (i 1 . . . . .  i q ) .  Define ~ • S(n I b y  

(l(it) = it+l, t = 1 . . . . .  q --  1, 

a(k) = k, otherwise.  

L e t R  = (k : a (k )  = k}. Since 

H , ( A )  = IIo(A)Hk~Rak~ = H~(B)Hk~Rbk~ = H , ( B ) ,  

and (ii) follows. 

(iii) Let  A '  = Y A ,  B '  = X B .  Then A '  • JV, B '  s A '  and b~i = aii, 

i = 1 . . . . .  n. The resul t  follows b y  (ii). • 

0 0 
LEMMA 2.24. A ~ A ~ ~ A ~, /or all A • D , .  

0 

Proo/. By Defini t ion 2.12, A ~< A *. 
o 

Defini t ion 2.17 we conclude A e ~ A ~. • 

Combining L e m m a  2.23(i) and  

LEMMA 2.25. I / A  • JV" then A s = A ~. 

Proo/. Since A s A .~ we have  b y  L e m m a  2.23(ii) tha t  A c A ~. Thus 
0 0 

b y  Defini t ion 2.12, A */> A s. By  L e m m a  2.24, A ~ ~ A s. Hence A e = A s. 

COROLLARY 2.26. (i) ,~  __~ 5 .  

(ii) y n  ~ = x n ~ .  

0 0 

P r o @  (i) I f A • ~ t h e n A  ~ A c ~ A  ~ = A t h u s A  = A c a u d A • ~ .  

(ii) This is immed ia t e  from L e m m a  2.25. • 

COROLLARY 2.27. I / A  • Dn and A # 0 then the/ollowing are equivalent. 

(1) A • ~ .  

(2) There is a permutat ion matr ix  P such that P A  • JV  fl 5 .  
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Proo/. (1) -~ (2). If A • ~ and A ~ 0 then there is a permuta t ion  
matr ix  such tha t  P A  •~V'. Thus P A  • JV" fl S f = dr/" Ncd. 

(2) -~(1). I f P A • o # ' N ~ t h e n P A • , 9  ° , w h e n c e A • S f .  • 

LEMMA 2.28. Let A • D,, and P be a permutation matrix. 

(i) (p -1Ap)*  = P-~A*P.  

(ii) ( P A )  ~ = P(A") .  

Proo/. (i) A c A c thus by Remark 2.7(iii), P - ~ A P  c p -1A ~p .  B y  
0 0 

Lemma 2.24, A*/>  A and hence, by  Remark 2.11(ii), p - 1 A c p  ~ p - l A p .  
0 

Thus, by  Definition 2.12, p - 1 A * p  ~ (P-1AP)e.  Conversely, by  Remark 
2.13(i) (P-~AP)  ~ c p - l A p .  Thus, by  Remark 2.7(iii) A c p ( p - ~ A p ) ~ p  -~ 

0 0 
and, by  Definition 2.12, A ~ ~ P ( p - 1 A p ) c p - 1 .  Hence (p-1Ap)c ~ P - 1 A c P  

and (i) follows. 
(ii) The proof of (ii) is similar. • 

LEMMA 2.29. Let  A ,  B • D n. 

(i) I /  A • ~ ,  B • ~ and A c B then aij = 0 i /  and only i /  bij = O. 

(ii) I /  A • .Cf , B • .9 ° and A s B then a~ = O i/  and only i /  bit = 0 .  

Proo/. (i) If aij # 0 then there is a cycle fi which passes through 
the pair (i, j) and / / a (A)  # 0. Since A c B, / /B(B) # 0 and hence bij # O. 

Similarly bij # 0 implies a,j # 0. 
(ii) The proof of (ii) is similar. • 

DEFINITIONS 2.30. (i) I fA  • D ,  and l and J are subset of {1, 2 . . . . .  n} 

then A[I]J~ is the submatr ix  of A lying in rows i and columns /" with 

i • I a u d j • J .  
(ii) If A[I[JI  = 0 we shall call A[I[J I  a zero submatrix of A. 

(iii) By  ]I 1 we denote the number  of elements in I.  

LEMMA 2.31. Let A • Dn and (I, J)  be a partit ion o/ {1, 2 . . . . .  n}. 

I / A [ J [ I ]  = 0 then A~[I]J] = O. 

Proo/. There is no nonzero path  for A from ]" to i, if /" • J ,  i • I .  

Hence, by  Lemma 2.16, there  is no nonzero path  from i to ?'. Thus a~j = 0. • 
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DEFINITION 2.32. (i) If a e  Sty) then Po~ D .  will denote the permutat ion 

matr ix  such that  if A e D~ and B = P , A  then bit = ao(~)j for 1 ~ i, 1" ~ n. 

The set of all permutat ion matrices in Do will be denoted by  ~ .  

(ii) For  1 ~ i, i ~ n, let 0¢(i, j) ~ S(~) be the transposition of i and i. 

We now prove the following combinatorial  relation between the .~ 
and the .s operators. 

LEMMA 2.33. L e t  A ~ Dn, a n d  let k be an  integer,  1 ~ k ~ n,  a n d  let 

m = m a x { k , n +  l - - k } .  S u p p o s e  that  ai~ = 0 /or  i =  1 . . . . .  k, i = 

k . . . . .  n.  T h e n  

(i) there exis t  R , ,  S i ~ ~ ,  i = 1 . . . . .  m such  that  

0 = s u p { R i - l ( R i A S i ) c S i - l :  i = 1 . . . .  , m}; 

Let 

Let  

(ii) there exis t  Q~ E # :  i = 1 . . . . .  m such that  

0 = s u p { Q ~ - l ( Q i A ) c :  i = 1 . . . . .  rn}. 

Proo / .  (i) Define 

Ri  = P~(i,k), i = 1 , . . . ,  k - -  1, 

R i = I ,  i = k  . . . . .  m ,  

S i  = P~(k+i.k), i = 1 , . . . ,  n - -  k,  

S i = I ,  i = n + l - - k  . . . . .  m .  

B i  = R i - l ( R i A S i ) c S i  -1,  

B = sup{B/: i = 1 . . . . .  m}. 

J1 - -  0 , . . . ,  k - -  1}, 

11 = {k . . . . .  n} ,  

J2 = {1 . . . . .  k} ,  

12 = {k + 1 . . . . .  n} .  
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We consider 5 (overlapping)  sets such t ha t  each pa i r  (i, i), 1 ~ i, ~ ~ n 
belongs to one of these sets, and  we prove bij = 0 in each case. 

(1) l ~ i ~ k ,  k ~ i ~ n .  

Since R,~ = S m =  I ,  i t  follows t ha t  Bm = A c. Bu t  a,t  = 0, hence pu t t i ng  

F = B,~, we have  / i t  = 0 .  Thusbi~  = 0 .  

(2) k <~ i <~ n, l <~i <~ k - - 1 .  

Since A[J1]I1] = 0, i t  follows b y  L e m m a  2.31, t ha t  a~y = 0. Hence for 

F = B m  we h a v e / i j  = 0. Thus bi j  = O. 

(3) Let  l ~ i ~ k - - 1 ,  l ~ i ~ k - - 1 .  

Let  Ci = R iAS i  • Let  G = Ci ~. Since Ci[J1]I1] = 0, i t  follows b y  L e m m a  

2.31 t ha t  gkj = 0 .  Hence for F =  Bi, we have  /i~ -- 0. Thus  bij = 0 .  

(4) Let  k + l ~ i ~ n ,  l ~ i ~ k .  

Since A[J~]I2] = 0, i t  follows b y  L e m m a  2.31 t ha t  a~. = 0. Hence 

f o r F  = B m ,  w e h a v e / i t  = 0 .  T h u s b i j  = 0. 

(5) k + l < ~ i < ~ n ,  k + l < ~ i < ~ n .  

Let  Cj = R~_kASj_k. Let  G = Ci c. Since C~[Ju]I2] = 0, i t  follows b y  

L e m m a  2.31 t ha t  gik = 0. Hence for F = B~/~t = O, and  so bit = 0. We 

have  p roved  (i). 

(ii) Let  Ri, Si be def ined  as in (i), and  pu t  Qi = SiRi, i = 1 . . . . .  m. 
Then b y  L e m m a  2.28(i), 

R i - I ( R i A S i ) c S i  -1  = R ~ - I S ~ - ~ ( S , R , A S , S ~ - I ) ¢ S , S ~  -1  = Q i - I ( Q i A )  c. 

Hence b y  (i), 

0 = sup{Qi- l (QiA)c: i  = 1 , . . . , m } .  • 

We shall  show tha t  there  exists  a ma t r i x  A for which m p e r m u t a t i o n s  

are ac tua l ly  requi red  in L e m m a  2.33. To show this,  we define a m a t r i x  

A such tha t ,  for each a E S(n), e i ther  ( P , A )  * = P~A or (P,A)  c has precisely 

one zero row and column.  

