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INTRODUCTION 

In [l] R. Sinkhorn proved the following theorem: Let A be a positive square 
matrix. Then there exist two diagonal matrices D, , D, whose diagonal elements 
are positive such that D,AD, is doubly stochastic. Moreover, these matrices are 
uniquely determkd up to scalar factors. In addition, Sinkhorn gave some 
examples which show that the theorem fails for some nonnegative 
matrices A. 

Marcus and Newman [2] and Maxfield and Mint [3] also studied this 
problem. 

Recently M. V. Menon [4] gave a simplified proof of Sinkhorn’s theorem 
based on the Brouwer fixed-point theorem. Perfect and Mirsky [5] have 
shown that given a fully indecomposable matrix B, there exists a doubly 
stochastic nonnegative matrix with the same zero pattern. 

The operator T defined by Menon in his proof of Sinkhorn’s theorem is 
a homogeneous positive nonlinear operator. Morishima [6] and Thompson [7] 
have studied such operators in extending the theorems of Perron and Frobe- 
nius. We define the operator T in the case when A is an irreducible matrix 
with a positive main diagonal. Using the Wielandt approach to the Perron- 
Frobenius theory, we show that T has some but not all of the properties of 
of an irreducible nonnegative matrix. Thus T has a unique eigenvector in 
the interior of the positive cone, but there may also exist eigenvectors on 

the boundary. We then deduce Sinkhorn’s theorem when A is a nonnegative 
fully indecomposable matrix. It is an easy matter to establish that this 
condition is essentially necessary (see [5] or 6.2). 

After completing our work we learned that Sinkhorn and Knopp [8] have 
also obtained a proof of the D,AD, theorem under the full indecomposability 
assumption. Their method of proof is quite different from ours, and we feel 

1 The research of the authors was partially supported by the NSF grants GP-3993 
and GP-43 16. 
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that our results on the operator T and our demonstration that there is a rela- 
tion between the Perron-Frobenius theory and Sinkhorn’s theorem is of 
some independent interest. 

In the last two sections of this paper we consider the diagonal equivalence 
of a nonnegative matrix to a row stochastic matrix. Given any square non- 
negative matrix A with at least one positive element in each row it is clear 
that there exists a row stochastic matrix C having zeros in exactly the same 
positions as A. We give necessary and sufficient conditions on a square 
nonnegative matrix A such that for every nonnegative matrix B having zeros 
in exactly the same positions as A there exists a diagonal matrix D with a 
positive diagonal such that DBD is row stochastic. As a corollary we show 
that if A has a positive main diagonal then there exists a D such that DAD 
is row stochastic. A similar result was proved by Marcus and Newman in 
the special case that A is a positive definite symmetric nonnegative matrix 
[9, p. 1301. But such a matrix must have a positive main diagonal. By use 
of advanced analytical methods Karlin and Nirenberg [lo] have obtained a 
generalization of this corollary to the continuous case. Their paper will also 
be published in this Journal. 

Recently Sinkhorn [13] proved the existence of D such that DAD is row 
stochastic under the assumption A is a positive matrix. This result, of 
course, follows from the corollary mentioned above. 

2. FULLY INDECOMPOSABLE MATRICES 

(2.1) N OTATION. Let A = [aii] be an m x n matrix. If aig > 0 for each 
i and j, then we write A> 0; if aij > 0, then we write A > 0; if A >, 0 but 
A # 0, then we write A > 0. 

(2.2) DEFINITIONS. Let A 3 0 be an n x n matrix. Then A is called 
redtrcible provided there exists a permutation matrix P such that PAPT has 
the form 

1” “I B’ A, ’ 
(2.2.1) 

where A, and A, are square nonempty matrices. If A is not reducible, it is 
irreducible. A n x n matrix A > 0 is called fully indecomposable if there do not 
exist permutation matrices P and Q such that PAQ has the form (2.2.1). 
By convention every 1 x 1 matrix is irreducible but a 1 x 1 matrix is fully 
indecomposable if and only if its single entry is positive. 

An n x n matrix A > 0 is YOW stochastic (column stochastic) if all its row 
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sums (column sums) are one. The rr x n matrix A > 0 is doubly stochastic 
provided it is both row stochastic and column stochastic. 

(2.3) LEMMA. Let A > 0 be an n x n matrix. Then A is fully indecom- 
posable if and only if there are permutation matrices P and Q such that PAQ 
has a positive main diagonal and is irreducible. 

