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1. INTRODUCTION 

1.1. Notation and conventions. In this paper A (or B) will always 

denote an m x YZ matrix with non-negative elements and with no zero 

row or column, Y will denote an m x 1 column vector (!) with all elements 

positive and c a 1 x vz row vector. 

Following the notation of [2], we write M > 0 if M is a matrix and 

all mij > 0; if M > 0 but M # 0, and we call M a positive matrix (thus 

a positive matrix may have zero entries). We write M >> 0 if all rnij > 0, 

and in this case we call M strictly positive. 

1.2. Introduction. Let (A, 7, c) be as in Section 1.1. We shall define 

a nonlinear homogeneous operator T = T(A ; 7, c) on the positive cone 

B = {X = (x1,. . .) x,,) : xi 3 0} and we determine the spectrum of T and 

all positive-zero patterns of eigenvectors of T. Since, by definition, T 

is an operator of 9 into itself, all eigenvalues are necessarily non-negative 

and all eigenvectors lie in 9. Our operator T is an obvious modification, 

to take into account the vectors 7 and c, of the operator introduced by 

Menon in [4] for the case that A is square and strictly positive. This 
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operator was exploited by Brualdi, Parter, and Schneider in [2~ in the 

case that A may have zero entries. 

We feel that some explanation should be given for considering a special 

problem of this kind. Our first justification is that our results resemble 

the Perron-Frobenius theory. It is well known that, for an irreducible 

square matrix hl with non-negative elements, there is a unique eigenvector 

x in 9 (except for scalar multiples), that all xi are positive, and, of course, 

the associated eigenvalue p (the Perron-Frobenius root of M) is positive. 

Given the location of the zeros of a reducible square matrix M, it is then 

possible to determine the positive zero pattern of each eigenvector x of 

M with non-negative elements (i.e., whether xi > 0 or xi = 0 for given 

index i) and also the associated eigenvalues (cf. Schneider [8]). Our 

main theorem (3.6) is an analog. This similarity is not too surprising. 

One may define a more general operator T(A, B; Y, c) associated with 

a pair of matrices (cf. (2.2)) and then T(A, I; e, e), where e is a vector 

with all e, = 1, is the linear operator usually represented by the matrix 

A. Properties of the operator T(A, B; r, c) are investigated by Menon 

in a recent paper [6]. 

Our second justification is perhaps more important. The operator 

T = T(A ; 7, c) is so constructed that T has a positive eigenvalue A with 

strictly positive eigenvector x : TX = Lx if and only if there exist diagonal 

matrices Y and X with positive diagonal elements for which YAX has 

row sums yi, i = 1,. ., vn, and column sums Aci, i = 1, . . . , n. Several 

authors have recently worked on the problem of the existence of such 

Y and X. We wish to mention Sinkhorn’s paper [9] which solved the 

problem for A strictly positive, square and 7 = c = e. Necessary and 

sufficient conditions for the existence of 1’ and X for a square A, which 

may have zero elements, and 7 = c = e, were found by Sinkhorn and 

Knopp [ll] and by Brualdi, Parter, and Schneider [2]. Recent work 

that should be mentioned is due to Menon [5], Sinkhorn [lo], Mirsky 

and Perfect [7], and Brualdi [l]. Employing methods used in flow and 

network problems, Brualdi proved a result which was part of the inspira- 

tion of the present paper (cf. Section 4). 

L’. THE OPERATOR 7-(4 ; f’, C) 

2.1. DEFINITIONS. Let A, B, 7, and c be as in Section 1.1. We shall 

call (A, Y, c) a matrix-rowsum-columnsum triple or mzyc for short. Similarly 
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(A, B, Y, c) will be called a matrix-matrix-rowsum quadrzcple or mmzyc. 

