Indecomposable Cones

Raphael Loewy Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706

and

Hans Schneider* Department of Mathematics University of Wisconsin Madison, Wisconsin 53706

Recommended by H. Schneider

ABSTRACT

We study some relations between a reproducing cone K in a linear space V over a fully ordered field \mathbf{F} and the cone $\Gamma(K)$ in $\operatorname{Hom}(V, V)$ consisting of all operators A such that $AK \subseteq K$. In particular, indecomposable cones are considered.

INTRODUCTION

Let **F** be a fully ordered field (see [4, p. 105]) and let V be a vector space over **F**. In this paper we study some relations between a reproducing cone K in V and the cone $\Gamma(K)$ in Hom(V, V) consisting of all operators A such that $AK \subseteq K$. We define K to be indecomposable if K cannot be expressed as a non-trivial direct sum of subcones of K (see Definition 3.1), and we show that the identity I in Hom(V, V) is an extremal in $\Gamma(K)$ if and only if K is indecomposable (Theorem 3.3). In this theorem, we assume that K is the hull (see Definition 1.1) of its extremals. In Theorem 2.3, we show that this assumption holds if $\mathbf{F} = \mathbf{R}$, the real field, K is algebraically closed and K has descending chain condition on cyclic faces (see Definition 1.3). Thus Theorem 2.3 generalizes a well-known result for finite dimensional real spaces (e.g. [7, p. 166]).

In Sec. 4 we give examples to illustrate our theorems and to show that some hypotheses cannot be omitted. In Sec. 5 we prove a theorem of a different type, Theorem 5.1, giving sufficient conditions for $A \in \text{Hom}(V, V)$ to satisfy AK = K.

235

LINEAR ALGEBRA AND ITS APPLICATIONS 11, 235–245 (1975)

^{*}Sponsored in part by the United States Army under Contract No. DA-31-124-ARO-D-462 and by the National Science Foundation, under Grant GP 37978X.

[©] American Elsevier Publishing Company, Inc., 1975

1. DEFINITIONS AND NOTATIONS

Our definitions and notations are the same as in [2]. Other definitions are given below.

DEFINITION 1.1. Let S be a non-empty subset of the vector space V. Then

hull S =
$$\left\{\sum_{i=1}^{r} \alpha_i x^i : \alpha_i \ge 0, x^i \in \mathbb{S}, i = 1, \dots, r\right\}$$
.

DEFINITION 1.2. Let K be a cone in V and let $x \in K$. If dim(span $\varphi(x)$) ≤ 1 then x is called an *extremal* of K, where $\varphi(x)$ is the cyclic face generated by x (see [2]).

It is known [1, 2] that

$$\varphi(x) = \{ y \in K : \exists \alpha > 0, \, \alpha y \leq x \}.$$

It follows that our definition of extremal is equivalent to the usual one. The set of all extremals in a cone K will be denoted by Ext K.

DEFINITION 1.3. Let K be a cone in V.

(i) The cone K has descending chain condition, or DCC, on (cyclic) faces if there is no infinite chain

$$K = F_0 \supset F_1 \supset F_2 \supset \cdots$$

of (cyclic) faces.

(ii) Ascending chain condition, or ACC, on (cyclic) faces is defined similarly (we use \supseteq for inclusion and \supset for strict inclusion).

DEFINITION 1.4. Let K be a cone in V. Then

$$\Gamma(K) = \{ A \in \operatorname{Hom}(V, V) : AK \subseteq K \}.$$

It is easy to see that $\Gamma(K)$ is a cone in $\operatorname{Hom}(V, V)$ if and only if K is reproducing.

The identity in Hom(V, V) will be denoted by I. If $A \in Hom(V, V)$, we denote its null space by KerA.

2. CONES WITH DCC ON CYCLIC FACES

Let \mathbf{R} be the real field.

236

LEMMA 2.1. Let V be a vector space over **R**. Let K be an algebraically closed cone in V, and suppose that $\dim(\operatorname{span} K) \ge 2$. Then there exists $z \in \operatorname{span} K$ such that $z \not\in K \cup (-K)$.