LEMMA 2.34. Let 1 <~ k <~ n. Let A ~ D,, be defined by: 

a i j =  1, i =  1 . . . . .  k, j = l  . . . . .  k - - l ,  
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aij = 1, i = k + l . . . . .  n, ] = k . . . . .  n, 

a~ = 0 otherwise. 

Let a ~ S(n) and let B = P , A .  

(i) I /  there exists an i, k + 1 <~ i <~ n such that a(i) <~ k - -  1, then 
B c = B.  

(ii) Otherwise, there is a q, 1 <~ q ~ n such that: 

(a) bij = 1 and b~j = O i] either i = q and ~ = 1 . . . . .  k - -  1 or i =  

a(k + 1) . . . .  , a(n) and ~ = q and 

(b) bi~- = bij /or all other (i, j), 1 <~ i, I" <~ n. 

P r o @  Let  

I~ = ¢{1 . . . . .  k},  

12 = a{k + 1 . . . . .  n}, 

Yl = {1 . . . . .  k -  1} ,  

J2 = {h . . . . .  n} .  

Then bij = 1 if either i c 11, i ff Jx  or i E I2,  ]' ff J 2  ; othelavise bit = O. 

Since 151 + IAI = n + 1 we have I 1 N J2  # 4" Hence, there is a q, 

l ~ q . ~ n  such tha t  q f f I  l f l J ~ .  We shall par t i t ion  the set of (i,]'), 
1 ~ i, ]" ~-~ n into 4 sets, and consider bi~. in each case. 

(1) i ~ J1, i ~ 11. 

Then  (j, i) is a nonzero pa th  (for B),  whence bi~. = b~j, by  R e m a r k  2.13(iii). 

(2) i e Y2, i ~ I~ .  

Again (i, i) is a nonzero path ,  whence bi~. = bii. 

(3) i E Y l ,  j ~ 12. 

(i, q, i) is a nonzero pa th  and b~. = bit, b y  R e m a r k  2.13(iii). 

(4) i ~ J o, i E 11. 

Now we mus t  consider two cases. 

CASE (i). 12 fl J1  # ¢. If  p ~ Io fl J1  then (i, P, i) is a nonzero path.  
Thus  bi~ = bii, by Remark  2.13(iii). 
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CASE (ii). Io  [3 Yl = 9 6. In  th is  case {q} = 1113 J2.  Also  11 = J1  tJ {q}, 

J2  = I2 o {q}. If  b~ # 0, t h e n  l ff J1  G I 1. H e n c e  b y  i n d u c t i o n  on the  

l eng th  of the  p a t h  f rom ]' to  l, if (j" . . . . .  l) is a n o n z e r o  p a t h ,  t h e n  l ff J1.  

Thus  the re  is no nonze ro  p a t h  ( j , . . . ,  i). I f  i ~ 12, ]' ~ J1  or  if i = j = q, t h e n  

bi; = 0 whence  b~j = 0. If  i = q, and/"  E J1  then  bij # 0 while ,  b y  R e m a r k  

2.13(iii),  b ~ ; . = 0 .  S i m i l a r l y  if i ~ I  2 a n d  ] ' =  q, b~-j# 0, whi le  b ~ j = 0 .  

W e  have  now c o n s id e r e d  al l  pa i r s  (i, j), 1 ~< i, i ~ n. In  case  (i) 

bij = b~j, for  a l l i ,  j ' =  1 . . . .  , n .  In  case  (ii), bi~ # O a n d b i ~ . =  O i f i = q  

and  j = 1 . . . . .  k - -  1 or  if i = a ( k +  1) . . . . .  a(n) a n d  ]" = q; o the rwise  

bi~. = bit. • 

THEOREM 2.35. Let  A be the matrix  in L e m m a  2.34, and let m = 

m a x ( k , n +  l - - k ) .  Let P ~ # ,  i = 1 . . . . .  1. I /  0 = sup{p~- l (p~A)c:  

i = 1 . . . . .  l } t h e n l ) m .  

P r o @  Le t  l be an  in teger .  L e t  F = sup{Pi - s (P iA)*:  i = 1 , . . . , l } .  

B y  L e m m a  2.34, F has  a t  m o s t  l rows  w i th  all  zero  en t r i e s  a n d  l co lumns  

wi th  all  zero ent r ies .  H e n c e  if F = 0, t h e n  l > / m .  • 

LEMMA 2.36. Let A m ,  A (~1 . . . . .  A tk) be matrices in  D~. Let  P ,  Q ~ ~ .  

Then 

P sup{A(~ :  r = 1, 2 . . . . .  k}Q = sup{PA(r~Q: r = 1, 2 . . . . .  k}. 

P r o @  L e t  a a n d  v be  the  p e r m u t a t i o n  a s soc i a t ed  w i th  P a n d  Q 

re spec t ive ly .  L e t  A = sup{A(~): r = 1 . . . . .  k}, C (r) = PA(~)Q, a n d  C = 

sup{C(r ' :  r -- 1 . . . . .  k}. T h e n  ci~ = a,(i,,¢¢,, c~) = a(a~!),(j), i ,  j = 1 . . . . .  n. 

F u r t h e r ,  aij = a~}' if a~. ) = a~}), r = 1 . . . . .  k, o the rwi se  aij = O. S i m i l a r l y  
= c! 1.) i f  cl~ ) ~(1) % -,j = ~i~, r = 1 , . . . ,  k, otherwise  % = 0. T h e  l e m m a  

follows. • 

THEOREM 2.37. Let  A ~ D n. 

(i) I]  A s #  O, then there exists a permutat ion matr ix  Q such that 

A s = Q-I(QA)*. 

(ii) I]  A s =  O, then there exists m, 1 <~ m <~ n and permutat ion 

matrices Q1, Q2 . . . . .  Qm such that 

A s = sup{Qi- l (QiA)*:  i = 1 . . . . .  m}. 
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Proo/ .  (i) Let  A ~ # 0. By  Corol lary 2.27 there  exists a ~ S(~) such 

t h a t  P ~ A ~ s V ' [ ' I c ~ .  Hence,  b y  L e m m a  2.25, A ~ = p o - I ( p ~ A ) 8 =  

P ~ - I ( p ~ A ) c .  

(ii) Suppose A ~ = 0. By  the  Froben ius -KSnig  theorem (see [6, p. 97]), 

there  exis t  P ,  Q ~ ~ a n d  there  exists  a k ,  1 ~ k ~ n such tha t  for C = P A Q ,  

we have  C[I[J]  = 0  where I = {1 . . . . .  k}, J =  {k . . . . .  n}. Let  m = 

max{k, n + 1 - -  k}. Then m ~ n. B y  L e m m a  2.33 there exist  Qi' ~ ~ ,  

i = 1, 2 , . . . ,  m such t ha t  

0 = sup{ (Qi ' ) - l (Qi 'C)  c : i  = 1 . . . . .  m}.  

Let  Qi = QQi 'P .  Then 

sup{Q i - l ( Q i A) * :  i = 1 . . . . .  m }  

= s u p { P - 1 Q I ' - I ( Q i ' P A Q ) * Q - I :  i = 1 . . . . .  m}  

= p - m  sup{Qi , - l (QiC)e :  i = 1 . . . . .  m}Q -1 

b y  L e m m a  2.36. Hence 

s u p { Q i - l ( Q i A ) c :  i = 1 . . . . .  m}  = 0 = A ~. • 

REMARK 2.38. Le t  A be the  m a t r i x  

a ~ j = l ,  i =  1 . . . . .  n, i =  1 , . . . , n - - 1  

ain = O, i = 1 . . . . .  n .  

Then,  if P ,  ~ ~ ,  i = 1 . . . . .  l and  

0 = s u p { p ~ - l ( p i A ) e :  i = 1 . . . . .  l} 

then,  b y  Theorem 2.35, l ~ n. Thus  the  bound  on the number  of p e r m u t a -  

t ion matr ices  in Theorem 2.37 is the  bes t  possible.  

COROLLARY 2.30. I /A ~ D,~ then : 

(i) A 8 = s u p { P a ( P , A ) c :  a e  S(n)}, 

(ii) A 8 = s u p { ( A P ~ ) c P a - l :  a ~ S(n)}, 

(iii) A ~ = s u p { p ~ - I ( p ~ A P , ) c P , - I :  a, T E S(m }. 
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0 
Proo/. (i) B y  Theorem 2.37, A ~ ~ sup{po-l(poA)c: a E S(,)}. But ,  

0 0 
for a l l aE  S(~), A s = P~-I(P~A)~ ~ P~-I(p~A)~. Thus  A s ~ sup{P~-~(P~A)~: 

(ii) L e m m a  2.33 can be proved for post mul t ip l icat ion b y  pe rmuta -  
tion matrices.  Hence  (ii) follows similarly. 

