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ABSTRACT 

We study some relations between a reproducing cone K in a linear space V over a 
fully ordered field F and the cone I(K) in Hom( V, V) consisting of all operators A 
such that AK G K. In particular, indecomposable cones are considered. 

INTRODUCTION 

Let F be a fully ordered field (see [4, p. 1051) and let V be a vector space 
over F. In this paper we study some relations between a reproducing cone K 
in V and the cone I’(K) in Hom( V, V) consisting of all operators A such that 
AK c K. We define K to be indecomposable if K cannot be expressed as a 
non-trivial direct sum of subcones of K (see Definition 3-l), and we show 
that the identity I in Hom( V, V) is an extremal in I’(K) if and only if K is 
indecomposable (Theorem 3.3). In this theorem, we assume that K is the hull 
(see Definition 1.1) of its extremals. In Theorem 2.3, we show that this 
assumption holds if F= R, the real field, K is algebraically closed and K has 
descending chain condition on cyclic faces (see Definition 1.3). Thus 
Theorem 2.3 generalizes a well-known result for finite dimensional real 
spaces (e.g. [7, p. It%]). 

In Sec:4- we give examples to illustrate our theorems and to show that 
some hypotheses cannot be omitted. In Sec. 5 we prove a theorem of a 
different type, Theorem 5.1, giving sufficient conditions for A EHom( V, V) 
to satisfy AK = K. 
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1. DEFINITIONS AND NOTATIONS 

Our definitions and notations are the same as in [2]. Other definitions are 
given below. 

DEFINITION 1.1. Let S be a non-empty subset of the vector space V. 
Then 

hulls= ri: cr,x’:~~~>O,xkS, i=l,..., T 
i=l 

DEFINITION 1.2. Let K be a cone in V and let x E K. If dim(span ‘p( x)) 
< 1 then x is called an extremul of K, where q(x) is the cyclic face generated 
by x (see [2]). 

It is known [l, 21 that 

q(x)={ yEK:3cX>O,cry<x}. 

It follows that our definition of extremal is equivalent to the usual one. The 
set of all extremals in a cone K will be denoted by ExtK. 

DEFINITION 1.3. Let K be a cone in V. 

(i) The cone K has descending chain condition, or DCC, on (cyclic) faces 
if there is no infinite chain 

of (cyclic) faces. 
(ii) Ascending chain condition, or ACC, on (cyclic) faces is defined 

similarly (we use > for inclusion and > for strict inclusion). 

DEFINITION 1.4. Let K be a cone in V. Then 

l?(K)={AEHom(V,V): AKCK}. 

It is easy to see that r(K) is a cone in Hom(V, V) if and only if K is 
reproducing. 

The identity in Hom( V, V) will be denoted by 1. If A E Hom( V, V), we 
denote its null space by Ker A. 

2. CONES WITH DCC ON CYCLIC FACES 

Let R be the real field. 
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LEMMA 2.1. Let V be a vector space over R. Let K be an algebraically 
closed cone in V, and suppose that dim(span K) > 2. Then there exists 
zEspanK such thatz6?KU(-K). 

Proof. Let x, y be linearly independent elements in K. Let L be the 
two-dimensional linear subspace spanned by x and y, and let K, = K n L. 
Then K, is clearly an algebraically closed cone in L, whence there exists 
zELsuchthatzEK,u(-K,).HencezEspanK,butzgKu(-K). n 

LEMMA 2.2. Let F be a face of a cone K and let x E K. Then F = cp (x) if 
and only if x E rai F. 

Proof. See [l] and [2]. 

THEOREM 2.3. Let K be an algebraically closed cone with DCC on 
cyclic faces. Then K = hull(Ext K). 

Proof, Suppose the theorem is false. Then there exists x E K such that 
xehull(ExtK). Since x is not an extremal, dim[spancp(x)] > 2. Hence, by 
Lemma 2.1, there exists a z E span(q(x)) such that xsf q(x) u [ - q(x)]. Since 
cp (x) = spanr~~(x) n K (cf. [2]), it follows that q(x) is also algebraically closed. 
Hence the set B={a~R:x+az~cp(x)} is a closed bounded interval of R. 
Let~=sup{a:~~B}and~=inf{a:a~B},andletx’=x+~z,v’=x+~z. 
Since, by Lemma 2.2, x~raicp(x), while x’~rabq(x), v’~rabp(x), it fol- 
lowsthat~>Oandy<O.Hencex=(~-y)~1(-yx’+~v’)Eh~{x1,u1}.It 
follows that either x1 or v1 does not belong to hull(ExtK); say x’E 
hull(ExtK). Sincex’Ebdycp(x), it follows from Lemma2.2that cp(x’)~cp(x). 

By similar arguments we obtain an infinite sequence x2, x3,. . . such that 
cp(x)>~(x’)>~(x2)>..., contrary to our assumption of DCC on cyclic 
faces. This completes the proof. n 

3. A CHARACTERIZATION OF INDECOMPOSABLE CONES 

In this section F will denote an arbitrary fully ordered field, and we 
assume that the vector space V# { 0} . 

DEFINITION 3.1. Let K be a cone in the vector space V over F. Let K,, 
K, be subsets of K. 
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(i) We say K is the direct sum of K, and K, (and we write K = K,@ K,) if 

(a) spanK,n spanKz= {0}, 

(b) K=K,+K,. 