PROOF. Let A be fully indecomposable. Then by the Frobenius-Konig 
Theorem [9, p. 971 there exist permutation matrices P and Q such that PAQ 
has a positive main diagonal. But obviously PAQ is fully indecomposable 
and thus irreducible. 

Conversely, suppose that C = PAQ has a positive main diagonal and is 
irreducible. Since C is fully indecomposable if and only if A is, we may 
assume C = A. Suppose A is not fully indecomposable, and let Pl and Qi 
be two permutation matrices such that PIAQZ, is of the form (2.2.1). Suppose 
A, has r columns, and A, has n - r columns. Then we may write 
P,AQ, = A’Q’ where A’ = PIAPIT is again a matrix with a positive main 
diagonal and Q’ = PIQl is a permutation matrix. But then it follows that Q’ 
permutes the first r columns of A’ among themselves and the last n - r 
columns of A’ among themselves. Hence A’ is of the form (2.2.1) and A is 
reducible, which is a contradiction. The lemma now follows. 

(2.4) If D, and D, are diagonal matrices such that D,AD, = S is doubly 
stochastic, thenfor anypermutation matrices PandQ we have D,‘(PAQ)D,’ = S 
where D,’ = PD,PT and D,’ = QTD,Q are diagonal matrices. In view of (2.3) 
we may replace the assumption that “A is fully indecomposable” by “A is 
irreducible with positive main diagonal.” 

3. MENON'S OPERATOR 

(3.1) NOTATION. Let ~={x=(xl;~~,~,):~~O} and let 
go = {x : x > 0). Let Pa = 9 \ ZP denote the complement of go in 8. 
It will be convenient to extend the nonnegative reals to include co, and to 
order and topologize this set R, in the usual way. We put 

8, = {x = (x1 ) *a-, Xn) : xi > 0 or xi = co}. 

In conformity with (2.1) we write for x, and x’ in B, : x < x’ if xi < xi’ 
for all i; x < x’ if x < x’ but x # x’; and x < x’ if xi < xi’ for all i. Further- 
more 91), is topologized by the Cartesian product topology. 

409/W1-3 
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(3.2) DEFINITIONS. In what is to follow, we put 0-l = CO, 00-t = 0, 
co+~=oo,O~oo=O, and if e>O, a*cc=c~. Let A>0 be an 
n x rz matrix. For x, y E 8, , let 

and 

Hence 

and 

(Ux), = xp, 1 <i<fz 

S=UA 

T = UAWA 

(SX)i = (E a&q, 1 < i < n 
k=l 

(3.2.1) 

(3.2.2) 

(3.2.3) 

(3.2.4) 

(Tx)~ = (i aj, (il nigk)-‘)-: 1 < i < 12. (3.2.5) 
j=l 

We shall call T the operator associated with the matrix A. The operator T 
was defined by Menon [4]. Since in his case A > 0, he had no need to 
concern himself with points at infinity. 

Let, for instance, A have a positive main diagonal. Let x E P and let 

and 

X=diag(x,;**, 4 Y = diag ((Sx), , *a., (Sx),), 

2 = diag ((TX), , .a*, (TX),). 

Then the matrix YAX is row stochastic and the matrix YAZ is column 
stochastic. If X = 2, then the matrix YAX is doubly stochastic, and this 
observation motivates our search for fixed points of T lying in PO. 

(3.3) DEFINITIONS. Let T be a transformation of 8, into itself. Then T is 
called monotonic on 8, if for x, X’ E 9’, , 

x < x’ implies TX < TX’. (3.3.1) 

The operator T is called strongly monotonic on .PJ if for x, x’ E Pa 

x ==I x’ implies TX < TX’, and there exists a positive integer m 
such that T% < T”x’. (3.3.2) 

The operator T is called homogeneous on 9’ if for x E 9’ and 0 < OL < 00 

T(m) = ol(Tx). (3.3.3) 
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(3.4) PROPOSITION. Let A > 0 be an irreducible matrix with a positive 
main diagonal. Let T be the operator associated with A, and let S be dejined by 
(3.2.2). Then 

S and T are continuous on 8, , and map 90 into itself. 

Furthermore T maps 9’ into itself. 