0 
(iii) A s ~ sup{pa-I(paAP~)~P~-I: a, ~ ~ S(,o}. For  all a, v ~ S(~), A s = 

0 0 
p~ -l(p~A P~) sp,-1 >~ p~ -1 (P~A P~) cp~-l. Thus A s /> sup{Po-I(PoA P~) cp,-1 : 

a, ~ E S( . ) } .  • 

DEFINITION 2.40. W0 = W U {zero matrix}. 

COROLLARY 2.41. (i) St  = A {Pfd':  a e S(n)}. 
(ii) St = 0 {P~(JV" o A ~ ) :  a E S(n)} .  

Proo]. (i) B y  Corollary 2,26(i), for all a E S(n), St  = P J r  _ P . ~ ,  
whence St _c fl {p.%o: a ~  S(n)}. Let  A ~ A {pc~ :  a E  S(.)}. Then  for all 
a e S(~), we have  P . A  ~ ~.  Hence (P.A) c = P . A .  Hence b y  Corollary 
2.39, A s = sup{pa-l(p~A)c: a E S(.)} = A. Thus  A E St. 

(ii) B y  Corollary 2.26(ii), for all a e S(.), St  ~ p.(~4z0 n c~). Thus  
St  ~ U {P~(W o fl ~)  : a ~ S(~)}. Conversely if A E U {Po(Wo fl (g) : a ~ S(~)} 
then there exists P such t ha t  PA ¢ X o  flcg. If  P A  = 0 then A = 0 and 
A ~ S t .  If  A # 0 then  P A ~ X N ~  = J V f l S t ,  by  Corollary 2.26(ii). 
Thus PA ~ St  and A ~ St. • 

SECTION 3 

DEFINITION 3.1. Let  i, 1' be in the set {1, 2 . . . .  , n}. Let  A ~ D~. We 
shall say i A/" if either i = j', or there exists a closed pa th  7 = (il, i2 . . . . .  ira) 
and an integer s, 1 ~ s < m ,  such tha t  i = i l  = i r a  and i = i s  and 
l ly(A) # O. 

REMARK 3.2. (i) i A  1" if and only if there  exist pa ths  ~1, ~2 such 
tha t  ~1 is a pa th  f rom i to/ ' ,  72 is a pa th  from ?" to i and l ln(A)ll~2(A ) # O. 

(ii) A is an equivalence relation. 
0 

(iii) L e t B e D ~ a n d B ~ A .  Then, f o r l ~ i , i ~ n ,  i f i A i t h e n i B i .  
(iv) I f  (I, J )  is a par t i t ion  of {1,2 . . . . .  n} and A[I]J] = 0 then 

A 
i,-~i for i e I ,  ieJ.  
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(v) L e t A ~ C ~ .  I f a i ~ #  0, t h e n i A / ' .  
(vi) L e t A c B .  T h e n i A i i f a n d o n l y i f i B i .  

DEFINITION 3.3. Le t  A 6 D~ and let A be the equivalence relation 
of Definition 3.1. Then A is called irreducible if i A  i for all i,/ ' , 1 
i, i ~< n. If  A E D~ is not irreducible, then A is called reducible. We denote 
the set of irreducible matr ices  in D ,  b y  (6'1. 

LEMMA 3.4. The /o l l ow ing  are equivalent: 
(1) A e cal. 

(2) For  all i and I", i # ]', there is a cycle y,  y = (i 1, i2 . . . . .  i~), such 
that i i l  i, ,  i ~ -1  and , -2  = = = " l ~ I s = l  aisis+l ~ O. 

Proof.  (1) -~ (2). This is Corollary 2.5 and  Definition 3.3. 
(2) -~ (1). Let  i and j be given 1 ~ i < i ~< n. Then there is a pa th  71 

f rom i to 7" and a pa th  72 f r o m /  to i such tha t  H~,~2(A ) # O. Thus i A i 
for a l l i ,  i , i #  l " a n d A ~ l .  • 

REMARKS 3.5. (i) Eve ry  1 × 1 mat r ix  is irreducible. 
(ii) c~ c__ ft. 

(iii) Le t  A 6 c~ 1. Le t  (I, J )  be a par t i t ion  of {1 . . . . .  n}. Then there 

exist i E I ,  i 6 J such tha t  a o # 0. 
(iv) Let  E, F be two equivalence classes for A. We m a y  define E ~< F 

if there exist i ~ E and/" 6 F such t ha t  there is a nonzero pa th  for A f rom 
i to/ ' .  Then it is easy to see tha t  ~ is a par t ia l  order on the set of equivalence 
classes. Fur ther ,  if E < F,  then A[F[E]  = O. 

(v) I t  is easy to see tha t  any  finite par t ia l ly  ordered set has a to ta l  
ordering consistent with the par t ia l  ordering. Let  E1 . . . .  , Er  be the 
equivalence classes fo rA ordered so t ha t  Ei  ~ Ej  implies i <~ i, i ~< i,/" ~ r. 
Thus  there exists a pe rmuta t ion  ma t r ix  P such tha t  

p r A p  = 

AEEl lE1]  AEEIIE2? 

0 A[E2IE21 

0 0 

• . .  AEEllE~] 

• " AEE2IEr? 

o o AEE~IE~] 
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where p T A p  is in block t r iangular  form and A[EdE~I E ~ I ,  1 ~ i ~ r. 
(vi) By  R e m a r k  3.2(v), the following are equivalent  

(1) A e ~.  

(2) There is a P ~ ,  such tha t  p T A p  = Bl l  @ " "  @B~,  where 
B i i ~ l ,  1 ~ i ~ r .  

DEFINITION 3.6. (i) Let  A ~ Dn. We call A ]ully indecomposable if 
A # 0 and PA is irreducible for all P ~ ~ .  

(ii) The set  of fully indecomposable  matr ices in Dn will be denoted 

by  .9°1 . 

REMARK 3 . 7 .  (i) I f  n > 1,  then ~cz 1 = fl {Po(~I, a ~ S~,o}. 
(ii) I f  n = 1, ~ 1  consists of all nonzero matrices.  

DEFINITION 3.8. Le t  ~ be defined as in R e m a r k  2.11(v). Le t  M be a 
n o n e m p t y  subset  of ~ .  Then M is an initial segment of ~ if A e M and 

0 
B ~ A i m p l y B E M .  

REMARK 3.9. (i) I t  is easily seen tha t  the intersection of a set  of 
initial segments  is again an initial segment,  since ¢ belongs to every  such 
segment.  

(ii) JV 0 {4} is an initial segment  of ~¢. 

LEMMA 3.10. (i) (~1 O {4} is an initial segment. 
(ii) ~cP 1 0 {4} is an initial segment o/ .LP. 

0 

Proo/. (i) Let A ~ c~ 1 and let B ~ A, where B ~ Dn. Then, by Remark 
3.2(iii) i A  i implies i B j ,  1 ~ i, j ~ n. But A E~I ,  i A  ],/or all i, j, 1 <~ 

i , i ~ n .  H e n c e i B i , / o r a l l i , ~ , l  ~ i , i ~ n .  
0 

(ii) I] n = 1, distinct elements o/ ~9~1 are incomparable under ~ and 
0 

the result is true. Assume n > 1. I[ B ~ A then by Remark 2.11(ii), 
0 

PB ~ PA  /or all P ~ ~ .  Hence by (i), P ~ I  U {6} is an initial segment o/£e. 
By  Remark 3.7, ~ 1  = fl {P~C~l, a ~ S~n~}, whence, by Remark 3.9(i), o~ 10 {¢} 
is an initial segment. • 

LEMMA 3.11. 9°~ _~ ~ .  
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Proo/. If  n = 1, ~9~ -- ~9 a. Let  n > 1. By  Remark  3.5(ii), ~'~ _ ~ .  
B y  Remark  3.7(i) and by  Corollary 2.41(i) 

~ = n { P ~ :  a e S ( . ) }  __q n { P , W :  a e S ( .~}  = 90. 

As Remark  3.7(i) shows, it is immediate  from our definitions tha t  

we m a y  replace 2f  by  cf~ and ~ by  (~1 in Corollary 2.410). The same 

replacements may  be made in Corollary 2.41(ii), but  the proof is harder. [ ]  

LEMMA 3.12. Let B ~ D~, and let a ~ S(~ I. I / P o B  ~ W then i B a(i) , /or  

i = 1 , 2  . . . . .  n. 

Pro@ If  a(i) = i, then i B  a(i). So suppose a(i) # i. Let  1 ~ i ~ n 

and suppose a m ( i ) = i ,  a k ( i ) #  i, 1 ~ k < m .  Let y be the cycle 

[i,a(i) . . . . .  am(i)~. Let G = P , B .  Then for k = 1,2 . . . .  , m - -  1, 

bok+l(~)ok(O = go~(~)~(O # 0 since G ~ W .  Hence II~(B) # 0 and i B a(i). [] 

LEMMA 3.13. Let B ~ D,  and let a E S(n). I] a(i) B i /or  i = 1, 2 . . . . .  n 

and G = P~B then i G i implies i B i, l ~ i, i ~ n. 