The following definition is also given in [5]. * 

2.2. DEFINITION. Let (A, B, Y, c) be an mmrc. For a positive 

column or zero vector x = (x1, . . . , x,J, we define 

where 

.!?(A ; r)x = _)’ (2.2.1) 

and then 

where 

yi=Yi/[gaiiil), i==l,..., ~2, (2.2.2) 

7‘(A, B; Y, c)x = Z, (2.2.3) 

2, :.c 
ci 

t$ yibij ’ 

j = 1,. . ., 11. (2.2.4) 

Except for one lemma, we shall be concerned with the case A = B. We 

write 

T(A,A;r,c) = T(A;r,c). (2.2.5) 

When no confusion should arise, we write T(A ; Y, c) = T, and similarly 

S(A ; Y) = S. Here S is an operator of 9 = {x: x 3 0} into the set 

:Y30={y=(y1,...,y,): yi>O or yi=m}, 

but T is a homogeneous operator of 9 into itself. We use the conventions 
O-r=~0,~-r=O,co+~=co,0~~=0,anda~~=oo,fora>0; 

see Section 3 of [Z]. Further, T is a continuous operator of 9 into itself. 

The proof is essentially the same as that of (3.4) of [Z]. 

2.3. LEMMA. Let (A, Y, c) be an mrc. Tlzen T = T(A; I, c) defined 

bql Definition 2.2 has a positive eigenvalue 

p=sup{i: k>O, Tx>,;lx}. (2.3.1) 

Further, let E be the matrix with all eij = 1, and for F > 0, set 

A,=A+cE (2.3.2) 
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and 

T, = T(A,, A ; Y, c) (2.3.3) 

If 

then 

PE = sup{l: x > 0, T,x > lx}, (2.3.4) 

p,$p as s-0. 

(By pe J- p, we mean that pE is a decreasing function of E in some interval 

0 < E < 8, and lim,,,+p, = p. 

Proof. For E > 0, we have A, >> 0, and so 

2-p >> 7-p’, for x > x’ 3 0. (2.3.5) 

We give a familiar argument (cf., e.g., Section 4 of [2]) to show that pB 

is an eigenvalue with a strictly positive eigenvector. Let 

K = {x > 0: 2 xi = l}. (2.3.6) 

Since T, is homogeneous, (2.3.4) may be replaced by pB = sup{l: x E K, 

T,x 3 lx}, and it now follows from the compactness of K that there is 

a u, E K for which TEuE > pBus. Suppose that TE~e > pEuE. In that case, 

by (2.3.5), TEuE’ >> puu,‘, where u,’ = TEuE, and so also T,u,’ > (p + u)uU,‘, 

for some cc > 0, contrary to (2.3.4). Hence 

TPE = PEUE. (2.3.7) 

Since u, > 0, it follows by (2.3.5) that TEuE > 0, whence also u, >> 0 by 

(2.3.7). 

We now turn to the proof that p is an eigenvalue of T. Since K is 

compact, there is a u E K and a sequence s(l), e(2), . . . with E(S) J 0 and 

%s) +uass+co. We shall investigate the behavior of T,,,,. First, 

for each fixed x E K, the operation E -+ A,x is continuous for 0 < E < 1, 

and it then follows by an argument similar to that of Lemma 3.4 of [l] 

that E + T,x is continuous in that domain. Since T,x 1 TX as E J 0 

(9 being partially ordered as in [l]), it follows by a well-known theorem 

(Hobson [3], Vol. II, p. 116) that T,x converges to TX uniformly in E 

over K. Clearly, therefore, T,,,,x converges to TX uniformly in s over K, 
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and, since u,(,, + u, as s + 03, it follows easily that T+,u+, + Tu as 

s + CO. But pE decreases as E decreases (since T, is monotonic in E), whence 

pa 1 a, say, as F 4 0, where a > 0. We now deduce from T+)u~(~) = p+,u+, 

that Tu = au. We must still show that a = p and that p > 0. Since 

pE >, p, if e > 0, clearly a > p. But, by (2.3.1), with E = 0 and Tzt = au, 

also p 3 a. Hence p = a. If x >> 0, then TX >> 0, since A has no zero 

row or column. Thus, for 2 sufficiently small and positive TX >, Ix, 

whence p > 1 > 0. 