(3.4.1) 

T is homogeneous on B (3.4.2) 

T is monotonic on 9, and strongly monotonic on 9. (3.4.3) 

PROOF. In view of (3.2) the operators A, U, AT, U are all continuous 
operators of 8, into itself. Hence S and T are continuous on 9, . If x E 80, 
then since A has a positive main diagonal, it follows that Ax E 9, whence 
SX = UAx E 9. Repeating this argument we obtain TX E 9’). Now let 
x E 8, then Ax E 8, whence (UAx), > 0 for i = 1, e-e, n. Since AT has a 
positive main diagonal, (AWAX)~ > 0 for i = 1, *a*, It, whence 
(UAWAx), < co for i = 1, a.*, n. We have proved (3.4.1). 

Clearly A and A* are homogeneous on 9. Since for cx > 0, 
U(m) = (1 /a) Ux, it follows that T(m) = cr(Tx) for 01 > 0. Since TO = 0, 
T is homogeneous on 9. 

Since T is continuous on 8, and Y:, is the closure of 9, the assertion in 
(3.4.3) will follow if we can prove that T is strongly monotonic on 9. 

Let X, x’ E go with x < x’. Then Ax < Ax’ and (Ax)~ < (Ax’)i if and 
only if there exists a k such that ski > 0 and xK < xlc’. If x < x’ it follows 
that Ax < Ax’ since all aii > 0. It now follows that UAx > UAx’ and also 
TX < TX’. Suppose now that xi = xi’ for some ;, say xi = xi’ for i = 1, *a., 
r < n and xi < xi’ for i = r + 1, *a*, n after the same permutation has been 
applied to the rows and columns of A. Since each aii > 0 it follows that 
(Ax)~ < (Ax’)~ for i = r + 1, *.., n. Since A is irreducible there exist 
k and h, r + 1 < k < n and 1 < h < r, such that akh > 0, say h = r. 
Hence (Ax), < (Ax’), . It now follows easily that (TX), < (TX’), for 
i=l, ***, r - 1, and (TX), < (TX’), for i = r, .a., n. We may repeat the 
above argument until we obtain an integer m < n such that (T”x) < (T%‘). 
This completes the proof of the proposition. 

We remark that parts of the preceding proposition may be proved under 
weaker assumptions. 

4. STRONGLY MONOTONIC OPERATORS 

In this section we shall state and prove some results on continuous opera- 
tors strongly monotonic on @‘. Stronger results are standard in the linear 
Perron-Frobenius theory and we show here that some of these results remain 
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true under our weakened assumptions. We shall suppose in this section that all 
vectors have finite coordinates. 

(4.1) D EFINITION. Let T be an operator of 9’ into itself and let x > 0. 
We then define, 

A(x) = sup (A : TX > Ax}. (4.1.1) 

It is easy to see that A(X) is characterized by 

Hence A(x) < 00 for all x > 0. 

(4.2) LEMMA. Let T be a continuous operator of9 into 9. The function A 
as dejked in (4.1) is upper semicontinuous on B \ (0). 

PROOF. Let x > 0 and let {Y} be a sequence of vectors in 9’ \ (0) with 
.P + x. Let h = lim sup A(f). Then there exists a subsequence z+ with 
XCL~ - x and A(xQ) --t A. It follows from (4.1.2) that 

TxUr - A@+) XU~ > 0. 

By the continuity of T, TXOL~ - A(xQ) ~a” - TX - Ax, whence TX - Ax 3 0. 
This implies A is finite and h < A(x). H ence A is upper semicontinuous 

on 9 \ {O}. 

(4.3) LEMMA. Let T be a continuous homogeneous operator of 9’ into itself 
which is strongly monotonic on 8O. Let 

p = sup {A(x) : x > O}. (4.3.1) 

Then there is a u > 0 such that A(u) = p and 0 < p < 00. 

PROOF. Let 

3?-= x>O:=&l 
t 

. 
i=l I 

Since T is homogeneous on Y, 

p = sup {A(X) : X E .X-}. 

Since Z is compact and A is upper semicontinuous, A achieves its supremum 
on -X, whence there is a u > 0 with A(u) = p and p is finite. Let x > 0. 
Then by strong monotonicity there is an integer m such that T% > 0. 
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Hence T(T+lx) > h(Tm-lx) for suficiently small h > 0. Thus A(Tm-lx) > 0 
and so p > 0. 

(4.4) THEOREM. Let T be a continuous homogeneous operator of B into itself 
which is strongly monotonic on PO. If A achieves its supremum p over 9’ \ (0) 
at u > 0, then 

p is an eigenvalue of T with eigenvector u. (4.4.1) 

u is the only eigenvector of T such that u > 0. (4.4.2) 

PROOF. Suppose u > 0 and A(u) = p. Then by (4.1.2) 

Tu > pu. 