Proof. Let x, y be linearly independent elements in K. Let L be the two-dimensional linear subspace spanned by x and y, and let $K_1 = K \cap L$. Then K_1 is clearly an algebraically closed cone in L, whence there exists $z \in L$ such that $z \notin K_1 \cup (-K_1)$. Hence $z \in \text{span} K$, but $z \notin K \cup (-K)$.

LEMMA 2.2. Let F be a face of a cone K and let $x \in K$. Then $F = \varphi(x)$ if and only if $x \in \operatorname{rai} F$.

Proof. See [1] and [2].

THEOREM 2.3. Let K be an algebraically closed cone with DCC on cyclic faces. Then K = hull(Ext K).

Proof. Suppose the theorem is false. Then there exists $x \in K$ such that $x \notin \text{hull}(\text{Ext } K)$. Since x is not an extremal, dim $[\text{span } \varphi(x)] \ge 2$. Hence, by Lemma 2.1, there exists a $z \in \text{span}(\varphi(x))$ such that $z \notin \varphi(x) \cup [-\varphi(x)]$. Since $\varphi(x) = \text{span } \varphi(x) \cap K$ (cf. [2]), it follows that $\varphi(x)$ is also algebraically closed. Hence the set $B = \{\alpha \in \mathbb{R} : x + \alpha z \in \varphi(x)\}$ is a closed bounded interval of \mathbb{R} . Let $\beta = \sup\{\alpha : \alpha \in B\}$ and $\gamma = \inf\{\alpha : \alpha \in B\}$, and let $x^1 = x + \beta z$, $v^1 = x + \gamma z$. Since, by Lemma 2.2, $x \in \operatorname{rai} \varphi(x)$, while $x^1 \in \operatorname{rab} \varphi(x)$, $v^1 \in \operatorname{rab} \varphi(x)$, it follows that $\beta > 0$ and $\gamma < 0$. Hence $x = (\beta - \gamma)^{-1}(-\gamma x^1 + \beta v^1) \in \operatorname{hull}\{x^1, v^1\}$. It follows that either x^1 or v^1 does not belong to $\operatorname{hull}(\operatorname{Ext} K)$; say $x^1 \notin \operatorname{hull}(\operatorname{Ext} K)$. Since $x^1 \in \operatorname{bdy} \varphi(x)$, it follows from Lemma 2.2 that $\varphi(x^1) \subset \varphi(x)$.

By similar arguments we obtain an infinite sequence x^2, x^3, \ldots such that $\varphi(x) \supset \varphi(x^1) \supset \varphi(x^2) \supset \cdots$, contrary to our assumption of DCC on cyclic faces. This completes the proof.

3. A CHARACTERIZATION OF INDECOMPOSABLE CONES

In this section **F** will denote an arbitrary fully ordered field, and we assume that the vector space $V \neq \{0\}$.

DEFINITION 3.1. Let K be a cone in the vector space V over F. Let K_1 , K_2 be subsets of K.

(i) We say K is the *direct sum* of K_1 and K_2 (and we write $K = K_1 \oplus K_2$) if

(a)
$$\operatorname{span} K_1 \cap \operatorname{span} K_2 = \{0\},$$

(b) $K = K_1 + K_2.$

(ii) The cone K is called *decomposable* if there exist non-zero subsets K_1 and K_2 such that $K = K_1 \oplus K_2$. Otherwise, K is called *indecomposable*. Comment: Bleicher and Schneider [3, Definition (3.9)], use "composite" where we use "decomposable", and "prime" where we use "indecomposable". The equivalence of the definitions follows from the next lemma.

LEMMA 3.2. Let K be a cone in V over \mathbf{F} , and let $K = K_1 \oplus K_2$. Then K_1 and K_2 are faces of K.

Proof. We shall prove that K_1 is a face of K. Let $x^1, y^1 \in K_1$. Since $x^1 + y^1 \in K$, there exist $u^i \in K_i$, i = 1, 2 such that $x^1 + y^1 = u^1 + u^2$. Then $u^2 = x^1 + y^1 - u^1 \in \operatorname{span} K_1 \cap \operatorname{span} K_2$. Thus $u^2 = 0$ and so $x^1 + y^1 \in K_1$. The proof that $\lambda x^1 \in K_1$ for $0 \leq \lambda \in \mathbf{F}$ is similar.

