version 9 June 2009,10:10

printed June 9, 2009

Why visualize in max algebra?

Hans Schneider

with some results from joint work with P. Butkovic and S. Sergeev

> Montreal Workshop June 2009

file montreal09 version 9 June 2009,10:10 printed June 9, 2009

$$Defn: G(A) = (N, E)$$

$$N = \{1, \dots, n\}$$

$$i \to j \Longleftrightarrow a_{ij} > 0$$
Defns: path π in $G(A)$

$$i(0) \to i(1) \to \dots \to i(k)$$

$$\pi(i, j), (\pi(i, j; r))$$
path from i to j (length r)

$$\pi(A) = a_{i(0),i(1)}a_{i(2),i(3)}\cdots a_{i(r-1),i(r)}$$

version 9 June 2009,10:10

$$cycle \ \gamma: ext{ path} \ i(0), \dots, i(r-1) ext{ distinct}, \ i(0) = i(r)$$

$$\mu(\gamma(A)) = (\gamma(A)^{1/k})$$

$$egin{aligned} &\mathrm{mcm}(\mathrm{A}) = \max_{\gamma} \mu(\gamma(\mathrm{A})) \ &\mathrm{max} \ \mathrm{cycle} \ \mathrm{mean} \ - \ \mathrm{mcm}(\mathrm{A}) \ &\mathrm{max} \ \mathrm{(mean)} \ \mathrm{cycle}, \ &\mathrm{crit} \ \mathrm{graph} \ C(A) \end{aligned}$$

version 9 June 2009,10:10

printed June 9, 2009

Max Algebra

•

$$a,b \geq 0 \ a \oplus b = \max(a,b), a \otimes b = ab$$

$$egin{aligned} A,B &\geq 0 \ A \oplus B &= \max(A,B) \ C &= A \otimes B \ c_{ij} &= \max_k a_{ik} b_{kj} \end{aligned}$$

version 9 June 2009,10:10

$$egin{aligned} &(A^r)_{ij} = \max_{\pi(i,j;r)} \pi(i,j;r)(A) \ &(I \oplus A \oplus \dots \oplus A^{n-1})_{ij} = \ &\max_{\pi(i,j,r)} \pi(i,j;r): \ r=0,\dots n-1 \end{aligned}$$

version 9 June 2009,10:10

printed June 9, 2009

 $egin{aligned} &A ext{ definite: } \operatorname{mcm}(\mathrm{A}) = 1 \ & \mathrm{Kleene \ star} \ & A^* = I \oplus A \oplus \cdots \oplus A^{n-1} \ & (A^*)_{ij} = \max_{\pi(i,j)} \pi(i,j) \ & (A^*)^2 = A^* \ & A \oplus x \leq x \Longleftrightarrow A^* \oplus x = x \end{aligned}$

version 9 June 2009,10:10

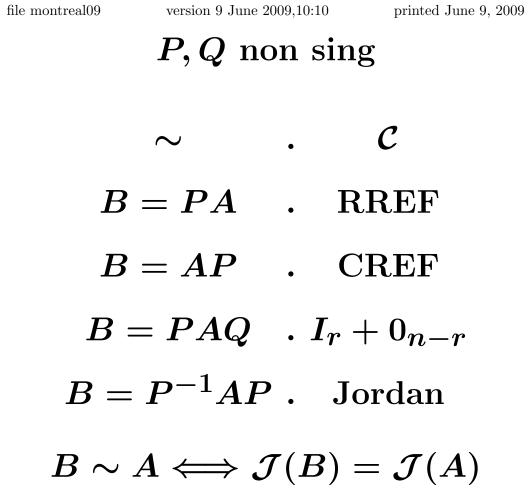
printed June 9, 2009

DIGRESSION

Canonical Forms in Matrix Theory

Equivalence relation

$$A \sim B \iff \mathcal{C}(A) = \mathcal{C}(B)$$



version 9 June 2009,10:10

printed June 9, 2009

Diagonal similarity:

 $B = A \rightarrow X^{-1}AX : X = \operatorname{diag}(x)$ $b_{ij} = \frac{x_i a_{ij}}{x_j}$ $B \stackrel{d}{\sim} A$ $B \stackrel{d}{\sim} A \Longrightarrow \operatorname{mcm}(B) = \operatorname{mcm}(A)$

version 9 June 2009,10:10

printed June 9, 2009

DIAGONAL SCALING Fiedler-Ptak (1967,1969) Engel-S (1973, 1975)

$$\|A\| := \max_{i,j} a_{ij}$$
$$\inf_X \|X^{-1}AX\| = \operatorname{mcm}(A)$$
$$\inf_x \max_{i,j} \frac{x_i a_{ij}}{x_j} = \operatorname{mcm}(A)$$