Suppose Tu > pu. By the strong monotonicity of T, there is an integer m 
such that 

T”(Tu) > Tm(pu) 

whence 
T(Tmu) > p(Tmu). 

Whence for sufficiently small .z > 0, 

T(T”u) 2 (p + 4 Pu). 

Hence A(T%) > p, but this is a contradiction. It follows that Tu = pu. 
Now suppose that v > 0 and TV = av. Suppose v is not a scalar multiple 

of u. Then exists a, /3 > 0 with 

pv < 11 < WV 

such that for some j, /3vj = uj and for some i, OLV~ = ui . Since T is strongly 
monotonic, there exist integers p and q such that 

Tg@4 Q Tel4 

Tp(u) < TJ’((YV). 

Hence agt9vj < pgui and so 0 < p. Similarly pPui < u%vi and so p < (T. 
This is a contradiction, whence v is a scalar multiple of u. This completes the 
proof. 

5. MAIN RESULTS ON THE MENON OPERATOR 

We now return to the particular operator defined in (3.2) that is the Menon 
operator. 
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(5.1) LEMMA. Let A > 0 be an n x n irreducible matrix with a positive 
main diagonal, and let T be the operator associated with A. Let A be dejked 
by (4.1). Then for all x E PO, 

If 0 < x E Pa, then 

A(x) 4 1. (51.1) 

A(x) < q . (5.1.2) 

PROOF. Let x > 0 and set X = diag (xi , *+a, x,), Y = diag (yr , a.., y,J, 
where yi = (SX)~ and S is the operator defined in (3.2). Also set 
2 = diag(x,, a*., z,), where zi = (TX), . Then YAX is row stochastic, 
whence 

n = i y&jXj . 
i,j=l 

Furthermore YAZ is column stochastic, whence 

n = i y&jZj . 
i,j=l 

Since xi 2 /l(x)xi, i = 1, me., n, it follows that /I(x) f 1. This proves 
(51.1). 

NowletO<xE9’a,sayx,=***= x,=Oandxj>Oforr+l<j<n, 
after a simultaneous permutation of rows and columns of A. Since A is 
irreducible, there exist i, j with 1 < i < r < j < n and aij > 0. We may 
further simultaneously permute the first r rows and columns of A so that 
A assumes the form 

(5.1.3) 

where A,, is q x q, A,, is r - q x r - q with 0 < q < r and no row of 
A,, is zero. Since A has a positive main diagonal, it is clear that no row of 
A,, is zero. 

Let y = Sx. It follows that yi < co for i = q + 1, **a, n. 
Now let X”L, 01 = 1,2, ***, be a sequence of vectors in 9 with e-+x. 

Let yU = Sti. As in the first part of the proof it follows that for all (Y 
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Since S is continuous, it follows that 

Butypijxj=Oifq+l<i<nandl<j<r.Hence 

(5.1.4) 

Nowletx=Tx. By(3.4.1),zi<cofori=1;*.,n.If~=Tti,thenasin 
the first part of the proof 

SillCCtZij=O, I<i<q,r+l<j<n, 

But S and T are continuous, whence 

(5.1.5) 

It now follows from (5.1.4), (5.1.5) and the fact that zi > A(x) xt , i = 1, 
.a*, n, that 

But 0 < q < Y < n. Hence 

and (5.1.2) follows. 

n-r n-l 
-<--- 
n-9 n 

(5.2) LEMMA. Let A > 0, T, and A be as in (5.1). If A achieves its 
supremum p over B \ {0} at u > 0, then p = 1 and u is the unique eigenvector 
of T such that u > 0. 

PROOF. By (4.4), u is the unique eigenvector of T such that u > 0. We 
need only prove that p = 1. 
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Let U = diag (zlr , ..a, II,) and Y = diag (yr , a**, y,J with yi = (SU)~ , 
where S is the operator defined in (3.2). Since Tu = pu, YA U is row stocha- 
stic and pYAU is column stochastic. Thus 

whence p = 1. 
We require the next lemma for matrices A which need not be irreducible. 

(5.3) LEMMA. Let A > 0 be an n x n matrix with a positive main diagonal. 
Let T be the operator associated with A and let A be defined as in (4.1). Then 

sup{d(x):xEP}> 1. 

PROOF. The lemma is obviously true for 1 x 1 matrices since TX = x 
for all X. Suppose the lemma is true for all m x m matrices with 1 < m < n. 
We proceed by induction, considering two cases. 