2.4. Remark and Exam$le. It may be worthwhile to elucidate the 

remark that e + T,x is continuous on (0, 1). Using the notation of [l], 

we write P:m = {ZX = (x1, . . , x&: xi > 0 or xi = m}, where k = m or 

k = n, and let U be the mapping of Pim into itself given by Ux = y, where 

yj = Xi-i, i = 1, . . ., k. Then we have a sequence of mappings 

F + A,x + RUA,x + ARUA,x + CUARUA,x = T,x, (2.4.1) 

where R = diag(r,, . . . , Y,,J and C = diag(ci, . . . , c,J. Now observe that 

addition is continuous on (0, a) and so are x + cx, 0 < c < 00, and 

x + x-i. However, a + ac is not continuous at 0 when c = 00, nor is 

(a, b) + ab continuous at (0, CQ). An inspection of the sequence (2.4.1) 

shows that lim ab with a ---, 0, b + 00 does not occur there, and continuity 

follows. For contrast consider the operation T,* = T(A,, A,; Y, c). We 

have a sequence 

F + A,x ---f RUA,x + ARUA,x + CUA,RUA,x = T,*x, (2.4.2) 

and the last operation may not be continuous in 8. As an example, let 

AX[i il. ~=[~~. ~=[2,1], andlet ~==c]. 

Then 

TX = 

while 
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3. EIGENVALUES AND EIGENVECTORS OF T(A ; Y, C) 

3.1. NOTATION AND DEFINITIONS. We shall put M = (1, , . . , m} 

and N = (1, . . ., n}, and use I, J to denote nonempty subsets of M, N, 

respectively. We write I’, J’ for the complements of 1, J in M, N, respec- 

tively (the M, N being understood from the context). 

If A is a matrix, then A [II J] is defined to be the submatrix of A lying 

in all rows i and all columns i, with i E I and j E J. Thus A [M IN] = A. 

If A[IIJ] = 0 we call A [IlJ] a zero submatrix of A, and we call A [I/J] 

a maximal Zero submatrix if, in addition, A [Ill J1] # 0 when I, x J1 1 

I x J (we use 1 for proper containment). 

3.2. DEFINITION. Let (A, Y, c) be an mrc and, for all nonempty 

subsets I, J of M, N, respectively, let 

(3.2.1) 

Then (A, r, c) is called colzsistent if and only if for all nonempty proper 

subsets I, J of M, N, respectively, for which A [I’/ J] = 0 we have 

~(1, J) < 4M, W whenever A [IIJ’I f 0 (3.2.2) 

and 

~(1, J) = o(M, N) whenever A [II J’] = 0. (3.2.3) 

3.3. LEMMA. Let (A, r, c) be an mrc. If T = T(A ; Y, c) has a strictly 

fiositive eigenvector u, then (A, r, c) is consistent, and the corresponding 

eigenvalue 3L equals w(M, N). 

Proof. Let u >> 0 and Tu = Au. If 7~ = Su, then 

F V&jUj = Yi, (3.3.1) 

whence 

(3.3.2) 

Similarly, if ZI = Tu, then 

F viaijwj = cj 
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and so 

But w = Au, so 

327 

(3.3.4) 

(3.35) 

Suppose now that I, J are nonempty proper subsets of M, N, respectively, 

with A [I’! J] = 0. Again, by (3.3.1), 

(3.3.6) 

while, by (3.3.3), 

since A [I’ 1 J] = 0. Hence 

(3.3.7) 

with equality if and only if A [II J’] = 0. From (3.3.6) and (3.3.7) we 

obtain by w = Lu = w(M, N)u that 

provided that A [II J’] > 0, and 

provided that A [II J’] = 0. H ence (A, Y, c) is consistent and the lemma 

is proved. 

3.4. LEMhI.4. Let (A, Y, c) be an mrc and sz@pose that for T = 

T(A; r, c) and s > 0, we have Tu = ilu. Suppose J is the (mecessarily) 
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nonempty subset of N such that uJ >> 0 while uJl = 0, and let I’ be the 

subset of M defined by 

I’={~EM:A[~~J] =O}. (3.4.1) 

Then 

either (a) I x J = M x N OY 
(3.4.2) 

(b) 4cJcN, +cIcM 

and A [I’1 J] is a maximal zero submatrix of A, 

TauJ = jluJ, where To = T(A 111 Jl ; 71, cJ) 

(A [II J], yI, cJ) is consistent, 

and 

il = ~(1, J). 

(3.4.3) 

(3.4.4) 

(3.4.5) 

Proof. (a) Suppose first that J = N. Since A has no zero row, 

I = M and this proves (3.4.2). In this case (3.4.3) is trivial and (3.4.4) 

and (3.4.5) reduce to Lemma 3.3. 