Now let $0 \le y \le x^1$. There exist $v^i, w^i \in K_i$, i = 1, 2, such that $y = v^1 + v^2$, $x^1 - y = w^1 + w^2$. Then

$$x^1 - v^1 - w^1 = w^2 + v^2 \in \operatorname{span} K_1 \cap \operatorname{span} K_2.$$

Hence $w^2 + v^2 = 0$, and since $w^2, v^2 > 0$, it follows that $v^2 = w^2 = 0$. Hence $y = v^1 \in K_1$.

THEOREM 3.3. Let K be a reproducing cone in V over F, and assume that K = hull(Ext K). Then the following are equivalent:

(1) K is indecomposable.

(2) Let $A \in Hom(V, V)$, $Ker A = \{0\}$, and $A(Ext K) \subseteq Ext K$. Then $A \in Ext \Gamma(K)$.

- (3) Let $A \in \Gamma(K)$, Ker $A = \{0\}$ and AK = K. Then $A \in \text{Ext} \Gamma(K)$.
- (4) $I \in \operatorname{Ext} \Gamma(K)$.

Proof.

 $(1)\Rightarrow(2)$. Suppose $S \in Hom(V, V)$ and 0 < S < A [viz. $S \in \Gamma(K)$ and $A - S \in \Gamma(K)$]. We shall prove that $S = \beta A$, for some $0 < \beta \in \mathbf{F}$. By our assumption, $Ext K \neq \{0\}$. For every $y \in Ext K$, $y \neq 0$, we have 0 < Sy < Ay and

 $Ay \in \text{Ext} K$, whence there exists a unique β_y , $0 \le \beta_y \le 1$, such that $Sy = \beta_y Ay$. Let $0 \ne x \in \text{Ext} K$, and put $\beta = \beta_x$. Define

$$E_1 = \{ y \in \text{Ext} K : y \neq 0 \text{ and } \beta_y = \beta \},\$$
$$E_2 = \{ y \in \text{Ext} K : y \neq 0 \text{ and } \beta_y \neq \beta \}.$$

Let $K_i = (\operatorname{span} E_i) \cap K$, i = 1, 2. Let $y \in \operatorname{span} E_1$. Then $y = \sum_{i=1}^m \mu_i u^i$, where $u^i \in E_1$, i = 1, ..., m, and $\mu_i \in \mathbf{F}$. Hence $Sy = \sum_{i=1}^m \mu_i (Su^i) = \sum_{i=1}^m \mu_i (\beta Au^i) = \beta Ay$.

We shall show that $K = K_1 \oplus K_2$. Clearly $K_i \subseteq K$, i = 1, 2. Since K = hull(Ext K) and $\text{Ext } K \subseteq K_1 \cup K_2$, it follows that $K_1 + K_2 = K$. Let $y \in \text{span } K_1 \cap \text{span } K_2$ and suppose that $y \neq 0$. Since $\text{span } K_2 \subseteq \text{span } E_2$, there exist linearly independent v^1, \ldots, v^n in E_2 and $0 \neq v_i \in \mathbf{F}$, $i = 1, \ldots, n$, such that $y = \sum_{i=1}^n v_i v^i$. If we put $\beta_{v^i} = \beta_i$, it follows that $Sy = S(\sum_{i=1}^n v_i v^i) = \sum_{i=1}^n v_i \beta_i (Av^i)$. But $y \in \text{span } K_1$, whence

$$Sy = \beta Ay = \sum_{i=1}^{n} \nu_i \beta(Av^i).$$

Since A is one to one, we deduce that Av^1, \ldots, Av^n are linearly independent. It follows that $\nu_i\beta_i = \nu_i\beta$, $i = 1, \ldots, n$. Hence $\beta_i = \beta$, $i = 1, \ldots, n$. This contradicts the definition of E_2 . We have proved that $\operatorname{span} K_1 \cap \operatorname{span} K_2 = \{0\}$ and it follows that $K = K_1 \oplus K_2$. Since $K_1 \neq \{0\}$ and K is indecomposable, we deduce that $K_2 = \{0\}$, and so $K = K_1$. Thus $Sy = \beta Ay$, for all $y \in K$, and since K is reproducing, $S = \beta A$.