 $\inf = \min \Longleftrightarrow mcm(A) > 0$

version 9 June 2009,10:10

$$egin{aligned} &\mathrm{mcm}(\mathrm{A}) = 1\ &x = A^* \otimes e\ &x_j = \mathrm{max} \mathrm{\ path} \mathrm{\ ending} \ j\ &a_{ij} x_j \leq x_i\ &x_i^{-1} a_{i,j} x_j \leq 1 \end{aligned}$$

B visualized

$$B = egin{pmatrix} 0 & 1 & 1 \ 1 & 0 & .5 \ .5 & 0 & 1 \end{pmatrix} \ 1 o 2 o 1, \ 3 o 3$$

version 9 June 2009,10:10

printed June 9, 2009

$(i, j) \in C(B) \iff b_{ij} = mcm(B)$ B strictly visualized

 $\forall A \exists X, \quad X^{-1}AX \quad \text{str vis}$??

version 9 June 2009,10:10

printed June 9, 2009

Graph theoretic terms Strongly connected weighted graph for every partition of vertices $(\operatorname{cut}) I, J$ max (arcs out I) = max (arcs into I)

version 9 June 2009,10:10

printed June 9, 2009

DEFN. B is max bal: $\|B[I,J]\| = \|B[J,I]\|$ all partitions [I,J] of $N = \{1,\ldots,n\}$ $\begin{bmatrix} * & B[I,J] \\ B[J,I] & * \end{bmatrix}$ B max bal \Longrightarrow B irreducible

file montreal09		version 9 June	version 9 June 2009,10:10		2009	
В	=	0	6	3	0	
		0	0	6	2	
		6	0	0	4	
		4	2	0	0	

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 1$$

mcm = 6

version 9 June 2009,10:10

printed June 9, 2009

M.Schneider-S(1990b), THM: Irred $B \in \mathbb{R}^{n \times n}_+$. TFAE: (1) For all $i \to j$ exists cycle $\gamma \in G(B)$ s.t b_{ij} is min on γ . (2) B is max bal

file montrea	l09
--------------	-----

version 9 June 2009,10:10

printed June 9, 2009

B =	0	6	3	0
	0	0	6	2
	6	0	0	4
	4	2	0	0

$B \max bal \Longrightarrow str vis$

version 9 June 2009,10:10

printed June 9, 2009

$$ext{S-S(1990)} ext{THM: For all irred } A \in \mathbb{R}^n_+ ext{there is diag } X ext{ unique} (ext{except for a constant factor}) ext{st } B = XAX^{-1} ext{ is max bal}. ext{} B = ext{MB}(A) ext{}$$

Uniqueness implies *B* is *canonical* for diag similarity

 $C = ZAZ^{-1} \Longrightarrow \operatorname{MB}(C) = \operatorname{MB}(A)$

			r ····································	
G =				
0	7	8	9 2	
2	5	5	5 3	
8	0	0	5 9	
6	4	0	6 4	
9	8	5	7 4	
Bal =				
0	5.8697	8.6535	7.3485	2.0801
2.3851	5.0000	6.4499	4.8686	3.7210
7.3959	0	0	3.7742	8.6535
7.3485	4.1079	0	6.0000	5.0951
8.6535	6.4499	5.2002	5.4954	4.0000

version 9 June 2009,10:10 $\,$

file montreal09

file montreal09	version 9 June 2009,10:10		printed June 9, 2009	
Pot =				
0.9002	0	0	0	0
0	0.7548	0	0	0
0	0	0.9737	0	0
0	0	0	0.7350	0
0	0	0	0	0.9362
>> Pot\G*Pot				
0	5.8697	8.6535	7.3485	2.0801
2.3851	5.0000	6.4499	4.8686	3.7210
7.3959	0	0	3.7742	8.6535
7.3485	4.1079	0	6.0000	5.0951
8.6535	6.4499	5.2002	5.4954	4.0000

version 9 June 2009,10:10

printed June 9, 2009

Why visualize?Trivial Example:The vertices of the crit graphof A and A^2 are identical.Proof:Str VisualizeResult obvious