CASE 1. The matrix A is reducible, say after simultaneous permutations 
of rows and columns 

A = [ii, ;;] , (5.3.1) 

where A, is m x m, A, is n - m x n - m, and A,, = 0. Let T, , S1 and 
T, , S, be the operators (defined by (3.2)) for A, and A,, respectively, and 
A, and A, the corresponding functions defined by (4.1). Suppose E > 0. 
By inductive assumption there exists 

xl = (x11, *a-, x,1) > 0 and x2=(x~+1,-~,xn2)>o 

such that A,(9) > 1 - 6 and Aa(x2) > 1 - E. We shall show that for 
sufficiently small 6 > 0 and f = (8x1, x2), we have A(Z) > 1 - c. Set 
fl = (0, x2) and 2 = (xl, co), where 0 and cc stand for vectors all of whose 
coordinates are 0 and co, respectively. Since for all 6 > 0, A(%%) = cl(Z) 
and T is continuous on P’, , (T& will b e arbitrarily close to (TZ)i , i = 1, e.1, 
m and (T%)i will be arbitrarily close to (Tz)~ , i = m + 1, *e., n for sufficiently 
small 6. Hence it is enough to prove that 

Wh -y-->l-6, 
xi 

i = 1, -*a, m, (5.3.2) 

and 

(Wi --l-E, 
Xi2 

i = m + 1, ***, n. (5.3.2) 
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But since A,, = 0, 

whence 

s4 = S(x’, 00) = (&xl, O), 

TR = (T$, 0). 

By inductive assumption, 

Trxl > fl,(xl) x1 > (1 - E) x1, 

whence (5.3.2) follows. Similarly 

s3i; = S(0, x2) = (co, &x2), 

whence, as A,, = 0, 

Tz = (0, T,x~). 

Again using the inductive assumption, we conclude 

Tg2 > (1,(x2) ~2 > (1 - 6) x2, 

and (5.3.3) follows. This completes Case 1. 

CASE 2. The matrix A is irreducible. In view of (5.2) it is enough to prove 
that (1 achieves its supremum over B \ (0) at a point in 9. Let x E 8. 
Clearly it is enough to show that there exists an S in 9 such that /r(n) > n(x). 

After simultaneously permuting the rows and columns of A, we may 
assume x, = em+ = x, = 0 and xi > 0 for i = m + 1, +a*, ?t. We may then 
write x2 = (x*+~ , **a, x,). Let A be partitioned as in (5.3.1), and let Sr , 
Tr , (1, b e as in Case 1. 

Let 0 < E < l/n. By inductive assumption there exists an 

such that (I,(xr) > 1 - E. Let 6 > 0 and let P = (6x1, x2). Since by (3.4) 
T is monotonic, TX > TX. Hence 

9 > e > A(x), i = m + 1, .a*, 71. (5.3.4) 
a z 

We shall now prove that for sufficiently small 6 > 0 

(5.3.5) 
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Since by (5.1), A(X) < 1 - l/ n and E < l/n, it is enough to prove that 

(TX”), 7)1-E, i = 1, a**, m. 
z 

As in Case 1 it suffices to prove that 

CT% ->1-c, 
xi1 

i = 1, *a*, 112, 

where x’ = (x1, 03). 
But it is easy to see that Sx’ = (yl, 0) where y1 < Sxl. But then 

TZ = (21, 9) where z1 > Trxl. Hence 

(Wi > CT&) > 1 _ l 
-----IT 

Xi1 Xi 
, i = 1, *a., m 

and (5.3.6) and (5.3.5) follow. Combining (5.3.4) and (5.3.5), we obtain the 
desired inequality 

and the lemma follows. 

(5.4) THEOREM. Let A > 0 be an n x n irreducible matrix with a positive 
main diagonal. Let T be the ope-rator associated with the matrix A. Then 1 is an 
etgenvalue of T with a unique eigenvector u in 8. Furthermore u > 0. 

PROOF. Let (1 be defined as in (4.1). Let p = sup {A(x) : x E B \ {O}}. 
By (3.4) and (4.3) there exists a u > 0 such that p = A(u). By (5.3) p > 1. 
But by (5.1), if x E Ba then A(x) < (n - 1)/n. Hence u > 0. But then by 
(5.2) p = 1, and u is the unique eigenvector for 1 of T in 9”. But again by 
(5.1) TX # x if x E Pa, whence u is the unique eigenvector for 1 of T in 9. 

