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1. INTRODUCTION

1.1. Notation and conventions. In this paper 4 (or B) will always
denote an m X » matrix with non-negative elements and with no zero
row or column, » will denote an s x 1 column vector (!) with all elements
positive and ¢ a 1 x n row vector.

Following the notation of [2), we write M = 0 if M is a matrix and
all m;; > 0; if M 2= 0 but M £ 0, and we call M a positive matrix (thus
a positive matrix may have zero entries). We write M > 0 if all m;; > 0,
and in this case we call M strictly positive.

1.2, Introduction. Let (4,7, ¢) be asin Section 1.1. We shall define
a nonlinear homogeneous operator T = T(4; 7, ¢) on the positive cone
P ={x=(x,...,%,): x; > 0} and we determine the spectrum of T and
all positive-zero patterns of eigenvectors of 7. Since, by definition, T
is an operator of & into itself, all eigenvalues are necessarily non-negative
and all eigenvectors lie in 2. Our operator T is an obvious modification,
to take into account the vectors » and ¢, of the operator introduced by
Menon in [4] for the case that 4 is square and strictly positive. This
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322 M. V. MENON AND H. SCHNEIDER

operator was exploited by Brualdi, Parter, and Schneider in [2] in the
case that A may have zero entries.

We feel that some explanation should be given for considering a special
problem of this kind. Our first justification is that our results resemble
the Perron-Frobenius theory. It is well known that, for an irreducible
square matrix M with non-negative elements, there is a unique eigenvector
x in & (except for scalar multiples), that all x; are positive, and, of course,
the associated eigenvalue p (the Perron-Frobenius root of M) is positive.
Given the location of the zeros of a reducible square matrix M, it is then
possible to determine the positive zero pattern of each eigenvector x of
M with non-negative elements (i.e., whether x; > 0 or x; = 0 for given
index ¢) and also the associated eigenvalues (cf. Schneider {8]). Our
main theorem (3.6) is an analog. This similarity is not too surprising.
One may define a more general operator 7(A4, B; 7, ¢) associated with
a pair of matrices (cf. (2.2)) and then T(4,1;e, ¢), where e is a vector
with all e; = 1, is the linear operator usually represented by the matrix
A. Properties of the operator T(4, B;7, ¢) are investigated by Menon
in a recent paper [6].

Our second justification is perhaps more important. The operator
T = T(4;r,c) is so constructed that T has a positive eigenvalue A with
strictly positive eigenvector x: Tx = Ax if and only if there exist diagonal
matrices Y and X with positive diagonal elements for which YAX has
row sums #;, ¢ = 1,...,m, and column sums A¢c;, 7 =1,...,n. Several
authors have recently worked on the problem of the existence of such
Y and X. We wish to mention Sinkhorn’s paper [9] which solved the
problem for A strictly positive, square and » = ¢ = e. Necessary and
sufficient conditions for the existence of Y and X for a square A, which
may have zero elements, and » = ¢ = ¢, were found by Sinkhorn and
Knopp [11] and by Brualdi, Parter, and Schneider {2]. Recent work
that should be mentioned is due to Menon [5], Sinkhorn [10], Mirsky
and Perfect [7], and Brualdi [1]. Employing methods used in flow and
network problems, Brualdi proved a result which was part of the inspira-
tion of the present paper (cf. Section 4).

2. THE OPERATOR T(4;7,¢)

2.1. DerFINITIONS. Let A, B, 7, and ¢ be as in Section 1.1. We shall
call (4, 7, ¢) a matrix-rowsum-columnsum iriple or mrc for short. Similarly
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(A, B,7,¢) will be called a matrix-matrix-rowsum quadruple or mmrc.
The following definition is also given in [5].

