Why I love Perron–Frobenius Hans Schneider University of Wisconsin – Madison Illinois Section of MAA March 1997 Part I: How I fell in love Edinburgh, November 1950 Royal Observatory A.C.Aitken No formal courses Research lectures A.C.Aitken : Linear Operators in Probability

$$A \ge 0$$
 : all $a_{ij} \ge 0$

A stochastic : $A \ge 0$, Ae = e, $e = [1, \dots, 1]'$

Aitken: The elementary divisors belonging to the latent root 1 are linear, the part of the Jordan form J of A belonging to the eigenvalue 1 is diagonal $J = I \oplus K$, where all eigenvalues of Kare less than 1 in modulus.

Aitken's proof: Power up $A \cdot A^r e = e$. So A^r is bounded, hence result. (Very modern?)

HS: Professor Aitken, this isn't true of all nonnegative matrices.

Example:

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Is there a general result there?

ACA: Go read Frobenius!

Part III: Perron and Frobenius

Spectral radius $\rho(A)$: max $(\lambda : \lambda \in \text{spec}(A))$

Perron (1907, 1907): Let A be positive. Then the spectral radius $\rho(A)$ is a simple eigenvalue, and the associated eigenvector is positive. Further if $\lambda \in \text{spec}(A)$, then $\lambda < \rho(A)$.

Perron's proof : Power method?

Frobenius 1908:

Determinantal proof:

Frobenius 1909:

Implicit use of ℓ_{∞} operator norm

Frobenius 1912 : GREAT PAPER:

A irreducible:

A reducible: There exists a permutation matrix P such that

$$P^{-1}AP = \begin{bmatrix} A_{11} & 0\\ A_{12} & A_{22} \end{bmatrix}$$

with A_{11}, A_{22} square.

(A Irreducible: The digraph of A is strongly connected)

FROBENIUS 1912:

Let A be irreducible and nonnegative. Then

- The spectral radius ρ is an eigenvalue.
- ρ is simple
- The associated eigenvector u is positive.
- There is no other nonnegative eigenvector.
- There exists an integer $p, p \leq n$, such that the eigenvalues of modulus ρ are precisely $\rho, \rho\omega, \ldots, \rho\omega^{p-1}$, where ω is a primitive *p*-th root of 1. Call *p*: index of imprimitivity

Let p be the index of imprimitivity of the irreducible nonnegative matrix A. Then there exists a permutation matrix P such that

 $P^{-1}AP = \begin{bmatrix} 0 & A_{1,2} & 0 & \dots & 0 \\ 0 & 0 & A_{23} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & A_{p-1,p} \\ A_{p,1} & 0 & 0 & \dots & 0 \end{bmatrix}$

viz. the index of impritivity of A equals the index of cyclicity of A.

Wielandt's fresh start 1950

A irreducible, nonnegative Using P-F, Collatz 1942: $\max_{i} \min_{x>0} (Ax)_i / x_i = \rho(A) = \min_{i} \max_{x>0} (Ax)_i / x_i$

WIELANDT REVERSAL 1950 **Define**

$$\rho(A) = \min_{i} \max_{x > 0} (Ax)_i / x_i$$

and then prove P–F.

Letter of HW to HS 1977: proof based on simple analytic arguments rather than complicated algebraic ones proof suitable for generalization to infinite dimensional spaces

Why will P–F live 200 years?

Frobenius 1912 RECAP:

Let A be **irreducble** and NONNEG-ATIVE. Then

- The spectral radius ρ is an eigenvalue.
- ρ is a simple eigenvalue
- The associated eigenvector u is POS-ITIVE.
- There is no other NONNEGATIVE *eigenvector*.
- The *index of imprimitivy* of A equals the **index of cyclicity** of A.

{eigenvalue, spectral radius, eigenvector} Complex algebra, matrix theory + {POSITIVE, NONNEGATIVE} order

+

{**irreducible, index of cyclicity**} combinatorics

+ topology

+ complex analysis

+?

OTHER PROOFS of P–F

- Five in Wielandt's lecture notes (1967)
- Alexandroff–Hopf (1930's) : Brouwer fixed point theorem
- A. Ostrowski (1937) : Pringsheim's Theorem; $\Sigma a_n z^n$ with $a_n \ge 0$ with radius of convergence ρ has a singularity at $z = \rho$
- H.H. Schaefer (1960's): Power method

Part IV : Why I stayed married to Perron-Frobenius

What's missing ? GEOMETRY / TOPOLOGY Matrices $A \in \mathbf{R}^{nn}$ such that $AK \subseteq K$.

H.H. Schaefer: Topological vector spaces, (1966)HS: Geometric ocnditions for the existence of positive eigenvalues of matrices

tence of positive eigenvalues of matrices, LAA, (1981).

Definition: K a proper cone in \mathbf{R}^n :

- 1. K is closed under addition,
- 2. K is closed under *nonnegative* scalar multiplication,
- 3. K is closed in the Euclidean topology of \mathbf{R}^n ,
- 4. K is full dimensional (has an interior, $\mathbf{R}^n = K K$).
- K pointed: $x, -x \in K \rightarrow x = 0$
- $A \in \mathbf{R}^{nn}$
- $K = x \in \mathbf{R}^n : x_i \ge 0$ $A \ge 0$

Perron–Schaefer condition:

- (a) The spectral radius $\rho = \rho(A)$ is an eigenvalue of A
- (b) If λ is a peripheral eigenvalue ($|\lambda| = \rho$), then the index of λ as an eigenvalue of A does not exceed the index of ρ .

index $i_{\lambda}(A)$: mulitplicity of λ in the minimum polynomial of A = size of largest Jordan block belonging to λ

Schaefer (1960), Vandergraft (1968):

Theorem: There exists a cone K left invariant by A if and only if P–S holds.

Definition: Intrinsic cone $\Omega(A)$ of A in \mathbf{C}^{nn} :

Cone generated by $I, A, A^2, \ldots =$ all nonnegative linear combinations of I, A, A^2, \ldots HS (1981):

Theorem: The closure $cl\Omega(A)$ is pointed it and only if P–S holds.

Proof uses variant Pringsheim's theorem (Ostrowski 1937).

Theorem:

TFAE:

- 1. $\Omega(A)$ is a pointed cone,
- 2. $cl\Omega(A)$ is not a real subspace of \mathbf{C}^{nn} ,
- 3. \exists linear functional ϕ , $\phi(A^r) \ge 0$, all $r \ge 0$, $\phi(A^r) > 0$, some $r \ge 0$,
- 4. A has a positive eigenvalue.

WINDOWS THEOREM

Part V: Back to my thesis – sorry

THESIS 1952:

Matrices with nonnegative elements, May 1952.

REDUCIBLE CASE

Frobenius \$11 -

"Why did Frobenius hate graph theory?"

Relation of

graph theoretic properties (zero/nonzero pattern) of a reducible nonnegative matrix relate

the algebraic (matrix theoretic) and nonnegativity properties (e.g of the (generalized) eigenvectors)

A problem stated in 1952 and "solved" in 1991 (Hershkowitz–S).

WHAT DID I KNOW IN 1952? Frobenius (1908, 1909, 1912) Ostrowski (1937) Taussky (1948) Wielandt (1950) IMAGINE?

PARADOX!