 $(2) \Rightarrow (3)$. Suppose that A satisfies the conditions of (3). We need only prove that $A(\operatorname{Ext} K) \subseteq \operatorname{Ext} K$. So let $y \in \operatorname{Ext} K$. By our assumptions, A^{-1} exists and $A^{-1}K \subseteq K$. Let z = Ay and suppose that $0 \le v \le z$. Then $0 \le A^{-1}v \le A^{-1}z = y$, whence $A^{-1}v = \beta y$, where $0 \le \beta \le 1$. Hence $v = \beta Ay$, and so $Ay \in \operatorname{Ext} K$.

$$(3) \Rightarrow (4)$$
. Trivial.

 $(4) \Rightarrow (1)$. Suppose (1) is false and let $K = K_1 \oplus K_2$, where $K_i \neq \{0\}$, i = 1, 2. Since K is reproducing, $V = \operatorname{span} K_1 \oplus \operatorname{span} K_2$ (vector space direct sum). Define the projection $P \in \operatorname{Hom}(V, V)$ by Px = x if $x \in \operatorname{span} K_1$ and Px = 0 if $x \in \operatorname{span} K_2$. Then $0 \leq P \leq I$, and P is not a multiple of I. Hence $I \not\in \operatorname{Ext} \Gamma(K)$.

4. EXAMPLES

In this section we shall again let $\mathbf{F} = \mathbf{R}$.

EXAMPLE 4.1 Let V be a normed linear space over **R** with norm $\|\cdot\|$. Let ψ be a linear functional on V such that there exists $u \in V$ with $\psi(u) > ||u||$, and let

$$K = \{ x \in \mathbf{V} \colon \psi(x) \ge ||x|| \}.$$

Then it is easy to show that K is a cone in V which is algebraically closed and reproducing. Further,

and

$$\inf K = \{ x \in V : \psi(x) > ||x|| \},$$

$$bdy K = \{ x \in V : \psi(x) = ||x|| \}.$$
(4.1.1)

In the rest of this example we assume that dim $V \ge 3$ and that the norm is *strictly convex* (i.e., $||x|| = ||y|| = \frac{1}{2}||x+y||$ implies that x = y).

The following result is simple (cf. [2]):

F is a face of K if and only if

$$F = \{0\}$$
, or $F = K$, or $F = \{\alpha x : \alpha \ge 0\}$, where $x \in bdy K$.
(4.1.2)

Hence K has DCC on cyclic faces. Thus the assumptions of Theorem 2.3 are verified, and so K = hull(Ext K). It follows also from (4.1.2) that Ext K = bdy K.

We next show that K is indecomposable. Let $K = K_1 \oplus K_2$. Then by Lemma 3.2 K_1 and K_2 are faces, and since dim(span K) = dim V>2, either dim(span K_1)>1 or dim(span K_2)>1. Hence, by (4.1.2), either $K_1 = K$ or $K_2 = K$, and the result follows. Thus K is indecomposable, and by Theorem 3.3,

$$I \in \operatorname{Ext} \Gamma(K).$$

Now let $V = \mathbf{R}^n$, the vector space of all real column *n*-tuples $x = (x_i)$. Let

$$\psi(x) = \sqrt{2} x_n, \qquad ||x|| = \left(\sum_{i=1}^n x_i^2\right)^{1/2},$$

and

$$K_n = \left\{ x \in \mathbf{R}^n : \psi(x) \ge ||x|| \right\}$$

(the *n*-dimensional ice cream cone). It follows from Theorem 3.3 that $A \in \text{Ext}\,\Gamma(K_n)$ for every $A \in \mathbb{R}^{n,n}$ such that $AK_n = K_n$. This result is used by Loewy and Schneider [6].