2.2. DEeFiniTioN. Let (4, B,7,¢) be an mmrc. For a positive

column or zero vector x = (x,..., x,), we define
SAd;nx=y (2.2.1)
where
v, =7; /( ai,-x,») , i=1,...,m, (2.2.2)
[ \i=t
and then
T4, B;r,c)x = 2, (2.2.3)
where
c; .
=, =1 ..., n (2.2.4)

Except for one lemma, we shall be concerned with the case 4 = B. We
write

TA, A;r,c)=T(A;7,¢). (2.2.5)

When no confusion should arise, we write T(4; 7, ¢) = T, and similarly
S(A;7y =S. Here S is an operator of & = {x:x 2> 0} into the set

Po={y=(1.-9) ¥:=0 or y,= o},

but T is a homogeneous operator of & into itself. We use the conventions
0l = 00,007l =0,00 + 00 =00,0-00 =0,anda- co = oo, fora> 0;
see Section 3 of [2]. Further, T is a continuous operator of Z into itself.
The proof is essentially the same as that of (3.4) of [2].

2.3. LEmMaA. Let (A,7,¢) be an mrc. Then T = T(A;r, c) dejined
by Definition 2.2 has a positive eigenvalue

p=sup{i: x>0, Tx>= iz} (2.3.1)
Further, let E be the matyix with all e; =1, and for € = 0, set
A, =4+ ¢E (2.3.2)
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and
T,=T(4,4;r7¢). (2.3.3)
I7
pe=sup{d:x >0, T.x =iz}, (2.34)
then

p.tp as &—0.

(By p,} p, we mean that p, is a decreasing function of ¢ in some interval
0 <e< 9 and lim, ;. p, = p.

Proof. For £>0, we have 4, >0, and so
Tx>Tx, for x>x2=0. (2.3.5)

We give a familiar argument (cf., e.g., Section 4 of [2]) to show that p,
is an eigenvalue with a strictly positive eigenvector. Let

K={x>0: 3 x =1} (2.3.6)

Since 7, is homogeneous, (2.3.4) may be replaced by p, = sup{i: x € K,
T.x = Ax}, and it now follows from the compactness of K that there is
a u, € K for which T, > pu,. Suppose that T,u, > p,u,. In that case,
by (2.3.5), T.u,’ > pu,', where u, = T u,, and so also T, > (p + a)u,’,
for some o > 0, contrary to (2.3.4). Hence

T, == pu,. (2.3.7)

Since u, > 0, it follows by (2.3.5) that T u, > 0, whence also #, > 0 by
(2.3.7).

We now turn to the proof that p is an eigenvalue of 7. Since K is
compact, there is a # € K and a sequence &(1), &(2), ... with &(s) | 0 and
Uy — % as s —oo. We shall investigate the behavior of 7. First,
for each fixed x € K, the operation ¢ — 4_x is continuous for 0 <{e < 1,
and it then follows by an argument similar to that of Lemma 3.4 of [1]
that ¢ — T,x is continuous in that domain. Since T, x| Tx as ¢} 0
(Z being partially ordered as in [1]), it follows by a well-known theorem
(Hobson [3], Vol. II, p. 116) that 7,x converges to Tx uniformly in &
over K. Clearly, therefore, T, x converges to Tx uniformly in s over K,
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and, since u.,, —u, as s — oo, it follows easily that T, u,, — Tu as
s — oo. But p, decreases as ¢ decreases (since 7, is monotonic in &), whence
p.\ 0,52y, as €} 0, where ¢ = 0. We now deduce from T, 1,1 — pesthes)
that Tu = ou. We must still show that ¢ = p and that p> 0. Slnce
p. = p,if e > 0, clearly ¢ = p. But, by (2.3.1), with ¢ = 0 and Tu = ou,
also p 22 0. Hence p =0¢. If x>0, then Tx > 0, since A has no zero
row or column. Thus, for A sufficiently small and positive Tx = Ax,
whence p > 4 > 0.