Pro@ By definition, i B i ,  i = 1 . . . . .  n. So suppose ?" # i. Let  

i G ?'. Then there exists a closed path  y = (il, i~ . . . . .  ira) and an s, 1 < 

s < m, such tha t  il = i m  = i, i8 = ~" and//~(G) = gili2g~i3.. • gim-lim # O. 
Hence b,ul)i2b~(i2)i . . .  b~(~m_l)im # O. But  ik Ba( ik) ,  k = 1 . . . . .  m -- 1. 
Hence there exist paths  flk from ik to a(ik) such tha t  Hak(B ) # O. Let 

y = {fll[a(il), ie l f l~"" flk[a(im-1), imP}. Then Hy(B) # 0 and y is a closed 
pa th  which satisfies Definition 3.1. Hence i B j .  [ ]  

The following lemma is analogous to a lemma of Brualdi, Parter,  and 

Schneider [2, Lemma 2.31. 

LEMMA 3.14. Let A E D~. The ]ollowing are equivalent. 
(1) A ~  1. 

(2) There exists a P ~ ~ such that P A  ~ .A z N ~1. 

Pro@ (1) ~ (2). Let  A e ~1 .  By  Corollary 2.27 and Lemma 3.11, 

there is a P ~ ~ such tha t  P A  E W .  By Definition 3.6, P A  ~ c~ 1. 

(2) ~ ( 1 ) .  L e t G  = P A e W f l ~ I .  L e t a ~ S ( . ) a n d B  = Po-IG. Since 

P , B  eM/', it follows by  Lemma 3.12 tha t  i B  a(i), for all i, i = 1 . . . . .  n. 

Since G ~ c~ 1 we have i G i, for all i, f, 1 ~ i, j" ~ n. Hence, by  Lemma 3.13, 

i B i f o r i ~ i , i ~ n .  T h u s B e ~ l .  Since a was arbitrary,  A ~ S Z l  . [ ]  
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COROLLARY 3.15. ~ 1  = 13 {Po(~4 / fl c~1): a e S{~}}. 

LEMMA 3.16. (i) A e ~1 and B c A imply  B e ~1. 

(ii) A e ,~O~ 1 and B s A imply  B e SP 1. 

Pro@ (i) follows f rom R e m a r k  3.2(vi). 

(ii) B y  L e m m a  3.14, there  is a P s u c h  tha t  P A  E~/V" fl ~1" B y  R e m a r k  
2.9(iii), P A  s P B .  Let  A '  = P A ,  B '  = PB ,  and  let X = diag(a~l . . . . .  a~,), 

Y = diag(b~l . . . . .  b~D. B y  L e m m a  2.23(iii), Y P A  £ X P B .  B y  L e m m a  

3.160), X P B e d f f f ) c C 1 .  Hence  P B e , / f f O c ~ l ,  and  so b y  L e m m a  3.14, 
B e  .9°1. • 

The nex t  l e m m a  is the  d iagonal  p roduc t  ana logue  of L e m m a  3.4 for 

fully indecomposab le  matr ices .  I t  is similar to a l e m m a  due to Bruald i  

[1, L e m m a  1]. 

LEMMA 3.17. The ]ollowing are equivalent. 

(1) A e SPl. 
(2) For all i and ~ there is a permutation a e S ~  I such that a(i) = ~ and 

Pro@ (1) ~ (2). Assume  A c ~ 1 .  Then  there  is a p e r m u t a t i o n  

p e S ( ~  I such t h a t  P e A e W I N W .  Let  B = P E A .  L e t i ,  1 "beg iven ,  1 
i , j ~ n .  

CASE 1. If  p- l ( i )  = ], t hen  let a = p. Then,  since B e W ,  

o # 1 - I b .  = Hae.,  = YIa o, ,. 
l ~ o -  ~(i) l ~ p -  ~(i) k~i  

CASE 2. Le t  p - I ( / ) #  ]. B y  L e m m a  3.4, the re  is a cycle 7 = 

(il . . . . .  i t_l ,  it) such t h a t  il = ir = i and  i ,_ 1 = p- l ( i )  and  1-I~-~ bis*s+l # 
0. Define 7 e S(n) b y  7(i~) = i,+1, s = 1 . . . . .  r - -  1, 7(l)' = l, otherwise.  
Then  since B e d~', we have  

o # = = Y I a , o , , , .  
Icp--  1(i) l•p-- l(i) l~ i  

where a = yp-X. 

(2) ~ (1). Le t  p e S{n}, and  let B = PpA.  W e  first shall  show tha t  

B satisfies (2). Let  1 ~ i, 7" ~ n. B y  a s sumpt ion  there  exists  a a e S{n) 
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such tha t  ap(i) = i, and YIl~p(0 a,,(,) # 0. Let  ~ = ap. Then )~(i) = I" and 

k~i k~i /:#p(i) 

Now we show tha t  B satisfies L e m m a  3.4(i). Le t  1 ~ i, i ~ n and i # j. 

Let  ~ ~ S(,), ~(i) = 1", and I-[k~i bky(k) # 0. There is a cycle ~ = (i 1 . . . . .  i~), 

withis  vs-l(/ ') ,] 1, . , r ,  a n d i  it_ 1,] i 1 i , , a n d  ' -~  . . . . . . .  H s ¢ l  bis,is+l # O. 
Thus, b y  Definit ion 3.3, B ecda, and it follows by  definition, tha t  A e St1. • 

LEMMA 3.18. Let A c Dn. Then  the /o l lowing  are equivalent. 

(1) A ~ cgl. 
0 

(2) For  all B ~ Dn, i /  B ~ A c and B c A ,  then B = A ~. 

0 
Proo/.  ( 1 ) ~ ( 2 ) .  L e t A ~ l , B ~ A c a n d B c A .  T h e n B a ~ l ,  b y  

0 0 
L e m m a  3.16(i). Hence B = B c = s u p { C : C c B ,  C > / B } .  Thus B 
Ac  = A ,  and so B = Ac. 

(2) --*(1). Suppose A 6 ~ 1 .  Then there exist s , t ,  l ~ s , t ~ n  such 
A A c 

tha t  s ~-~ t. Let  G = A *. Then, by  R e m a r k  3.2(iii), s ~ t. Hence b y  R e m a r k  
3.2(v), gst -- 0 andHa(G)  = 0 for every  path/3 f rom t to s. Define B c Dn b y  

bst = 1, 

bij = g i j ,  otherwise, 1 ~ i ,  1 ' ~ n .  

0 
Then B ~ G = A ~. Let  ~ be a cycle through the pair  (s, t). ThenHv(B)  = 
bstIIB(B ) where fl is a pa th  f rom t to s which does not pass through (s, t). 

Hence / /B(B)  = HB(G ) = 0. If  r is a cycle t ha t  pass through (s, t), then  
clearly II~(B) = II~(G). Hence B c G = A c. Thus  (2) does not  hold. • 

LEMMA 3.19. Let  A ~ Dn, and i /  n = 1, let A # O. Then the /o l lowing  

are equivalent. 

(1) A ~ 6 P 1  • 
0 

(2) For  all B ~ Dn, i /  B ~ A s and B s A then B = A s. 

Proo/.  (1) ~ (2). The proof is similar to the proof of L e m m a  3.18, 
(1) ~ (2), with c replaced by  s. 

(2) -~(1). CASE(i). A* = 0 .  T h e n n >  1. 
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Let B = (bi~) where b l l  - -  1, bij = 0 otherwise. 
B s A. Hence (2) is false. 

0 
Then B < A  8 and 

CASE (ii). A s #  0. Assume (2). There exists a P •  ~ such that  

A '  = P A  • s V .  We now verify tha t  Lemma 3.18(2) holds for A' .  So let 
0 0 

B ' <  (A') ~ and B ' c A ' .  Then, by  Lemma 2.25, B ' ~ <  (A')L and, by  
o 

Lemma 2.23(i), B '  s A' .  Let  B = p - 1 B ' .  Then B <~ P - I ( P A ) ~  = A L  by  

Lemma 2.28, and B s A. Hence, by  assumption B = A '~. Hence B '  = 
P A  8 = (A') s. But  (A') ' = (A') c. Hence B '  = (A') *. We have verified 

Lemma 3.18(2). By  Lemma 3.18, we now deduce tha t  A '  • s f  z flcd 1. I t  

now follows from Lemma 3.14 that  A = P - 1 A '  • ~ f l .  []  

REMARK 3.20. (i) In  view of Remark  2.19, a similar proof to Lemma 

3.18 yields: Let  A ~ ~e. Then the following are equivalent. 

(1) A ~  1. 