(5.5) REMARK. The operator T associated with A may have eigenvectors 
in Pa. For example let 

1 1 0 
A= 11 1. 

[ I 1 1 1 

Then A is irreducible with positive main diagonal. Let x = (0, 0, 1). Then 
Tx=~x. 
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6. THE D,AD, THEOREMS 

(6.1) THEOREM. Let A > 0 be an n x n fuZZy indecomposable matrix. 
Then there exist diagonal matrices D, and D, with positive diagonals such that 
D,AD, is doubly stochastic. Moreover D, and D, are uniquely determined up to 
scalar multiples. 

PROOF. By (2.4), it is enough to prove this theorem for an irre- 
ducible matrix A with a positive main diagonal. Let x > 0 and set 
D, = diag (x1 , *e*, x,) and D, = diag ((Sx), , *a*, (Sx),). Then D,AD, is 
doubly stochastic if and only if TX = X, where T is the operator associated 
with A. Hence the result follows from (5.4). 

We now show that the condition that A > 0 be fully indecomposable is 
essentially necessary for (6.1) to hold. 

(6.2) THEOREM. Let A > 0 be an n x n matrix. Then there exist diagonal 
matrices D, and D, such that D,AD, is doubly stochastic if and only if after 
independent permutations of rows and columns A is the direct sum of fully 
indecomposable matrices. 

PROOF. Suppose the matrix A1 obtained from A by independent permu- 
tations of rows and columns is equal to A(l) i *a- r A(“) where each Afi) is 
fully indecomposable. By (5.5) there exist diagonal matrices D:l), -*a, DIk) 
and Dill, en*, Dik) such that Df)A(i)D(“) a is doubly stochastic. If 

D 1 ’ = D(1) + . . . + D(k) 
1 1 and D 

2 
’ = D(1) + . . . + D(k) 

1 2 

then D,‘A’D,’ is doubly stochastic. Hence by (2.4) we can find D, and D, 
such that D,AD, is doubly stochastic. 

Conversely, suppose there exist D, and D, such that D,AD, = S is doubly 
stochastic. In view of (2.4) we may assume that the rows and columns of A 
have been permuted so that 

where each St is either fully indecomposable or a I x 1 zero matrix. But 
since S is doubly stochastic, the row sums of S, are all 1 and hence the 
column sums of S, , being less than or equal to 1, must in fact be equal to 1. 
Hence S,, = 0, vs., Sk, = 0. Repeating this argument we obtain 
s = s, + **a + s, where each Si is doubly stochastic and hence fully 
indecomposable. 
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7. THE DAD THEOREM 

We shall now only assume that the square matrix A > 0 has at least one 
positive element in each row. As in (3.2) for x E 8, we set 

(Ux), = x,1, 1 <i<n, 

and define the operator S from 8, into itself by 

S =UA. (7.1) 

As before it follows that S is continuous on 9, . 

(7.2) LEMMA. Let A > 0 be a square matrix with at least one positive 
element in each row and let S be the operator defined in (7.1). Then S has a 
jixed point in 8, . 

PROOF. Clearly .P’, is a homeomorph of the n-cube. Since S is continuous 
in8,, the lemma follows from the Brouwer fixed point theorem. 

In the remainder of this section we shall find conditions that S have a 
fixed point in 9. For suppose x E P with Sx = x. If we set 

D=diag(x,,x,;*.,x,) 

then it follows that DAD is row stochastic. 

(7.3) LEMMA. Let A and S be as in (7.2). If S has a fixed point on the 
boundary of 8, , then the rows and columns of A can be simultaneously permuted 
to give 

(7.3.1) 

where 

the diagonal blocks are square matrices, the first two diagonal blocks 
being non-empty, and no row of A,, is zero. (7.3.2) 

PROOF. Suppose x is on the boundary of s), and is fixed under S. Then 
for some i either xi = 0 or xi = co. If xi = 0, then 0 = (Ax);‘, whence for 
somej, xj = co. Hence there is an i with xi = co. 

Suppose after simultaneously reordering the rows and columns of A that 
x1 = .*. zzz ~,=~0,r),1,thatx,+,=~~~=x,=OandO<x~<oofor 
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j=s+l, *a., n. We partition the matrix A correspondingly 

where A,, is nonempty. 