(b) Now suppose that C$ C JC N. Observe that 4 G I’C M, since 

A has no zero column. Thus I # 4. Put So = (S(A [II J]; rl), (cf. Defini- 

tion 2.2). By direct computation, 

(su)r = s%4, (3.4.6) 

since uJ, = 0, and since each row of A [II J] is nonzero (SU), is a finite 

(strictly positive) vector. 

If I’ # 4, then 

(Su),, = co, (3.4.7) 

a vector each of whose elements is 00. 

Next, since A[I’j J] = 0 if I’ f C$ and, by (3.4.6), 

(Tu)~ = T”uJ, 

and, by (3.4.7), we obtain for j E J’ that 

(3.4.8) 

(Tu)~ = 0 if and only if I’ # $ and A [I’ji] > 0. (3.4.9) 
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But ( Tu)~ = hj = 0 if j E J’, whence $ C I C M and A [I’ij] > 0 for 

j E J’. Since we have supposed J C N, this proves (3.4.2). Returning 

to (3.4.8), we obtain (3.4.3), where zdJ is strictly positive. 

We now immediately deduce (3.4.4) and (3.45) from Lemma 3.3. 

3.5. THEOREM. Let (A, r, c) be an mrc. Then T = T(A; Y, c) has 

a strictly positive eigenvector if and only if (A, Y, c) is consistent. In this 

case, the corresponding eigenvalue is co(M, N), and u(M, N) is the largest 

eigenvalue of T. 

Proof. If u >> 0 and Tu = Au, then by Lemma 3.3 (A, Y, c) is consistent 

and A = u(M, N). By Lemma 3.4, every other eigenvalue of T is of form 

~(1, J), where I$C I C M and $C JC N. By consistency ~(1, J) < 

co(M, N), whence u(M, N) is the greatest eigenvalue. To prove the 

converse, suppose that (A, Y, c) is consistent. We introduce two auxiliary 

operators: the operator T, = T(A,, A ; Y, c) of (2.3.2), and (as in Section 

2.4) 

T,* = T(A,; 7, c) (3.51) 

where A, is again given by (2.3.1). 

Observe that 

PC* = sup{il: x > 0, T,*x > 2%) 

is an eigenvalue of T,* by Lemma 2.3 and, by Lemma 3.4, pE* = w(M, N) 

since A, has no zero submatrix. But by direct computation T,* < T, 

(i.e., T,* < T,x for all x >, 0), whence 

4M, N) = pe* < pc, (3.5.2) 

where pE is defined by (2.3.3). By Lemma 2.3, pE 4 p, as E + 0, and p 

is an eigenvalue of T. Hence p 3 co(M, N). But, by Lemma 3.4, p = 

w(I, J) where either A[I’[J] IS a zero submatrix and I C M, J C N, or 

I = M, J= N. By consistency, ~(1, J) 6 co(M, N), whence p = 

u(M, N). Next suppose that A is indecomposable. (The matrix A is 

indecomposable if and only if A [I’1 J] = 0 implies that A [II J’] # 0). 

Then under the stated conditions ~(1, J) = co(M, N) only if I x J = 

M x N. Hence, by Lemma 3.4, the corresponding eigenvector u is strictly 

positive. If A is decomposable, then A = A, @ A, 0. * . @ A,, where 

A, = A[I,JJ,], tc = 1,. . ., CT, each A, is indecomposable, and the I,, 
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J, form partitions of M, Ik’, respectively. By consistency w(~~,J,) = 

w(M, I\i) and, if T, = T(A [I,, J,], Y[,, cJ,), then we have already proved 

that there is a u, which must be strictly positive, such that Tp, = 

w(I,, Ja)u, = w(M, N)u,. If u = pi @ * . . @ u,, then u >> 0, and, since 

A is a direct sum, 

Tu = Tu, @ . . . @ T,u, = u(M, N)(v, 0. . . @ UJ = w(M, N)zr. 

The theorem is proved. 