2.4. Remark and Example. It may be worthwhile to elucidate the
remark that ¢ — 7,x is continuous on (0, 1). Using the notation of [1],
we write Z, = {x = (xy, ..., x5): %; >0 or x; = oo}, where # = m or
k = n, and let U be the mapping of 2, into itself given by Ux = y, where
vy, =%, v=1,..., k. Then we have a sequence of mappings

¢e—>Ax —>RUAx - ARUAx »CUARUAx = T.x,  (2.4.1)

where R = diag(r,, .. and C = diag(cy, ..., ¢,). Now observe that

)
addition is continuous on (0, ) and so are ¥ —cx, 0 < ¢ << o0, and
x — x~1. However, a — ac is not continuous at 0 when ¢ = oo, nor is
(a, b)) — ab continuous at (0, o). An inspection of the sequence (2.4.1)
shows that lim ab with a — 0, b — oo does not occur there, and continuity
follows. For contrast consider the operation T ,* = T(A4,, A,;7,¢). We

have a sequence
e >Ax > RUA,x > ARUAx - CUARUA,x = T*x, (24.2)

and the last operation may not be continuous in &. As an example, let

1 1 1 5 1
A:Ol’ =1l c=[2,1], and let 2=

Then
9 2(1 +-¢)
Tx:[o}, Tox = (e—l— 1)
¢ - + 1
while
1
THx = £
e+ 1
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3. EIGENVALUES AND EIGENVECTORS OF T(4;7,¢)

3.1. NOTATION AND DEFINITIONS. We shall put M ={l,..., m}
and N = {l,...,n}, and use I, J to denote nonempty subsets of M, N,
respectively. We write I’, J’ for the complements of I, J in M, N, respec-
tively (the M, N being understood from the context).

If A is a matrix, then A4 [I|]] is defined to be the submatrix of 4 lying
in all rows ¢ and all columns j, with 7€l and 7€ J. Thus A[M|N] = A.
If A[I|J] =0 we call A[I|]] a zero submatriz of A, and we call A[I|]]
a maximal zero submatrix if, in addition, 4 [I;|J,] # 0 when I}, X J, D
I x J (we use D for proper containment).

3.2. DeriniTiON. Let (4,7,¢) be an mrc and, for all nonempty
subsets I, J of M, N, respectively, let

w(, J) = ]2 c,./; 7, (3.2.1)

Then (4, 7, ¢) is called comsistent if and only if for all nonempty proper
subsets I, J of M, N, respectively, for which A[I'|J] = 0 we have

o, ) < w(M,N) whenever AI|J'1+#0 (3.2.2)
and

w(l, J) = o{M,N) whenever ~ A[I|]'] =0. (3.2.3)
33. LeEmmA. Let(A,7,c)beanmrc. If T = T(A4;r,c) has a strictly
positive eigenvector u, them (A, r,c) is consistent, and the corresponding

eigenvalue A equals w(M, N).

Proof. Let u >0 and Twu = Au. If v = Su, then

E VU = 75, (3.3.1)
=
whence
Z Vit = Z 7. (3.3.2)
MN M
Similarly, if w = Tu, then
Z VW5 = €5 (3.3.3)
M
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and so
> v = D¢ (3.3.4)

But w = A, so

WZ' V05 Z ¢y

A= o ‘2 = w(M, N). (3.3.5)
2 VidiU; g
MN M

Suppose now that I, J are nonempty proper subsets of M, N, respectively,
with A[I'|J] = 0. Again, by (3.3.1),

Z VU = Z 7, (3.3.6)
I~ T
while, by (3.3.3),

> va = D va;w; = 2 ¢;,

1.7 M,J
since A[I'|J] = 0. Hence
D vagw, = D¢ (3.3.7)
o~ 7

with equality if and only if A[I|/'] = 0. From (3.3.6) and (3.3.7) we
obtain by w = A4 = w(M, N)u that

2 vV, a”w
L)< w(M, N),

2. vag i
J'1>0, and

w(l, J) = = (M, N),

Zvai

provided that A[J

provided that A[]
is proved.

J'1=0. Hence (4, 7, ¢) is consistent and the lemma

34. LeEmMa. Let (A,7,¢) be an mrc and suppose that for T =
T(A;7,¢) and u > 0, we have Tu = Au. Suppose | is the (necessarily)
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nonempty subset of N such that u; >0 while uy = 0, and let I’ be the
subset of M defined by

I'={ieM:A[|]J] = 0} (3.4.1)
Then
either () I X J=M XN or
(3.4.2)
(b) 4CJCN, dCICM
and A[I'|]J] is a maximal zero submatriz of A,
T, = Auy, where TO=T(AI|]); 75 ¢)) (3.4.3)
(AlI|J], 7. ¢p) s comsistent, (3.4.4)
and
A= w(, ). (3.4.5)

Proof. (a) Suppose first that /| = N. Since 4 has no zero row,
I = M and this proves (3.4.2). In this case (3.4.3) is trivial and (3.4.4)
and (3.4.5) reduce to Lemma 3.3.