12 4, 
22 A23 7 
32 A33 

] 

If 1 < i < r, then co = (xy=, u,&~ whence aij = 0 for 1 < j < r and 
s+ 1 <j<n.HenceA,,= 0 and A,, = 0. We note that this implies s > r, 
since each row of A contains a positive element. If r + 1 < i < s, then 
0 = (Cysl a,,~~)-~ whence for some j, 1 < j < Y, aij > 0. Hence no row of 

A21 is zero. If s < i ,( n, then cc > (Cy=, u,~x~)-~ > 0 whence aii = 0 for 
1 <j< r. Hence A,, = 0. This completes the proof of the lemma. 

(7.4) LEMMA. Let E be a square 0, 1 matrix having precisely one 1 in 
each row. Then the rows and columns of E can be simultaneously permuted to give 

(7.4.1) 

where for some i, 1 < i < p, Ei is a permutation matrix. 

PROOF. By [I 1, p. 751, the rows and columns of A can be simultaneously 
permuted to give (7.4.1) where the Ei are irreducible matrices. Now El is 
nonzero since otherwise E would have a zero row. Since El is irreducible, 
El has a 1 in each column and therefore exactly one 1 in each row and column. 
Thus El is a permutation matrix. 

(7.5) LEMMA. Let A be us in (7.2). Suppose that after simultuneouspermu- 
tutions of the rows and columns A has the form (7.3.1) and that (7.3.2) holds. 
Then there is a matrix B having zeros in exactly the same positions us A such 
that the operator S = UB has no$xed point in P (or equivalently there is no 
diagonal matrix D with positive diagonal such that DBD is row stochastic). 

PROOF. We may assume that A is in the form (7.3.1). If the rows (and 
columns) corresponding to A,, are Y + 1, ..a, s, 1 < Y < s, then we may 
simultaneously permute these rows and columns without destroying the 
form (7.3.1) so that 

r = r. < rl < r2 < **- < rt = s, 

for some t with 1 < t < Y and uii > 0 for 

(7.5.1) 
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We now put bii = u for i and j satisfying (7.5.1), where u is a positive number 
satisfying u > ntt. For all other i and j we put bij = 1 if qi > 0 and bij = 0 
if aij = 0. Clearly B has exactly the same zeros as A. 

Suppose there were a matrix D = diag (q , *se, x,), xi > 0, such that 
DBD is row stochastic. Then for i and j satisfying (7.5.1) .&,x~ < 1, whence 

1 
xix5 < - 

u 

Now define 

@t, = 2 bos,c, 
Ic=r,-,+1 

1 < i, j < t. 

Since DBD is row stochastic, 

“i(@i, + *** + B,J = 1 

for i = 1, e.1, t. Hence 

A typical term in the expansion of the left-hand side of (7.5.5) is 

(7.5.2) 

(7.5.3) 

(7.5.4) 

(7.5.5) 

where 1 f u(i) < t for i = 1, e-e, t. Let E be the 0, 1 matrix of order t 
having a 1 in positions (i, u(i)) for i = 1, a-*, t and O’s elsewhere. By (7.4), 
there exist distinct integersp, , .a*, p, , m > 1, taken from 1, **a, t such that u 
restricted to {p, , **.,pm} is a permutation of this set. Let {qr , *a*, qt-} 
be the complement of {p, , .*a, pm) in {I, *es, t}. Then 

Xl -*- +4dl) --* @&7(t) = (x,, *** %.@P,d,,) -** @P"d,)) 

* &I, *** %7t-m@Bldq) *** %t-*da,-,d 

= b%P,) @P&J *** %bn@P'nO.(Bm)) 

- w%lJal) *-* XQ-,@d%,))- 

By (7.5.2) and (7.5.3) it follows that 

Xi@+&, 
l.4 

1 Qi,j<t, 
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since bi, = 1 for each i, k occurring in (7.5.3). Also by (7.5.4) 

X&j < 1, 1 < i,j < t. 

Hence 

It follows that 

But this contradicts (7.5.5), which proves the lemma. 

(7.6) THEOREM. Let A > 0 be an n x n matrix with no zero ~0~s. Then 
for every B > 0 having zeros in exactly the same positions as A there exists a 
diagonal mat& D with positive diagonal (dependent on B) such that DBD is 
row stochastic if and ouly if the following condition is satisjied: 

(7.6.1) Suppose the rows and columns of A have been permuted simul- 
taneously so that aij = 0 for 1 < i, j < r, then there exist k and c?’ 
withr<k~nandl,(G,(rsuchthata,j=Oforj=l,~~~,randaG,>0. 