3.6. Msm THEOREM. Let (A, Y, c) be an mrc. The spectrum of 

T = T(A; r, c) consists of all il for which there exist nonempty subsets 

I, J of M, N, respectively, such that 

either (a) I x J = M x N, OY 

(b) r$cIcM, +cJcN and A [I’j J] is a maximal zero 

submatrix of A, (3.4.2) 

(A CIIJI, rrj c.~) is comxitent (3.4.4) 

L = tu(I, J). (3.4.5) 

If all these co?Lditions are satisfied, then there is an associated eigenvector 

with u,, >> 0 and (for J C N) uJS = 0. 

Proof. By Lemma 3.4, we know that each 1 in the spectrum of 1‘ 

satisfies (3.4.2), (3.4.4), and (3.4.5). Conversely, let (3.4.2), (3.4.4), and 

(3.4.5) hold. If (3.4.2(a)) holds, then our theorem reduces to Theorem 3.5. 

So suppose (3.4.2(b)) is satisfied. Since A [I’1 J] is a maximal zero sub- 

matrix of A, and A has no zero columns, it follows that A [II J] has no 

zero row or column; hence, by Theorem 3.5, To = T(A [II J]; rl, c,,) 
has a strictly positive eigenvector uJ with associated eigenvalue il = 

~(1, J). Let uJ, = 0, and set u = zbJ @ ZL~,. If SO = S(.4 [II J]; rl), then 

(SU), = .!?%A, (3.6.1) 

and 

(SU),, = cy) 
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whence 

(Tu), = TOLL5 = w(I, J)u,, 

where ?‘O is defined by (3.4.3). Further, ,4 [1’lJ’] has no zero column 

since A [1’lJ] is a maximal zero submatrix of A, whence 

(TZL),, = 0 

Hence Tu = w(I, J)zt, and the theorem is proved 

3.5. DEFIXITIOK AND REMARK. The operator T of 9 into itself is 

called strongly monotonic on the open cone B” = {x: xi > 01 if 0 << M < x’ 

implies TK < TX’ and, for some integer m, Tms << T”x’. 

Observe that, for x > 0, T”x >> 0 for strong monotonic 7’. Clearl! 

T is strongly monotonic on Y” if x << x’ implies Tx << TX’ and, for 

I$ C J C N, also xJ < x,,‘, xJ, = x,,, ’ imply ( Tx),~ < ( Tx’)~, (TX),, -C ( Tx’),~,. 

3.8. LEMMA. Let (A, Y, c) be an mrc. 1/ A is &decomposable, then 

T = T(A ; r, c) is strongly monotonic on Y”. 

Prooj. Suppose 0 < x << N’. Then .5x < Sx’, whence TX << TX’. 

Now suppose that #J C J C N and 0 << xJ < xJ’ but 0 < xJ = xJ’. Let 

I’ = {REM: A[i,J; = O}. (3.8.1) 

Possibly I’ = 4, but, since A contains no zero column, we have I’ c M. 

We now have (Sx), i> (SX’), and, if I’ # $, also (Sx),, = (Sx’),,. Since 

-4 [1~ J] can contain no zero column, it now follows that (TX)] << (Tx’),[. 

If I’ = $, then A [Ill’] = A [AVIJ’] = 0 since A has no zero column. If 

I’ # $, then A [II J’] # 0 since A is indecomposable. Hence A [I!J’] # 0, 

and we may deduce that (Tx)~, < (TN’)],. It follows by Definition 3.7 

that T is strongly monotonic on 90. 

3.9. THEOREM. Let (A, Y, c) be a consistent mrc. If A is indecomposable, 

then T = T(A ; Y, c) has a unique eigenvector u (except for scalar multiples) 

associated with u(M, N) and u is strictly $ositive. 

Proo/. The existence of a strictly positive eigenvector belonging to 

w(M, N) is assured by Theorem 3.5. Since A is indecomposable, ~(1, J) = 
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o(M, N) only if I x J = M x N, whence by Theorem 3.6 every eigen- 

vector belonging to o(M, N) is strictly positive. Further, by Lemma 

3.8, T is strongly monotonic, so uniqueness follows by (4.4) of [l]. 

3.10. COROLLARY. If (A, r, c) is a consistent mrc, then the eigenvectors 

of T belonging to w(M, N) (together with 0) form a cone. 