(2) For  a l l B • ~ e ,  i f B c A  t h e n B  = A~. 

(ii) Similarly, let A e ~e. Then the following are equivalent. 

(1) A ~ 5  p. 

(2) For  a l l B • o ~ , i f B s A  t h e n B - - -  A 8. 

SECTION 4 

In the sequel, F will denote a field. 

THEOREM 4.1. Let  A ,  B • g'. Then the/ol lowing are equivalent. 

(1) A c B. 

(2) There exists a nons ingular  diagonal matr ix  D • F ,  such that A = 

D -1BD.  

P r o @  (2) ~ (1). By  Remark  2.7(ii). 

(1) -+ (2). Let  I1 . . . . .  Ir  be the equivalence classes for A,  and choose 

representatives i 8 c I8, s = 1 . . . . .  r. We shall define di, i = 1 , . . . ,  n. If 

I.~ = {i}, put  di = 1. Next  suppose tha t  1181 > 1, and let i • I , .  Since 

A ~ (g there exist nonzero paths fli from i8 to i and 7i from i to i,. Since 
fliT, is a closed path  it follows by  Remark  2.7(v) tha t  

ITB~(A)Hy~(A ) = I],i~i(A) = Hain(B)  = I la i (B)Hri (B ). 
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Hence IIai(B ) # O. Put  

17&(A ) II,,(B) 
d, = I1B,(B ~ = //y,(A------y (4.1) 

Let 1'e I.~. Since fli(i, ])75 is a closed path,  we similarly obtain 

llBi(A )ai~II~)(A ) = I la i (B)biJI~/B ), 

whence 

//B,(B) IL,(B) 
ao = bi~ - di-lbif l j .  

Ha,(A ) Hv,(A) 

Let 1 ~ s ~ r ,  and let i 6 Is, 1 ~ i ~ . < n .  Then by  Remark3.2(v) ,a ,~  = 0 

and, by  Remark  3.2(vi) bi~ = 0 whence aij = di-lbiflj .  Let D = 

diag(dl . . . . .  d,). Then A = D-1BD.  • 

REMARK 4.2. Let ~/ be a subset of the field F. Let A,  B e cd and 

A E B .  Letf l i ,  l ~ i ~ n ,  be the paths in the proof of Theorem 4.1. If  

I lai(A)[IIBi(B)]-le 2, i = 1 . . . . .  n then it follows from Eq. (4.1) tha t  

there is a nonsingular D e 9/~ such tha t  A = D-1BD.  In particular if F 

is an ordered field, and A, B e F ,  ÷ then there is a D e Fn + for which 
A = D-1BD.  

COROLLARY 4.3. Let A,  B e F, .  Then the/ollowing are equivalent: 
(1) A c B. 

(2) There exists a nonsingular diagonal matrix D e F ,  such that A c = 
D-1BcD. 

COROLLARY 4.4. Let A e (~1, and let B e F~. Then the ]ollowing are 
equivalent. 

(1) A c B. 

(2) There exists a nonsingular diagonal matrix D, unique up to a scalar 
multiple, such that A = D-1BD.  

(3) There exists a nonsingular matrix D such that A = D-1BD.  

Proo/. (1) -+ (3). Assume (1). By  Lemma 3.16, B ~ I ,  and (3) 
follows by  Theorem 4.1. 

(3) ~ (2). Suppose A = D - 1 B D  = D ' - I B D  '. Let  G = D-1D '. Then 

G - l A G  = A.  Suppose tha t  c = g n  . . . . .  gk,, where l ~ < k < n .  
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Clearly c # 0. Since A is irreducible,  there  exists  i, 1 ~ i ~ k and  ], 

k + 1 ~< ~" ~ n such t ha t  aij # O. Hence ai~ = g~laijg~j, whence gj j  = c. 
The l emma follows b y  induct ion.  

(2) ~ (1). By R e m a r k  2.7(ii). • 

THEOREM 4.5. Let A E F~. Then the/ollowing are equivalent. 

(1) A is irreducible. 

(2) For all B ~ Fn i/ A c B then there exists a nonsingular diagonal 

D ~ Fn such that D-1BD = A. 

Proo/. (1) ~ (2). This  is immedia te  b y  Corol lary 4.4. 

(2) ~ (1). Le t  A be reducible.  

CASE (i). A = A c. Then by  L e m m a  3.18, there  exists  B e F n such 
o 

t ha t  B £ A and B < A c = A. Hence, for all  d iagonal  matr ices  D, D-1BD # A. 

0 
CASE (ii). A # A c. T h e n A  < A %  a n d A c A  t. 

d iagonal  ma t r i x  D such t h a t  D-1A cD = A. • 

Hence there  is no 

LEMMA 4.6. Let A ~ Jr" and A s B. Let X be a diagonal matrix. Then 

X A  c B i / a n d  only i / X  = diag(b11/aml . . . . .  bnn/a~). 

Proo/. Let  G = X A  c B. Since gi~ = bil, i = 1 . . . .  , n, i t  follows t ha t  

X i  = bidai~, i = 1 . . . . .  n. Conversely,  let  X be as in the  s t a t emen t  of the  

lemma,  and  pu t  G = X A .  Then G e Jr ' ,  and  g ,  = b , ,  i = 1 . . . . .  n. Hence 

b y  L e m m a  2.23(ii), G c B. 

REMARK 4.7. In  L e m m a  4.6, per  X = 1. 

THEOREM 4.8. Let A ,  B ~ Fn. Then the/ollowing are equivalent: 

(1) A s B .  

(2) There exist diagonal matrices D1, D2 with per  D1D 2 = 1 such that 
A s = D1B*D2. 

Proo/. (2) ~ (1). B y  Remark  2.9(ii),  

A s A s = D1BsD2 = (D1BD2)s s D I B D  2 s B. 

(1) ~ ( 2 ) .  CASEI. A s = 0 .  T h e n B  s = 0 , a n d ( 2 )  follows. 
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CASE II .  A ' # 0. Since A ' ~ ~9 °, it follows by Corollary 2.27 tha t  

there exist P ~ ~ such tha t  P A  ~ ~ dF fl ~ .  Since PA ~ W,  by  Lemma 4.6 

there is a diagonal matr ix X such tha t  per X = 1 and X P A  c PB,  whence 

also (PB)*c ~A/'. Thus by  Corollary 4.3 there is a nonsingular diagonal 

matr ix  D such that  D-I(pB)*D = (XPA)  c, and by Lemma 2.25, (PB) ~ = 

(PB)L (XPA)  c = (XPA)  ~. Thus 

D-1PB.~D = D-I(pB).~D = (XPA)  s = X P A  .~ 

by  Lemma 2.28(ii). Let D1 = p - 1 X - 1 D - 1 P ,  D2 = D. Then per D1DO- = 1 

and DIB'~D~ = A "~. • 

REMARK 4.9. Let F be an ordered field, and let A, B ~ F~ +. Suppose 

A s B. Then the matrix X of Lemma 4.6 is also in Fn +. Hence it follows 

by  Remark  4.2, and the proof of Theorem 4.8 tha t  the matrices D1, Do 

in (2) of Theorem 4.8 m a y  be chosen in Fn +. 

COROLLARY 4.10. Let A,  B ~ Fn. Then the /ollowing are equivalent. 

(i) There exist a d ~ F, d # 0 such that A s dB. 

(ii) There exist nonsingular diagonal matrices D1, D 2 such that A "~ = 

D1B*D2. 

COROLLARY 4.11. Let A ~ F~ be a /ully indecomposable matrix. Let 

B ~ F, .  The/ollowing are equivalent. 

(1) A s B. 

(2) There exist diagonal matrices D1, Do ~ F~ with per DID2 = 1 such 

that A = D1BDO-. 

Proo/. Use Lemma 3.16(ii) and Theorem 4.8. • 

THEOREM 4.12. Let A ~ F~. Then the/ollowing are equivalent. 

(1) A i s /u l l y  indecomposable. 

(2) For all B ~ Fn, i / A  s B then there exist diagonal matrices D1, Do- 

with per DIDO- = 1 such that D1BDO- = A.  

Proo]. (1) -* (2). Use Corollary 4.11. 

(2) --, (1). Let A ~ ~1 .  

CASE (i). A = A *. By  Lemma 3.19, there exists B e Fn such tha t  
o 

B s A and B < A s -- A. Hence, for all diagonal matrices D1, D2, DIBDO- # A.  
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0 
CASE (ii). A # A ~. T h e n A  < A " a n d A s A  ~. Hence there  are no 

d iagonal  matr ices  DI,  Do- such t ha t  D1A'~Do- = A.  [] 

Uniqueness in (4.11) is discussed in the  following lemma.  

LEMMA 4.13. Let A E Fn be ful ly  indecornposable. Let B c F,, and let 

D1, D2, D / ,  Do' be diagonal matrices such that A = D1BD2 = DI'BD2' ,  

and per  D~D2 = per  DI'Do-' = 1. Then there is a nonzero c ~ F such that 

DI '  = cDo- and D 2' = c-IDo-. 