(b) Now suppose that ¢ C JC N. Observe that ¢ = I'C M, since
4 has no zero column. Thus I #£ ¢. Put S® = (S(4[I|]]; 7;), (cf. Defini-
tion 2.2). By direct computation,

(Su), = SO, (3.4.6)

since %, = 0, and since each row of 4 [I|J1 is nonzero (Su); is a finite
(strictly positive) vector.
If I' = ¢, then

(Su), = oo, (3.4.7)
a vector each of whose elements is oo.
Next, since A[I'|J] =0 if I' # ¢ and, by (3.4.6),
(Tu); = T, (3.4.8)
and, by (3.4.7), we obtain for je J' that
(Tu); =0 if and only if I's# ¢ and A[I'lj]]>0. (3.4.9)
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But (Tw); = Au; = 0 if je J', whence $CICM and A[I')j]> 0 for
je J'. Since we have supposed JC N, this proves (3.4.2). Returning
to (3.4.8), we obtain (3.4.3), where u; is strictly positive.

We now immediately deduce (3.4.4) and (3.4.5) from Lemma 3.3.

3.5. THEOREM. Let (A,7,¢) be an mrc. Then T = T(A;r, c) has
a strictly positive esgenvector if and only if (A, 7, c} is consistent. In this
case, the corresponding eigenvalue is w(M, N), and w(M, N) is the largest
etgenvalue of T.

Proof. Ifwu>>»0and Tu — Au, then by Lemma 3.3 (4, 7, ¢) is consistent
and A = w(M, N). By Lemma 3.4, every other eigenvalue of T is of form
w({l, J), where $CICM and ¢C JC N. By consistency w(l, J) <
w(M, N), whence w(M, N) is the greatest eigenvalue. To prove the
converse, suppose that (4, 7, ¢) is consistent. We introduce two auxiliary
operators: the operator T, = T(A4,, 4;r, ¢) of (2.3.2), and (as in Section
2.4)

T*=T(A,;77¢) (3.5.1)

3

where A, is again given by (2.3.1).
Observe that

pX=sup{d: x>0, T*x>=Ax}

is an eigenvalue of 7,* by Lemma 2.3 and, by Lemma 3.4, p,* = w(M, N)
since A, has no zero submatrix. But by direct computation 7.* < T,
(i.e., T.* << T,x for all x == 0), whence

oM, N) =p*<p,, (3.5.2)

where p, is defined by (2.3.3). By Lemma 2.3, p,{ p, as ¢ =0, and p
is an eigenvalue of 7. Hence p > w(M, N). But, by Lemma 3.4, p =
w(I, J) where either A[I'|J] is a zero submatrix and IC M, JCN, or
I =M, J=N. By consistency, w(l,]) < oMM, N), whence p=
w(M, N). Next suppose that 4 is indecomposable. (The matrix A4 is
indecomposable if and only if A[I'|J] = 0 implies that A[I|]J'] # 0).
Then under the stated conditions w(l, J) = w(M, N) only if I x J =
M x N. Hence, by Lemma 3.4, the corresponding eigenvector # is strictly
positive. If A is decomposable, then 4 = 4, D 4, D--- D A4,, where
A, = A[l,]],), «=1,...,0, each A_ is indecomposable, and the I,
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J, form partitions of M, N, respectively. By consistency w({,, J,) =
w(M,N)yand, if T = T(A[1, ], i ¢; ). then we have already proved
that there is a u, which must be strictly positive, such that 7T u, =
o, Jou, = oM, Nu,, If u=u @ - @ u, then » >> 0, and, since
A is a direct sum,

Tu=Tu, @ - QO Tu,=o(M,N)Y(v; D - Du,) = oM, N)u.

The theorem is proved.