Proof. Suppose A = A @ . * - @ A,, where A, = A [I,1 J,] is in- 

decomposable and the I,, J, form a partition of M, N, respectively. It 

is easy to see that (A [I,] J,], yla, cJ,) is consistent, for suppose that I x J 

C I, x J, and A [I,\I, J] = 0. Then A [I,‘1 J] = 0, but A [I,1 J\ J,] # 

0 and so A [1,l J,‘] # 0. It follows that 

4&jJg) -=L w(M> N) = 41, J). 

Thus by Theorem 3.9 T, = T(A [I,) J,], Ye,, cJ,) has a unique strictly 

positive eigenvector a4,. Since A is a direct sum, it follows by direct 

computation that any vector yrur 0. . - @you, with yi 2 0 is an eigen- 

vector of T belonging to u(M, N) or 0. 

Conversely, assume that Tu = o(M, N)u. Direct computation again 

shows that TpJ = (Tu),~ = w(M, N)uUJx whence, by Theorem 3.9, 

UJ, = YPW for sime l/a > 0. Hence u = yrur @ - - * @you,, and the 

corollary is proved. 

3.11. Example. Corollary 3.10 fails for eigenvalues A< w(M, N). 

For example, let 

c = [l, 11. 

, then TZL = &L, and if v = 
1 

, then TV = iv. But zt + pl = I 
[I 

and T(u + v) = iv. 

3.12. Remark. The restriction that A has no zero row or column 

is somewhat technical. For, let (A, Y, c) be an mrc, let AP be the (m + 1) x 

n matrix obtained by adjoining a zero row to A as row (m + l), and let 

YM p = 7, Y&+1 > 0. Then T(AP; F’, c)x = T(A; Y, c)x for all x E 8. Next, 
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let AY be the (n + 1) x m matrix obtained from A by adjoining a zero 

column to A as column (n + 1) and c,? = c, cl+i > 0, and let x:+, > 0. 

If 2” = T(AY; Y, cy)xy where x E 9, then z&’ = T(A ; Y, c)x and zi+r = 60. 

4. THE YAX PROBLEM 

We shall briefly point out the applications of Theorem 3.6 to some 

problems mentioned in Section 1. 

4.1. THEOREM. Let (A, Y, c) satisfy Definition 2.2. Then there exists 

a positive 1 and diagonal matrices X and Y with positive diagonal elements 

such that YAX has YOW sum vector Y and column sum vector c if and only 

if (A, 7, c) is consistent. In this case 

(4.1.1) 

Proof. If X and Y satisfy the conditions of Theorem 4.1, then 

TX = ilx for some x = (x1,. . . , x,J >> 0 and 1 given by (4.1.1) ; and conver- 

sely with X = diag(x,, . ., x2) and Y = ((.5x),, . . ., (.5x),). The result 

follows by Theorem 3.5. 

The positive m x n matrices A and B have the same pattern if aij = 0 

if and only if bij = 0. 

4.2. COROLLARY. (Brualdi [l], Theorem (2.1)). Let A be an in- 

decomposable positive m x n matrix and let Y and c be strictly positive 

column and YOW vectors, respectively, such that Cm yi = zN cj. There 

exists a positive matrix B zekth the same pattern as A, row sum vector Y and 

column sum vector c if and only if A [I’1 J] = 0 implies that cJ cj > XI yi. 

Proof. Since A is indecomposable the condition on A is precisely 

that (A, Y, c) be consistent. Also (B, 7, c) is consistent if and only if 

(A, Y, c) is consistent. 

4.3. COROLLARY (Menon [5], Theorem 2). Let A be a given positive 

m x n matrix; 7, c be strictly positive column and row vectors. Suppose 

there exists at least one positive matrix B with the same pattern as A and 

having row and column sum vectors r and c, respectively. Then there exist 

diagonal matrices X and Y such that YAX has YOW sum vector 7 and column 

sum vector c. 
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Proof. The assumptions imply that (U, 7, c) is consistent and X31 ri = 

CN Cj. Hence (A, 7, c) is also consistent and the result follows from 

Theorem 4.1. 

Of course, the theorems of Brualdi and Menon (our Corollaries 4.1 

and 4.3) together are essentially equivalent to Theorem 4.1. 
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