file montreal09 version 9 June 2009,10:10 printed June 9, 2009
Sergeev-S- Butkovic,
On visualization scaling,
subeigenvectors
and Kleene stars in max
algebra, LAA,

$$A$$
 definite , mcm(A) = 1
Kleene star
 $A^* = I \oplus A \oplus \cdots \oplus A^{n-1}$
 $(A^*)^2 = A^*$
 $A \oplus x \leq x \iff A^* \oplus x = x$

file montreal09 version 9 June 2009,10:10 printed June 9, 2009

•

$$A^{*} = egin{pmatrix} E_{11} & lpha_{12}E_{12} & \ldots & lpha_{1n}E_{1m} \ lpha_{21}E_{21} & E_{22} & \ldots & lpha_{2n}E_{2m} \ & \ldots & & \ddots & & \ddots \ lpha_{m1}E_{m1} & lpha_{m2}E_{m2} & \ldots & E_{mm} \end{pmatrix}$$

file montreal09	version 9 June	2009,10:10	printed June 9, 2009	
H = G/m	cm(G) pe	rmuted		
0	1.0000	0.2404	0.6783	0.8492
0.8547	0	1.0000	0	0.4361
1.0000	0.6009	0.4622	0.7454	0.6351
0.2756	0.7454	0.4300	0.5778	0.5626
0.8492	0	0.5888	0.4747	0.6934
H^* =				
1.0000	1.0000	1.0000	0.7454	0.8492
1.0000	1.0000	1.0000	0.7454	0.8492
1.0000	1.0000	1.0000	0.7454	0.8492
0.7454	0.7454	0.7454	1.0000	0.6329
0.8492	0.8492	0.8492	0.6329	1.0000

version 9 June 2009,10:10

printed June 9, 2009

 $\mathrm{LS}(C(A)) = \{x \in \mathbb{R}^n \mid a_{ij}x_j = \mathrm{mcm}(A)x_i\,, orall(i,j) \in C(A)\}$

THEOREM: A definite

The dimension of $\mathrm{LS}(C(A))$ equals the number of conn cpts of $C(A^*)$

file montreal09 version 9 June 2009,10:10 printed June 9, 2009
$$K_{\max}(A^*) := \{A^* \otimes x : x \ge 0\}$$
 $x \in K_{\max}(A^*) \iff A^* \otimes x = x$ $K_{\max}(A^*)$ is convex cone $K_{\operatorname{Cnv}}(A^*) = \{A^*x : x \ge 0\}$ $K_{\operatorname{Cnv}}(A^*) \subseteq K_{\max}(A^*)$

version 9 June 2009,10:10

printed June 9, 2009

$\begin{array}{l} \mathrm{THEOREM} \\ \mathrm{maxdim}(K_{\mathrm{max}}(A^*)) = \mathrm{lindim}(K_{\mathrm{max}}(A^*)) \\ = \mathrm{no.\ cpts\ of}\ C(A^*) \\ (v^1, v^2, \ldots, v^n) \ \mathrm{max\ indep:} \\ \mathrm{No\ } v^j \ \mathrm{a\ max\ comb\ of\ other\ } v^i \\ \mathrm{max\ dim}(K_{\mathrm{max}}(A^*)) = \\ \mathrm{max\ no\ of\ max\ indep\ cols\ in\ } A^* \end{array}$

file montreal 09 $\,$ version 9 June 2009,10:10

printed June 9, 2009

$K_{ m cnv}(A^*) \subseteq K_{ m max}(A^*)$ lindim $(K_{ m cnv}(A^*)) \leq { m lindim}(K_{ m max}(A^*))$

Example of strict inequ C.Johnson & R. Smith path matrices

version 9 June 2009,10:10

$$A = A^* = \frac{1}{11} \begin{bmatrix} 11 & 5 & 5 & 7 & 7 & 7 \\ 5 & 11 & 5 & 7 & 7 & 7 \\ 5 & 5 & 11 & 7 & 7 & 7 \\ 7 & 7 & 7 & 11 & 5 & 5 \\ 7 & 7 & 7 & 5 & 11 & 5 \\ 7 & 7 & 7 & 5 & 5 & 11 \end{bmatrix}$$

rank(A) = 5, 'maxrank'(A) = 6

version 9 June 2009,10:10

printed June 9, 2009

THANK YOU

•