Proof. By R e m a r k  2.9(ii) and  L e m m a  3.16(ii), B ~ 501. Hence by  

L e m m a  3.14, there  is a P e ~  such tha t  P B  ~ J V ' f l ~ a .  Let  G1 = 

p D I - I D I ' P  -1 and  G2 = D2'D2 -1. Then P B  = G1PBG 2. Since P B  ~ J f f  , i t  

follows t ha t  G1 --- G2 -a. Since P B  c ~1, i t  follows b y  Corol lary 4.4 tha t ,  

for some nonzero c 6 F, GI = cI. Hence Da-aD 1' = p - a c I P  = cI, whence 

DI'  = cD1. Final ly ,  D2'D2 -1 = c -U,  whence D 2' = c-aD~. []  

As an appl ica t ion  in this  section we shall generalize a resul t  due to 

Pa r t e r  and  Youngs [9]. 

DEFINITIONS 4.14. Let  a --* c/be an endomorphism of the mul t ip l ica-  

t ive group P\{0},  and  let  6 = 0. 
(i) We  denote  b y  91 the set of all a e F such tha t  there  exists  b ~ F 

for which a = b~. 
(ii) If  A ~F~,  then B = A t is the  t ranspose of A in Fn: bij = a~i, 

l < ~ i , j < ~ n .  
(iii) If  A e F ~ ,  then  G = A is the mat r ix  given b y  g~ = ~ -  for 

l<~i,i<~n. 

REMARKS 4 .15 .  

(ii) 

(iii) 

(iv) 
(v) 

(vi) 

(i) I f  a, b ~ 91, then ab ~ 9i. 

If  a ~ 91, a # 0 then  a -1 ~ 91. 

(X)* = (At). W e  wri te  d t for (A) t. 

If  G = A c, then  C* = (X*)*. 

If  A c B then  ./i t c / g t .  

If X ,  Y ~ P,~, X A  y t  = ~ q 4 t X q  

REMARK 4.16. There  are m a n y  na tu ra l  examples  of mappings  a -* ~/ 

sat isfying Defini t ion 4.14. Let  m be any integer. Then the mapp ing  
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given by  5 = a m (a # 0) is an example for every field F. Another  example 

is the usual conjugacy for the complex field. 

REMARK 4.17. Let B ~ F~, and B -- /~t. 

(i) If  b ,  # O, then bit = 5i~ # 0. 
(ii) B e cg, since bii # 0 implies bi~bai # O. 

LEMMA 4.18. Let  A ~ ~ .  I /  A c 71 t, then a~  # 0 impl ies  aj~ # O. 

Proo/.  Let A E ~ ,  A c . / i  t and a ~ #  0. Then there exists a cycle 

= (i 1 . . . . .  it) with i 1 = i, ie = j such tha t  H~(A)  # O. Hence also 

Hy(~i t) # 0. But  H~,(zzi t) = a i 2 i i a i a i a " ' a i r i r _ l ,  whence 5ji # O. Thus 

a~.t # 0. • 

THEOREM 4.19. Let  A ~ F~. Then  the /o l lowing  are equivalent. 

(1) There exists a B ~ F ,  such that B = [~t and A c B.  

(2) A c ~ t  and ai ja~i~ 92/or all i, ~, 1 ~ i, ~ ~ n. 

(3) There exists a diagonal ma t r i x  D ~ 92, such that D(eIt)*D-1 = A c. 

P r o @  L e t G  = A c. 
(1) -+ (2). Suppose tha t  (1) holds. Then A c B c / ) t  c ./it, by  Remark  

4.15(v). Let  1 ~ i,/" ~< n. Then aija~i = bi~b~i = biibi~ ~ 9.I. 
(2) -+ (3). Suppose tha t  (2) holds. Then G c A c ~i* c (./it)c c ~t by  

Remark  4.15(iii). Since G ~ ¢g, also G*E ~,  and, by  Theorem 4.1, there 

exists a diagonal D ~ F ,  such tha t  D G t D  -1 = G. Let 1 ~ i, ?" ~< n, and 

let fl = (il . . . . .  it) be a nonzero pa th  from i 1 = i to ir = /'. Thengikik+ 1 # O, 

k = 1 . . . . .  r - -  1, and so, by  Lemma 4.18, g*k+lik # O, k = 1 . . . . .  r - -  1. 

I t  follows tha t  

IIa(G) = g,,,= g,=i, . . . g , , - l i ,  (4.19) 
/-Ieg(t) g,=i, g,3,= g~,i,-1 

But  if l ~ l , m < ~ n  and g t , ~ g ~ z #  O, then gmz#  0 and gz~(gmz) - 1 =  
g ,~g , , z (g ,~dmz) - le  92 by  Remark  4.15(i) and (ii). Hence, by  Remark  4.2 

we m a y  suppose that  D e 92,. 
(3) -+ (1). Let  D g t D  -1 = G, where /7)e 92,. We may  suppose tha t  

D = D D ,  where D e F ,  is a diagonal matrix.  Let  B = D-1GD.  Then 

B e @, and A c G c B. Fur ther  

3 t = D g t D  - 1  = D - 1 D g t D - 1 D  = D - 1 G D  = B.  • 
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COROLLARY 4.20. Let A ~ F~. The/ol lowing are equivalent. 

(1) There exists a nonsingular diagonal matrix  D e F~ such that B = 

D - l A D  and [~t = B. 

(2) A £ .fit and aij # 0 implies ai ja j i  ~ 91\{0}. 
(3) There exists a nonsingular D ~ 9I n such that B : D - l A D  and 

B t = B .  

Proo/s. (1) - -  (2). Suppose t ha t  D ~ Fn is diagonal,  B = D - l A D  and 
/~t = B. Then, by  R e m a r k  4.17 B ~ ~ whence A E c~. Since A c B, we 

deduce by  Theorem 4.19 t ha t  A c ./i t and ai~aji ~ 91, for 1 ~ i, f ~ n. But;  
b y  L e m m a  4.18, ai~ # 0 implies aijaji ~ O, whence aij # 0 implies 
~ .a j t  ~ 91\(0).  

(2) -~ (3). Suppose tha t  (2) holds. Then aija~i ~ 2,  for i, j" = 1 , . . . ,  n. 
Fur ther ,  since a~j # 0 implies aija~ # O, we have A ~ rd. Hence (3) follows 
from the corresponding pa r t  of Theorem 4.19. 

(3) ~ (1). Trivial. • 

If  F is the real field, and a = 5, for all a ~ F, Corollary 4.20 becomes the 
Par te r  and Youngs Theorem [9, Theorem l]. If  F is the  complex field, 
and 5 is the usual conjugate  of a, Corollary 4.20 becomes the Nowosad 
Theorem [7, Theorem 1]. If  A ~ ,  Theorem 4.19 becomes another  
Nowosad Theorem [7, Theorem 3]. The following corollary is an easy 
consequence of Theorem 4.19, with 5 = 1 for all a # 0, a ~ F.  In  this case 

= F . )  

COROLLARY 4.21. Let A ~ Fn. Then the/ollowing are equivalent: 

(1) There exists a symmetric  (0, 1) matrix B such that A c B .  

(2) For all cycles y, 

(a) either 1-Iv(A ) = 1 or l l~(A)  = O, and 
(b) //~(A) = / / y ( A t ) .  

THEOREM 4 . 2 2 . .  Let A ~ F,~. Then the/ollowing are equivalent. 

(1) There exists a B E F,, such that B = --  f3 t and A c B. 

(2) A c - - / ~ t  and ai~a~i ~ - -  2 ,  /or  all i, j, 1 ~ i, ] ~ n. 

(3) There exists a diagonal matrix D ~ 91 n such that D(./it)cD-1 = 
- -  A c" 

Proo/. If  - -  I ~ F  has a s q u a r e  r o o t i i n  F, let F '  = F .  Otherwise, 
adjoin a square root i of - -  1 to F, and let F '  = F ( i ) .  Let  A '  = i A .  
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(2) ~ (3). Let  A satisfy (2). Then A '  satisfies Theorem 4.19(2). Hence 
there exists a diagonal D such tha t  D(`i't) c D-1 = (A') ~. Equat ion  (4.19) again 
shows tha t  D m a y  be chosen in 91~ (contained in F~) and D(`it)*D = A*. 

(3) ~ (1). Trivial .  
(1 ) -+  (2). Suppose (1) holds. Pu t  B '  = lB. Then B ' =  B 't and 

A '  c B ' .  Hence by  Definit ion 4.14, A'  c A ' t  and ai jaj i~ 9i. Thus (2) 
follows. • 

COROLLARY 4.22. Let A E Fn. Then the ]ollowing are equivalent. 