INDECOMPOSABLE CONES

We may use [6, Lemma 3.2] to show that the assumption that $\operatorname{Ker} A = \{0\}$ cannot be dropped from condition (2) of Theorem 3.3. For $u \in \operatorname{bdy} K_n$, $v \in \operatorname{int} K_n$, then $A = uv^t \in \Gamma(K_n)$ and $A(\operatorname{Ext} K_n) = \varphi(u) \subseteq \operatorname{Ext} K_n$, but $A \not\in \operatorname{Ext} \Gamma(K_n)$. (Here v^t denotes the transpose of v.)

EXAMPLE 4.2. Let V be the space of all real sequences $(x_0, x_1, x_2, ...)$ with finite support (i.e., $x_i \neq 0$ for only a finite number of integers *i*). We shall write $\sum x_i$ for $\sum_{i=1}^{\infty} x_i$, and we put

$$K_1 = \{ x \in V : x_0 \ge \Sigma | x_i | \}.$$
(4.2.1)

(Observe that K_1 is defined by $2x_0 \ge \sum_{i=0}^{\infty} |x_i|$, and that $\sum_{i=0}^{\infty} |x_i|$ is a norm on V—which, however, is *not* strictly convex.) Clearly K_1 is full and algebraically closed. We shall determine that faces of K_1 and then show that K_1 is indecomposable.

By (4.1.1),

$$bdy K_1 = \{ x \in V : x_0 = \Sigma |x_i| \}.$$

Let $\pi = (\pi_1, \pi_2, \dots)$ be a sequence with $\pi_i \in \{-1, 0, 1\}$. Define

 $F_{\pi} = \{ x \in bdy K_1 : sgn x_i = \pi_i \text{ or } x_i = 0, i = 1, 2, \dots \},\$

where sgn x_i equals 1, 0 or -1 according as x_i is positive, zero or negative.

THEOREM 4.2.2. Let K_1 be defined by (4.2.1) and suppose that $\{0\} \subseteq F \subseteq K_1$. Then F is a face of K_1 if and only if there exists a sequence $\pi = (\pi_1, \pi_2, ...)$ with $\pi_i \in \{-1, 0, 1\}$, i = 1, 2, ..., such that $F = F_{\pi}$.

Proof. We first show that F_{π} is a face of K_1 , for every sequence π . It is easy to check that F_{π} is a cone. Suppose $0 \le y \le x$, where $x \in F_{\pi}$. Then, if z = x - y,

$$x_0 = \sum |x_i|,$$

$$y_0 \ge \sum |y_i|,$$

$$z_0 \ge \sum |z_i|,$$

whence

$$x_0 = y_0 + z_0 \ge \sum |z_i| + \sum |y_i| \ge \sum |z_i + y_i| = \sum |x_i| = x_0.$$

Hence $y_0 = \sum |y_i|$, and $|y_i| + |z_i| = |y_i + z_i|$, i = 1, 2, ...

It follows that either $y_i = 0$ or $\operatorname{sgn} y_i = \pi_i$, i = 1, 2, ..., whence $y \in F_{\pi}$. We have proved that F_{π} is a face of K_1 .

Conversely, let F be a face of K_1 , and suppose $F \neq K_1$. Suppose there exist $j \ge 1$ and $x, y \in F$ such that $(\operatorname{sgn} x_i)(\operatorname{sgn} y_i) < 0$. Let u = x + y. Then

$$u_0 = x_0 + y_0 = \sum |x_i| + \sum |y_i| > \sum |x_i + y_i| = \sum |u_i|,$$

since $|x_i| + |y_i| > |x_i + y_i|$. Hence, by (4.1.1), $u \in \operatorname{int} K_1$, whence $F = K_1$, which is a contradiction. Hence $(\operatorname{sgn} x_i)(\operatorname{sgn} y_i) > 0$ for all i = 1, 2, ... and all $x, y \in F$. Thus we can define a unique sequence $\pi = (\pi_1, \pi_2, ...)$ by

 $\begin{aligned} \pi_i &= 1 & \text{if } x_i > 0 \quad \text{for some} \quad x \in F, \\ \pi_i &= -1 & \text{if } x_i < 0 \quad \text{for some} \quad x \in F, \\ \pi_i &= 0 & \text{otherwise.} \end{aligned}$

By the preceding argument, $F \subseteq F_{\pi}$.