3.6. Main THEOREM. Let (A,r,¢) be an mrc. The spectrum of
T = T(A;r,¢c) consists of all A for which there exist nonempty subsets
1, ] of M, N, respectively, such that

either () I X J=M XN, or

(b) $cICM, $CJCN and A[I'

J1 ts a maximal zero

submatrixz of A, (3.4.2)
(A[I|J1.71.¢;) s consistent (3.44)

and
A= o, ]). (3.4.5)

1f all these conditions are satisfied, then there is an associated eigenvector
with w; >0 and (for JCN) u,=0.

Proof. By Lemma 3.4, we know that each A in the spectrum of T
satisfies (3.4.2), (3.4.4), and (3.4.5). Conversely, let (3.4.2), (3.4.4), and
(3.4.5) hold. If (3.4.2(a)) holds, then our theorem reduces to Theorem 3.5.
So suppose (3.4.2(b)) is satisfied. Since A[I'|J] is a maximal zero sub-
matrix of 4, and 4 has no zero columns, it follows that A4 [/|J] has no
zero row or column; hence, by Theorem 3.5, T° = T(A[I|]];7, ¢)
has a strictly positive eigenvector u, with associated eigenvalue A =
w(, ]J). Letu;, =0, and set u = u, Qu,. I SO = S(A[I|]];7,), then

(Su), = SO, (3.6.1)

and

(Su)p = oo (3.6.2)
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whence
(Tu), = T, = o(, J)u,,

where 70 is defined by (3.4.3). Further, A4[I'|J'] has no zero column
since 4[I'|J] is a maximal zero submatrix of 4, whence

(Tu), = 0.

Hence Tu = (I, J)u, and the theorem is proved.

3.7. DEFINITION AND REMARK. The operator T of & into itself is
called strongly monotonic on the open cone #° = {x: x;> 0} if 0 < ¥ << &’
implies Tx < Tx' and, for some integer m, T"x < T"X.

Observe that, for x > 0, T"x >0 for strong monotonic 7. Clearly
T is strongly monotonic on #° if x <« x’ implies Tx < Tx' and, for
$C JC N, also x; < x)/, x;p = xp imply (Tx), K (Tx') ), (Tx) ;) < (Tx').

3.8. LeEmMA. Let (A, r,¢c) be an mrc. Ij A is indecomposable, then
T =T(A;r ¢c) is strongly monotonic on PO

Proof. Suppose 0 < x < 5. Then Sx <« Sx', whence Tx < Tx'.
Now suppose that ¢C JC N and 0 < A, x) but 0 x; = x)/. Let

I'={icM: Ali J1 =0} (3.8.1)

Possibly I’ = ¢, but, since 4 contains no zero column, we have I'C M.
We now have {Sx); > (Sx'); and, if [’ # ¢, also (Sx), = (Sx');.. Since
A{11]] can contain no zero column, it now follows that (Tx), < (Tx');.
If I' = ¢, then A[I|J'] = A[M|]J'] = 0 since 4 has no zero column. If
I' # ¢, then A[1]]'] # 0 since 4 is indecomposable. Hence A1 J'] # 0,
and we may deduce that (Tx), < (Tx). It follows by Definition 3.7
that T is strongly monotonic on #9.

3.9. THEOREM. Let(A,7,c) bea consistent mrc. If A isindecomposable,
then T = T(A;r, c) has a unique eigenvector u {except for scalar multiples)
assoctated with w(M, N) and w is strictly positive.

Proof. The existence of a strictly positive eigenvector belonging to
w{M, N) is assured by Theorem 3.5. Since A4 is indecomposable, (I, J) =
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(M, N)only if I x J =M x N, whence by Theorem 3.6 every eigen-
vector belonging to w(M, N} is strictly positive. Further, by Lemma
3.8, T is strongly monotonic, so uniqueness follows by (4.4) of [1].

3.10. CoroLLARY. [f(A,7,c)is a consistent mrc, then the eigenvectors
of T belonging to w(M, N) (together with 0) form a cone.