(1) There exists a nonsingular matrix D E F~ such that B = D - l A D  

and --  [3 t = B. 

(2) A c -- `i* and ai~ # 0 implies ai~a~i ~ -- 2\{0}. 
(3) There exists a nonsingular D ~ 2~ such that B = D - l A D  and 

- - B *  = B .  

When F is the real field and 5 = a, for all a ~ F, Corollary 4.22 becomes 
Pa r t e r  and Youngs '  Theorem 4 [91. If  F is the complex field and 5 is 
the complex conjugate of a, then a special case of Corollary 4.22 is the 
l emma  on tr idiagonal matr ices  proved by  Gibson [51. 

SECTION 5 

THEOREM 5.1. Let A ~ ~1 .  The/ollowing are equivalent. 

(1) For all a ~ S(~), either Ho(A) = 1 or Ho(A) = O. 

(2) There exist diagonal matrices D1, D2 with per(DiD2) = 1 such that 

D1AD ~ is a (0, 1) matrix. 

Proo/. (2) ~ (1). Le t  B = D1AD2 be a (0, 1) matr ix .  Then for all 
a t  S(~), either Ho(B) = 1 or H,(B)  = 0. But  A s B by  Corollary 4.11, 
whence (1) holds. 

(1) -~ (2). Define B E F~ by  

bij = 1, if a i ~ #  0, 

bit = 0, if a~.j = 0. 

Then B s A. Hence (2) holds b y  Corollary 4.11. • 

COROLLARY 5.2. Let A ~ ~1 .  The/ollowing are equivalent. 

(1) There exists a nonzero d E F such that,/or all a ~ S(~), either H~(A) = 

d~ or H ~ ( A )  = O. 
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(2) There exist nonsingular diagonal matrices D1, D2 such that DIAD2 

is a (0, 1) matrix. 

Pro@ (2) ~ (1). Pu t  d = per(DiD2).  Then (d-lD1)(dA)Do ~ ~ ,  
whence b y  Theorem 5.1, Ho(dA) is e i ther  1 or 0, where G ~ S(~). 

(1) ~ (2). A p p l y  Theorem 5.1 to d-lA.  • 

If F is the  real  field, then  Corollary 5.'2 and R e m a r k  4.9 yie ld  a resul t  

due to Sinkhorn and K n o p p  [111. 

COROLLARY 5.3. I /  A is a nonnegative /ully indecomposable matrix 
whose positive diagonal products are equal, then there exist diagonal matrices 
D1 and Do with positive main diagonals such that D1AD2 is a (0, 1)-matrix. 

REMARK 5.4. By  L e m m a  4.13 the  diagonal  mat r ices  D1, D2 in 

Theorem 4.8, Corol lary 4.11, Theorem 5.1, and Corollaries 5.2 and  5.3 are 

unique up to mul t ip l i ca t ion  b y  a scalar.  

DEFINITION 5.5. Let  J ~ Fn be the  ma t r ix  all of whose entr ies  are 1. 

LEMMA 5.6. Let B be a /ully indecomposable (0, 1) matrix. 
o 

matrix such that G <~ B and r ank  G = 1 then G = J.  

I l  G is a 

Pro@ Let  x and  y be n × 1 column vectors  wi th  entr ies in F such 

t h a t G  = y x  t. S i n c e B #  0, there  e x i s t i ,  i, l ~ i , j ' ~ < n s u c h t h a t b i j  = 
gij = yix~ = 1. By  p e r m u t a t i o n  of the  rows and  columns of B and  G 

and by  normal iza t ion  of the  components  of x and  y we m a y  assume there  

exists a k and l such t ha t  

Yi = 1, for 1 ~ < i ~ < l ,  

Y i #  1, for i > l ,  

and  

xi = 1, for l ~ j ' ~ < k ,  

x j #  1, for i > k .  

Let  m = min(k, l). Suppose t ha t  m < n. 
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CASE1. I f m  = k t h e n g i s #  1, f o r l  ~ i ~ m , m +  1 ~ j ' ~ n .  Since 
0 

G ~ B a n d B ~ . ~ i t f o l l o w s t h a t b i t - - 0 f o r l  ~ i ~ m , m +  l ~ 1 " ~ n .  
Hence B is not fully indecomposable, which is a contradiction. Hence 

m = n .  

CASE 2. m ----- l. By  a similar a rgument  as in Case 1 it follows tha t  

m =  n. Hence in either caseG = J .  • 

When A is a nonnegative real matrix,  our next theorem is essentially 

Sinkhorn and Knopp ' s  Theorem 1 [111. 

THEOREM 5.7. Let A E ~9' 1 and let d ~ F, d # O. Suppose that /or  all 

a c S(~) either II~(A) = 0 or IIo(A) = d ~. Then there exists a unique G 
0 

such that G ~ A and rank G = 1. 

Proo/. By Corollary 5.2, there exist nonsingular diagonal matrices D1 
0 

and D2 such that  D1AD 2 is a (0, 1) matrix.  Then J ~ D1AD 2 and rank 
o 

J = 1. D e f i n e G = D l - l J D 2  -1. T h e n G ~ A  and r a n k G  = 1. To prove 
o 

uniqueness let H ~ F ~  be such tha t  H ~ A  and r a n k H  = 1. Let  K =  
0 

D1HDu. Then r a n k K  = 1 and K ~ D 1 A D  2. By Lemma 5.6 K = J  

and thus H = G. • 

An  analogous theorem to Theorem 5.1 for the c-relation is: 

THEOREM 5.8. Let A E c~ 1. Then the/ollowing are equivalent. 

(1) For all cycles 7, either II~(A) = 1 or II~(A) = O. 

(2) There exists a nonsingular diagonal matrix D such that D - l A D  is a 
(0, 1) matrix. 

Proo/. (2) -~ (1). Let  B = D - l A D  ~ ~ .  Then for all cycles 7, either 

IIy(B) = 1 or II~(B) = 0. But  by  Corollary 4.4, A c B. Hence (1) holds. 

(1) ~ (2). Define B as in the proof of Theorem 5.1. Then B c A. Hence 
(2) holds by  Corollary 4.4. • 

REMARK 5.9. The matr ix D in Theorem 5.8 is unique up to a scalar 
factor  (see Corollary 4.4). 
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SECTI O N  6 

In this section all matrices have entries in the complex field C or the 
real field R. 

DEFINITIONS 6.1. Let A, B E C~. 

(i) A ~ B if aij , bit are real and aij ~.~ bit, i, ] = 1 . . . . .  n. 

(ii) 
/L(B). 

(iii) 

//o(B). 

e 

A ~ B if, for all cycles y, II~(A), II~(B) are real and H~(A) 

S 

A ~ B if, for all a E S(,), I I , (A) ,  I I , (B)  are real and II~(A) 

C S 

REMARKS 6.2. (i) Observe that  ~ and ~< are not partial orders on 
C C 

Cn. For example, A ~ B, B ~ A imply that  A c B ,  but not A = B. 
C 

(ii) Further, A c B does not imply A ~< B. The implication holds 
if and only if II~(A) is real, for each cycle Y. 

C 

(iii) In view of Lemma 2.4, if A /> 0 then A ~ B is equivalent to 
W 

Fiedler and Ptak 's  A ~< B [4]. 
W 

(iv) However, A c B is not equivalent to Fiedler and Ptak 's  A = B 
w 

E4J, since A = A implies that  I I , (A)  is real for all cycles 7. This difference 
accounts for a difference in our Theorem 4.1 and Fiedler and Ptak 's  
(3.12) E4~. 

LEMMA 6.3. Let A,  B ~ C~. 
C C S S 

(i) I / O < ~ A  < B t h e n O < ~ A  <~B. 
S S C C 

(ii) I /  O <~ A <~ B and O < aii = bii, i = 1,. . ., n then O ~ A <~ B. 

Proo/. The proof is essentially the same as the proof of Lemma 2.23 
with equality replaced by  inequality in appropriate places. • 

C C 

LEMMA 6.4. Let A ~ ~V. I] 0 ~ B ~ A and B s A then B c A.  
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Pro@ Since B ~ W ,  it follows from Lemma 4.6 that  Y B  c A where 

Y = diag(all/bll . . . . .  a~n/b~n). Since 0 < bx~ ~ a .  it follows from Remark  
4.7 t ha tb i i  = a. .  Hence Y = I a n d B c A .  • 

DEFINITION 6.5. Let  A • C~. Then IA is the matrix B defined by  

hi1 = [aij[, i, ] = 1 . . . . .  n.  

LEMMA 6.6. I /  IBt <~ A then IBsl ~ A .~. 

Pro@ If  bid ¢ O then, by  Remark  2.18(ii), there exists a permutat ion 

a • S(~) such that  a(i) -- 1' and Ho(B) # O. Thus H , ( A )  # 0 and hence 
s a~ # O. • 

s 
THEOREM 6.7. Let A ~ O, and let B • C~. Then the/ollowing are equiv- 

alent. 