We must show that $F = F_{\pi}$. Let $j \ge 1$ and suppose that $\pi_i \ne 0$. Define $e^i \in V$ by $e_0^i = 1$, $e_i^j = \pi_j$, and $e_i^j = 0$ for $i \ge 1$, $i \ne j$. Clearly $e^i \in K_1$. We claim that $e^i \in F$. For there exists an $x \in F$ such that $\operatorname{sgn} x_j = \pi_j$. Let $0 < \varepsilon < |x_j|$. Then it follows that $0 < x - \varepsilon e^j$, whence $e^i \in F$. Since for every $x \in F_{\pi}$ we have $x = \sum\{|x_j| e^i : \pi_j \ne 0\}$, we deduce that $F_{\pi} \subseteq F$. Hence $F = F_{\pi}$. We have proved Theorem 4.2.2.

COROLLARY 4.2.3. Let $x \in V$. Then $x \in \text{Ext } K_1$ if and only if there is a j, j > 1, such that $|x_j| = x_0$, and $x_i = 0$ otherwise.

COROLLARY 4.2.4. The cone K_1 has DCC on cyclic faces. It does not have DCC on faces, ACC on cyclic faces or ACC on faces.

Proof. Let π, π' be two sequences with $\pi_i, \pi'_i \in \{-1, 0, 1\}$ for i = 1, 2, ...Then $F_{\pi'} \subseteq F_{\pi}$ if and only if $\pi_i = 0$ implies $\pi'_i = 0$, and $(\operatorname{sgn} \pi'_i)(\operatorname{sgn} \pi_i) > 0$.

We first show that K_1 has DCC on cyclic faces. Let $\varphi(x^0) \supset \varphi(x^1) \supset \varphi(x^2)$ $\supset \cdots \supset \varphi(x^k)$ be a strictly descending chain of cyclic faces. Then $x^i \in \text{bdy } K_1, j = 1, ..., k$, by Lemma 2.2. By Theorem 4.2.2 there is a sequence $\pi^i = (\pi_1^i, \pi_2^j, ...)$ with $\pi_i^i \in \{-1, 0, 1\}, i = 1, 2, ..., \text{ such that } \varphi(x^i) = F_{\pi^i}$. Hence we must have $\pi_i^j = \text{sgn } x_i^j, i = 1, 2, ...$ Hence $k \leq p+1$, where p is the number of non-zero $x_i^1, i = 1, 2, ...$ Thus K_1 has DCC on cyclic faces.

We next show that K does not have DCC on faces. For j = 1, 2, ..., define $\pi_i^{(j)} = 0$ if $1 \le i \le j$, and $\pi_i^{(j)} = 1$ if $i \ge j$. Then $F_{\pi^{(1)}} \supset F_{\pi^{(2)}} \supset \cdots$ is a strictly descending chain of faces. Hence K_1 does not have DCC on faces.

The last two statements are proved similarly.

COROLLARY 4.2.5. The cone K_1 is indecomposable.

Proof. Since, by Corollary 4.2.4, K_1 has DCC on cyclic faces, it follows by Theorem 2.3 that $K_1 = \text{hull}(\text{ext} K_1)$. Hence, by Theorem 3.3, it is enough to show that $I \in \text{Ext} \Gamma(K_1)$. So let $A \in \text{Hom}(V, V)$ satisfy $0 \le A \le I$. Then $Ax \le x$ for every $x \in \text{Ext} K_1$, whence $Ax = \beta_x x$, where $0 \le \beta_x \le 1$. For j $= 1, 2, \dots$ let $f^j, g^j \in V$ be defined by

$$\begin{array}{ll} f_0^i = 1, & f_i^i = \delta_{ij}, & i > 1, \\ \\ g_0^i = 1, & g_i^j = - \, \delta_{ij}, & i > 1. \end{array}$$