Proof. Suppose A =A@+ @A, where A, =A[I|],] is in-
decomposable and the I, J form a partition of M, N, respectively. Tt
is easy to see that (A[[ |],], 71 cja) is consistent, for suppose that I x J
cl, x J,and A[INI, J]=0. Then A[I/|J] = 0, but A[I |J\],] #
0 and so A[[,|],'] 0. It follows that

o(l,|]) < oM, N) = w(l, ).

Thus by Theorem 3.9 7T,= T(4 [Ia|]a],rla, cja) has a unique strictly
positive eigenvector u,. Since A is a direct sum, it follows by direct
computation that any vector y,u; @- -+ @ y,u, with p, > 0 is an eigen-
vector of T belonging to w(M, N) or 0.

Conversely, assume that T4 = w(M, N)u. Direct computation again
shows that Tauja = (T”)Ja = w(M, N)ujz whence, by Theorem 3.9,
Uy = Yalho for some y, = 0. Hence u =yu, @--- @ y,u, and the

corollary is proved.

3.11. Example. Corollary 3.10 fails for eigenvalues A< w(M, N).
For example, let

1 1 1
A=1]|1 0], r=11], c=[1,1].
01 1

1 1
Ifu= [O} ,then Tu = }u, andif v = [(1)} ,then 7v = }v. Butu + v = [1}
and T(u + v) = %v.
3.12. Remark. The restriction that A has no zero row or column
is somewhat technical. For, let (4, 7, ¢) be an mrc, let A° be the (m + 1) x

»n matrix obtained by adjoining a zero row to 4 as row (m + 1), and let
7' =775, > 0. Then T(A?; 7%, c)x = T(4;7, c)x forall x € #. Next,
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SPECTRUM OF A NONLINEAR OPERATOR 333

let A” be the (» + 1) X m matrix obtained from 4 by adjoining a zero
column to 4 as column (# + 1) and ¢y} = ¢, ¢}, >0, and let %}, > 0.
If 2 = T(A?; 7, ¢")x" where x € #, then 2z} = T(4;7,¢)x and 2}, = oo,

4, THE YAX PROBLEM

We shall briefly point out the applications of Theorem 3.6 to some
problems mentioned in Section 1.

4.1. THEOREM. Let (A,r,c) satisfy Definition 2.2. Then there exists
a positive A and diagonal matrices X and Y with positive diagonal elements
such that YAX has row sum vector v and column sum vector ¢ if and only
if (A,7,¢) is consistent. In this case

A= zcj/gri. (4.1.1)

~

Proof. If X and Y satisfy the conditions of Theorem 4.1, then
Tx = Ax for some x = (x4,. .., x,) > 0and Agiven by (4.1.1); and conver-
sely with X = diag(x;,..., %) and Y = ((S%), ..., (S%),). The result
follows by Theorem 3.5.

The positive m X n matrices A and B have the same pattern if a;; = 0
if and only if 4;; = 0.

4.2. CoRrROLLARY. (Brualdi [1], Theorem (2.1)). Let A be an in-
decomposable positive m X n wmatrix and let v and ¢ be strictly positive
column and vow vectors, respectively, such that .7, = D> nc; There
extsts a posttive matrix B with the same pattern as A, row sum vector r and
columm sum vector ¢ if and only if A[I'|J] = O implies that ", ¢;> D7,

Proof. Since A is indecomposable the condition on A4 is precisely
that (4,7, ¢) be consistent. Also (B, 7, ¢) is consistent if and only if
(4,7, ¢) is consistent.

4.3. CoroLLARY (Menon [5], Theorem 2). Let A be a given positive
m X n matrix; v, c be strictly posttive column and row vectors. Suppose
there exists at least one positive matrix B with the same pattern as A and
having row and column sum vectors v and c, respectively. Then there exist
diagonal matrices X and Y such that YAX has row sum vector v and column
sum vector c.
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Proof. The assumptions imply that (B, 7, ¢) is consistent and D", 7; =

D' n ¢ Hence (4,7, ¢) is also consistent and the result follows from
Theorem 4.1.

Of course, the theorems of Brualdi and Menon (our Corollaries 4.2

and 4.3) together are essentially equivalent to Theorem 4.1.
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