(1) There exists a c • e, ]c I = 1, such that cB s A.  
S 

(2) 181 <~ A and Iper B] = per A. 

S 

Pro@ (1) ~ (2). Since A >~ O, H. (cB)  = Ho(A) >/0,  for all a • S(.  I. 
S 

We have /L( [B I) = / L ( A ) ,  for all o • S(.). Thus IBI -~ A and s o  IB] ~< A. 
Further, A s c B ,  whence per A = per ca = c n per B and so per A = [per B 1. 

(2) ~ (1). For  all a • S(.), [/7.(B)[ = H . ( IB  D ~< II~(A). Hence 

]perB] = ~_,H,(B)  <~_ ,  ]H,(B)] < ~ _ , H , ( A )  = p e r A  = ]perB]. 
aeS(n) aeS(n) aeS(n) 

I t  follows tha t  there is a d • e, ]d[ = 1, such tha t  dH.(B)  = H . (A ) ,  for 

all a e  S(, o. Let c a = d. Then Ho(A) = Ho(cB), for all aE  S(~), and so 
A s cB and ]c[ = 1. • 

COROLLARY 6.8. Let O ~ B ~ A.  
(1) B s A.  

S 

(2) B ~ A  and p e r B  = p e r A .  

Then the /ollowing are equivalent. 

Pro@ Obvious from Theorem 6.7. • 

As an analogue to Remark  2.21(iv) we have the following lemma. 
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LEMMA 6.9. Let A ~ O. Then the/ollowing are equivalent. 
(1) A e S ~ .  
(2) For all B ~ R , ,  O ~ B ~ A and p e r B  = p e r A  imply  B = A.  

Pro@ (1) ~ (2). Let  0 ~< B ~< A. If  A = 0, the result is obvious,  so 
let A # 0. Since per B = per A, we have  B s A, b y  Corollary 6.8. Let  
i, i be integers, 1 ~< i, i <~ n, with aij > 0. B y  R e m a r k  2.21, there is a 
a ~ S(n) with a(i) = i such tha t  H~(A) > 0. But  since, Ho(B) = Ho(A),  it 
follows tha t  bka(k) = ak~(k), k = 1 . . . . .  n. In par t icular  bi~ = aij. Hence 
B = A .  

(2) ~ ( 1 ) .  Suppose A 6 5 f .  Let  B = A  ~. Then 0 ~ < B < A  and 
p e r B  = p e r A .  Thus (2) is false. • 

An analogue to L e m m a  3.18 is 

LEMMA 6.10. Let A ~ O. Then the ]ollowing are equivalent. 

(1) A ~ 5f 1. 
(2) For all B ~ R~, B ~ A and p e r B  = p e r A  imply  that B = A.  

Proo]. (1) ~ ( 2 ) .  Le t  A ~ , W l ,  B / > A  and p e r B  = p e r A .  Since 
P A ~ W 1 ,  we have  P B ~ I ,  for a l l P ~ # .  H e n c e B ~ S f l ~ .  Thus,  
by  L e m m a  6.9, B = A. 

(2) ~ (1). Suppose A 6 ~Cfl. Then by  L e m m a  3.17 there exist i, j, 
1 ~ i, j ~ n such t ha t  1--Ik~i ak~(k) = 0 for all a ~ S(n) such tha t  a(i) = j. 
Define B by  bij = a i j +  1 and bkz=ak~  otherwise. Then B > A  and 
p e r B  = p e r A .  • 

C 

THEOREM 6.11. Let A ~ 0 and let B ~ C~. 
(i) (1) There exists a diagonal X ~ C~ such that X B  c A and IX] = I,  

implies 
C 

(2) ]B[ ~ A ,  and I p e r e ]  = p e r A .  
(ii) If  A ~ JV, then (2) implies (1). 

C 
Pro@ (i) Let  (1) hold. Since A >~ O, II~(XB) = Hv(A)  >/O, for all 

cycles V. Hence H~([B D = H~(A), for all cycles V. Thus  IB] c A, and so 
e 

IB] ~ A. Fur ther ,  since A c X B ,  it follows tha t  per A = per  X B  = 

per X per B. Thus per  A = ]per B I. 
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S S 

(ii) Let  A e W ,  and  assume (2). By L e m m a  6.3(i), A >/ ]B I >~ 0. 

Hence,  by  Theorem 6.7, there  exists  c e  C, ]c t = 1, such t ha t  cB s A .  

Hence  ]B 1 s A, whence, b y  L e m m a  6.4, IB] c A .  Thus ]biil = aii > O, 

i = 1 . . . . .  n. Let  X = c -1d iag (a ldb11  . . . . .  an,,/b~n ). Then IX] = I ,  and  
b y  L e m m a  4.6, X B  2 A .  • 

LEMMA 6.12. Let A e 5¢~, A >/O. L e t B  e C,. I / I B I  ~ A  and IperBI = 

per  A,  then there exist diagonal matrices D1, De such that A = D1BDe and 

IDol = IDel = I .  

Pro@ By Theorem 6.7, there  is a d e C ,  Idt = 1 such t ha t  d B s A .  

B y  L e m m a  3.16(ii), dB e 5¢ 1. Then,  b y  Theorem 4.8, there  exis t  d iagonal  

mat r ices  DI" ,  De' such t ha t  A = d D I " B D  e' and per  DI"De '  = 1. Pu t  

D 1' = dD~". Then A = D I ' B D  1' and  p e r D l ' D  e' = 1. By  L e m m a  6.9, 

IBI = A Hence A = ID~'lAIDe'l. Since we also have  A = I A I ,  i t  

follows b y  L e m m a  4.13 t ha t  ]DI' ] = cI  and  ]Del = c -1I,  where c e C, 

c #  1. Let  D 1 = c-lD1 ', De = cDe'. Then A = D 1 B D  e and ]Dll = 

IDel = I .  • 

THEOREM 6.13. Let A >~ O, then the ]ollowing are equivalent. 

O) A e ~ .  
(2) Fo r  a a  ~ ,  IBI ~< A, ]per B[ = per  A imply there exist diagonal 

matrices n 1, De such that A = D1BD e and [D~ I = ]De] = I .  • 

Proo/. (1) --* (2). Let  A e ~ .  If  A = 0 the  result  is t r ivial ,  so let  

A # 0. Thus  per  A # 0. B y  Corol lary  2.27, there  is a P e ~ such t ha t  

P A  e J f  fl ~ and b y  R e m a r k  3.5(vi), there  is a Q e # such t ha t  F = 

QPAQ ~ = F l l  @ "  ' '  @ F r r  , where F i i e ( C 1 ,  i = 1 . . . . .  r. Since F e d / ,  

we have  Fii  e , ,C  fl ~ 1  C. ~,,C~l, i = 1 . . . . .  r. Let  G = QPBQ r. Since 

IG] <~ F,  i t  follows t ha t  G = Gl l  @" • • @ Grr, where Gii has the  same 

order  of F ,  i and  ]Gii[ ~ Fii ,  i = 1 . . . . .  r. Thus  ] p e r G i ~ ] ~ p e r F ~ ,  i = 

1 . . . . .  r. But  I-i:=1 ]perGi*l = IperG[ = p e r F  = ]-L'__I p e r F , ,  and  

p e r F  = p e r A  # 0. I t  follows t ha t  IperGii] = p e r F i i ,  i = 1 . . . . .  r. 

Hence b y  L e m m a  6.12 there  exist  d iagona l  mat r ices  X~, Yi ,  i = 1 , . . . ,  r, 

such t ha t  Fii  = XiGi iY i ,  and Ix, I = I g d  = I ,  i = 1 . . . .  , r .  Let  

x = x ~ ® . . . ® x ~ ,  

Y = Y~ @ . . .  @ Y , .  
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T h e n  F = X G Y  a n d  IXI = IYI = I .  L e t  D1 = ( Q p ) T X Q p  a n d  D2 = 

QTyQ. T h e n  A = D1BD2 a n d  D1, D2 are  d i a g o n a l  m a t r i c e s ,  s u c h  t h a t  

t D l l - -  IDol = Z. 
(2) ~ (1). L e t  B = A '~. T h e n  0 ~< B ~ A a n d  p e r  B = p e r  A.  H e n c e ,  

b y  a s s u m p t i o n ,  A -- D1A"D2, w h e n c e  A 6 5: .  • 

COROLLARY 6.14. Let A >/O. I /  IBI <~ A, Iper B I = p e r  A then there 

exist diagonal matrices D1, D2 such that A s = DINED2 and 1911 = ID2I = i .  

Pro@ I f  t B I ~ A  t h e n  IB~I ~ A  ' ~ b y L e m m a 6 . 6 .  S i n c e A  s e S f , t h e  

r e s u l t  fo l lows b y  T h e o r e m  6.13. 
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