Let $G = \{f^i: j = 1, 2, ...\} \cup \{g^i: j = 1, 2, ...\}$. Suppose $Af^i = \beta_i f^i$, $Ag^i = \gamma_i g^i$. Let j > 1. Since $f^1 + g^1 = f^i + g^i$, it follows that $\beta_1 f^1 + \gamma_1 g^1 = \beta_i f^i + \gamma_j g^i$. But f^1, g^1, f^i, g^i span a three-dimensional linear space, whence $\beta_1 = \gamma_1 = \beta_i = \gamma_i$. Hence, for all $x \in G$, $Ax = \beta_1 x$. Since, by Corollaries 4.2.3 and 4.2.4 K_1 = hull G and K_1 is full, it follows that $A = \beta_1 I$.

EXAMPLE 4.3 Let V be the space of Example 4.2 and for $0 \neq x \in V$ let m = m(x) be smallest integer in the support of x, and n = n(x) be the largest integer in the support of x. For j = 0, 1, 2, ..., let $e^{j} \in V$ be defined by $e_{i}^{j} = \delta_{ij}$, i = 0, 1, 2, ...

(i) Let

$$K_2 = \{ x \in V : x_m > 0 \} \cup \{ 0 \}.$$

Then the non-zero faces of K_2 are given by $\varphi(e^i)$, $j=0,1,2,\ldots$, with $\varphi(e^i) \supseteq \varphi(e^k)$ if $j \le k$. Hence K_2 has ACC on faces, but not DCC on faces. The cone K_2 is not algebraically closed.

(ii) Let

$$K_3 = \{ x \in V : x_n > 0 \} \cup \{ 0 \}.$$

Then the faces of K_3 other than $\{0\}$ and K_3 are again given by $\varphi(e^i)$, $j=0,1,2,\ldots$, with $\varphi(e^i) \supseteq \varphi(e^k)$ if $j \ge k$. Thus K_3 has DCC on faces, but not ACC on faces. Further, K_3 is not algebraically closed.

The next example will show that (1) and (4) of Theorem 3.3 are not necessarily equivalent if $K \neq \text{hull}(\text{Ext } K)$.

EXAMPLE 4.4 Let V = C[0, 1], the space of continuous real functions on [0, 1], and let

$$K = \{ f \in V : f(x) > 0, \text{ for all } x \in [0, 1] \}.$$

Then K is full and algebraically closed. Let $0 \neq f \in K$ and define g(x) = xf(x), $0 \leq x \leq 1$. Then $0 \leq g \leq f$, and $g \neq \alpha f$, for any $\alpha \in \mathbb{R}$. Hence $\operatorname{Ext} K = \{0\}$, and so $K \neq \operatorname{hull}(\operatorname{Ext} K)$.

THEOREM 4.4.1. The cone K is indecomposable.

Proof. Suppose $K = K_1 \oplus K_2$. Then K_1 and K_2 are faces of K. For i = 1, 2, let

$$\mathfrak{N}_i = \{ x \in [0,1] : f(x) = 0 \text{ for all } f \in K_i \}.$$

It is clear that \mathfrak{N}_i is a closed subset of [0,1], i=1,2, and $\mathfrak{N}_1 \cap \mathfrak{N}_2 = \emptyset$. We claim that $\mathfrak{N}_1 \cup \mathfrak{N}_2 = [0,1]$. For suppose that $\mathfrak{G} = [0,1] \setminus (\mathfrak{N}_1 \cup \mathfrak{N}_2) \neq \emptyset$. Let $x_0 \in \mathfrak{G}$. There exist $f^i \in K_i$, i=1,2, such that $f^i(x_0) > 0$. Let $g = \min\{f^1, f^2\}$. Since K_i is a face, we have $g \in K_i$, i=1,2. Since $g(x_0) > 0$, $K_1 \cap K_2 \neq \{0\}$. This is a contradiction, and hence $\mathfrak{N}_1 \cup \mathfrak{N}_2 = [0,1]$. But \mathfrak{N}_i is closed, whence either $\mathfrak{N}_1 = [0,1]$ or $\mathfrak{N}_2 = [0,1]$, say $\mathfrak{N}_2 = [0,1]$. Then $K_2 = \{0\}$, and the theorem is proved.