PROOF. Suppose condition (7.61) is satisfied. Then B cannot be put in the 
form (7.3.1) with (7.3.2) holding. Hence the operator S = UB cannot 
have a fixed point on the boundary of 8, . By (7.2) S has a fixed point in 80 
and the existence of the diagonal matrix with the required properties follows. 

Conversely suppose (7.6.1) is not satisfied. Then the matrix A can be put 
in the form (7.3.1) with (7.3.2) holding and the rest follows by (7.5). 

(7.7) COROLLARY. Let A > 0 have a positive main diagonal. Then there 
exists a diagonal matrix D with positive diagonal such that DAD is row sto- 
chastic. 

PROOF. Condition (7.6.1) is trivially satisfied. 

(7.8) COROLLARY. Let A > 0 be a symmetric matrix, Then for every 
matrix B > 0 having zeros in exactly the same positions as A there exists a 
diagonal matrix D with pos&e diagonal (dependent ou B) such that DBD is 
row stochastic if and only if the main diagonal of A is positive. 

PROOF. Condition (7.6.1) is satisfied if and only if the main diagonal of 
A is positive. 
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8. UNIQUENESS IN THE DAD THEOREM 

In this section we shall prove that if A statisfies that conditions of (7~9, 
then there exists a unique D such that DAD is row stochastic. 

(8.1) LEMMA. Let S > 0 be a square row stochastic matrix. Suppose there 
is a diagonal matrix D # I with positive diagonal for which DSD is again row 
stochastic. Then after simultaneously permutations of the rows and columns 
of S, S has the form 

(8.1 .l) 

where 

the diagonal blocks are square and the Jirst and second diagonal block 
are nonempty. (8.1.2) 

PROOF. Let D = diag (x1 , *a*, x,) # I and DSD be row stochastic. 
Clearly then D # OJ. Let 

v = max{xi} and 
i 

u = min{xi}. 
i 

Then v > u. Suppose the rows and columns of S have been permuted simul- 
taneously so that 

v = xi ) l<i<r<n 

21 = xi , r+l<i<q<n 

and 

U < Xi < 0% q<i<n. 

For 1 < i < r, 

Xi ($ls*)*i) = ’ 

and so 
n 

V CSij U<l* 
( 1 j=l 

Hencevu<l.Forr+l<i<q, 

(8.1.3) 

(8.1.4) 

(8.1.5) 
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and so 

?a 

U CSij V>l. 
( > j=l 

(8.1.6) 

Hence uv > 1. 
It follows that uv = 1. Hence the equality must hold in (8.1.4) and (8.1.6). 

But comparing (8.1.4) with (8.1.3), we see that this implies sij = 0, 
i = 1, ..a, r, and j = 1, a.*, T and j = 4 + 1, e**, 71. Similarly by comparing 
(8.1.6) with (8.1.5), we conclude that sij = 0, i = r + 1, *a*, q, and 
j = Y + 1, *a*, 1~. If we now partition S so that the first two blocks on the 
diagonal are r x r and q - r x q - I, then S has the form (8.1.1) and the 
lemma is proved. 

(8.2) THEOREM. Let A > 0 be a matrix which sat&--es the condition (7.6.1) 
and let B > 0 be a matrix having zeros in exactly the same positions as A. 
Then there exists a unique diagonal matrix D with positive diagonal such that 
DBD is row stochastic. 

PROOF. The existence of such a diagonal matrix D is part of (7.6). Sup- 
pose there are diagonal matrices D, # D, with positive diagonals such 
that D,BD, = S, D.$D, = S’, where S and S’ are row stochastic. Let 
D = D,D,l. Then D # I and DSD = S’. By (8.1), S has the form (8.1.1) 
after simultaneous permutations of rows and columns. Since A and therefore 
S satisfies the condition (7.6.1), and sti = 0, 1 < i, j < I, there must be a K 
with r < k < n and an 8 with 1 < r!’ < r such that slci = 0 for j = 1, *a., r 
and sdk > 0. But in (8.1.1) no row of S,, can be zero. Hence k > q, but then 
sck =Ofor 1 </\( r. This is a contradiction and proves the theorem. 

(8.3) bWARK. It is easy to find examples of matrices A > 0 for which 
there exist at least two distinct diagonal matrices D for which DAD is row 
stochastic, e.g., 

A = [; ;] _ 

Also there exist matrices A > 0 for which condition (7.6.1) is not satisfied 
but for which there exists a unique diagonal matrix D with positive diagonal 
such that DAD is row stochastic, e.g., 

~=f’i], a+b<l, b>O. 

4091 I 6!1-4 
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