It is easily seen that $\operatorname{Ext}\Gamma(K) = \{0\}$. For suppose that $A \in \Gamma(K)$, $A \neq 0$, and define $B \in \Gamma(K)$ by (Bf)(x) = x(Af)(x), $0 \leq x \leq 1$. Then $0 \leq B \leq A$, and $B \neq \alpha A$, for any α , $0 \leq \alpha \leq 1$. In particular, $I \not\in \operatorname{Ext}\Gamma(K)$, although K is indecomposable.

5. SUFFICIENT CONDITIONS FOR AK = K.

THEOREM 5.1. Let V be a vector space over **R** such that dim $V \ge 2$. Let K be an algebraically closed, full cone in V. Let $A \in Hom(V, V)$ map V onto V. If $A(bdy K) \subseteq bdy K$, then AK = K.

Proof. Since K is algebraically closed, it follows from Lemma 2.1 that K = hull(bdy K). Hence

$$AK = A(\operatorname{hull}(\operatorname{bdy} K)) = \operatorname{hull}(A(\operatorname{bdy} K)) \subseteq \operatorname{hull}(\operatorname{bdy} K) = K.$$

We next show that A int $K \subseteq int K$. For let $z \in int K$ and suppose that $v \in V$. There exist $u \in V$ such that Au = v. There exists also $\varepsilon > 0$ such that $z + \varepsilon u \in K$. Since $Az + \varepsilon v = A(z + \varepsilon u) \in K$, it follows that $Az \in int K$.

INDECOMPOSABLE CONES

Suppose the theorem is false. Then there exists $x \in bdy K$ such that $x \notin AK$. Since AV = V, there exists $x' \in V$, $x' \notin K$, such that Ax' = x. Let $z' \in int K$, and put u' = z' - x'. There exists α , $0 < \alpha < 1$, such that $y' = x' + \alpha u' \in bdy K$. Since $x = Ax' \in bdy K$ and $A(x' + u') = Az' \in int K$, it follows that $Ay' = A(x' + \alpha u') \in int K$. But this contradicts the assumption that $A(bdy K) \subseteq bdy K$. Hence AK = K.

The assumption that K is algebraically closed cannot be omitted in Theorem 5.1 in general. For let $V = \mathbb{R}^3$, and let K be the three-dimensional ice cream cone (see Example 4.1) with the half line $\{\alpha(0,1,1): \alpha \ge 0\}$ deleted. If A is any proper rotation about the axis (0,0,1), then $A(\operatorname{bdy} K) \subseteq \operatorname{bdy} K$, but obviously $AK \not\subseteq K$.

The assumption that K is full cannot be omitted, in general, either. For let V be the space of all real sequences $(x_1, x_2, ...)$ with finite support. Let r be a positive integer and let K be the cone of all non-negative sequences x such that $x_i = 0$ for i = r+1, r+2, ... Let $A \in \text{Hom}(V, V)$ be defined by $Ax = (x_2, x_3, ...)$, the shift left operator. Then $\text{rai} K \neq \emptyset$, AV = V, $A(\text{rab} K) \subseteq \text{rab} K$, but $AK \neq K$.

REFERENCES

- 1 G. P. Barker, The lattice of faces of a finite dimensional cone, *Linear Alg. Appl.* 7 (1973), 71–82.
- 2 G. P. Barker and H. Schneider, Linear Algebra Appl., preceding paper.
- 3 M. N. Bleicher and H. Schneider, The decomposition of cones in modules over ordered rings, J. Algebra 1 (1964), 233–256.
- 4 L. Fuchs, Partially ordered algebraic systems, Pergamon, 1963.
- 5 G. Köthe, Topological vector spaces I, Grundlehren Math. Wiss., 159, Springer 1969.
- 6 R. Loewy and H. Schneider, Positive operators on the *n*-dimensional ice cream cone, J. Math. Anal. Appl. 49, (1975), 375-392.
- 7 R. T. Rockafellar, Convex Analysis, Princeton U. P., Princeton, New Jersey, 1970.

Received 25 October 1973