(ii) The cone K is called decomposable if there exist non-zero subsets K, 
and K, such that K = K,$ K,. Otherwise, K is called indecomposable. 
Comment: Bleicher and Schneider [3, Definition (3.9)], use “composite” 
where we use “decomposable”, and “prime” where we use ‘ 
‘indecomposable”. The equivalence of the definitions follows from the next 

lemma. 

LEMMA 3.2. Let K be a cone in V M)~T F, and let K = K,@ K,. Then K, 
and K, are faces of K. 

Proof, We shall prove that K, is a face of K. Let xl,yl E K,. Since 
x’+y’~K, there exist u’EK,, i-l,2 such that x’+y’=u’+u2. Then 
&xl+yl- U'E spanK,n spanK,. Thus u2=0 and so x’+y’~K,. The 
proof that Xx’ E K, for 0 < h E F is similar. 

Now let 0 < y < x1. There exist u’, w’ E 4, i = 1,2, such that y = u1 + 02, 
x’-y=w’+w2. Then 

Hence w2 + o2 = 0, and since w2, o2 > 0, it follows that o2 = w2=0. Hence 
y=u’EK,. 

THEOREM 3.3. Let K be a reproducing cone in V over F, and assume 
that K = hull(Ext K). T wn the following are equivalent: 

(1) K is indecomposabb. 
(2) Let A~Horn(V,v), KerA={O}, and A(ExtK)cExtK. Then 

A EExtI’(K). 
(3)LetAEI’(K): KerA={Oj andAK=K. ThenAEExtI’(K). 
(4) Z EExtr(K). 

Proof. 

(l)=+(2). Suppose S E Hom( V, V) and 0 < S < A [viz. S E I’(K) and A - 
S E I’(K )]. We shall prove that S = PA, for some 0 < /3 E F. By our assump- 
tion, ExtK#{O}. For every yEExtK, y#O, we have O<Sy<Ay and 
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Ay E Ext K, whence there exists a unique /3,,, 0 Q &, < 1, such that Sy 

= &Ay. Let Of x E ExtK, and put p = /3,. Define 

E,={ yEExtK:y#Oand/$=/3}, 

Es={ yEExtK:y#Oand&#/3}. 

Let K,=(spanE,)nK, i=l,2. Let y~spanE,. Then Y=XCT;_~HU’, where 
z&E,, i=l,..., m, and ~{EF. Hence Sy=ZT;,,~(Suf)=Z~_‘,,~(PAui) 
= /3Ay. 

We shall show that K = K,@K,. Clearly K, C K, i= 1,2. Since K 
= hull(Ext K) and Ext K C K, u K,, it follows that K, + K, = K. Let y E 

span K, n span K, and suppose that y #O. Since span K, C span E,, there 
existlinearlyindependentu’,...,v”inE,andO#v,EF,i=l,...,n,suchthat 

y 

‘, If we put /3,,= &, it follows that Sy = S(Cl_ iviui) 
= ;_iv,/l,(Au”). But YE spanKi, whence 

Sy=pAy= 2 v,P(Au’). 
i=l 

Since A is one to one, we deduce that Au’ , . . . , Au n are linearly independent. 
It follows that vJ3, = v,p, i = 1,. . . , n. Hence /3, = p, i = 1,. . . , n. This contra- 
dicts the definition of E,. We have proved that spanKi n spanK,= (0) and 
it follows that K = K,@ K,. Since K,# (0) and K is indecomposable, we 
deduce that K, = { 0}, and so K = K,. Thus Sy = ,8Ay, for all y E K, and since 
K is reproducing, S = PA. 

(2)+(3). Suppose that A satisfies the conditions of (3). We need only 
prove that A (Ext K) c Ext K. So let y E Ext K. By our assumptions, A -r 
existsandA-1KCK.Letz=AyandsupposethatO(u<z.ThenO(A-1u 
<A-%= y, whence A-k= /3y, where 0 & fl< 1. Hence u=/3Ay, and so 
Ay E ExtK. 

(3)*(4). Trivial. 

(4)*( 1). Suppose (1) is fals eandletK=K1@K,,whereK,#{O},i=1,2. 

Since K is reproducing, V= spanK,@ spanK, (vector space direct sum). 
Define the projection P E Hom( V, V) by Px = x if x E span K, and Px = 0 if 
r E span K,. Then 0 < P < I, and P is not a multiple of I. Hence I $? Ext I’( K). 

n 

4. EXAMPLES 

In this section we shall again let F= R. 
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EXAMPLE 4.1 Let V be a normed linear space over R with norm I]. 11. Let 
1c, be a linear functional on V such that there exists u E V with q(u) > I( u ]I, 
and let 

K={xEV:~(x)>]]X~]}. 

Then it is easy to show that K is a cone in V which 
and reproducing. Further, 

intK= {xE V:$(x) > ]]x]]}, 
and 

bdyK={xEV:$(r)=]]x]]}. 

is algebraically closed 

(4.1.1) 

In the rest of this example we assume that dim V > 3 and that the norm is 
strictly convex (i.e., ](x]( = 1) y]] = i]]x+ y(] implies that X= y). 

The following result is simple (cf. [2]): 

F is a face of K if and only if 
(4.1.2) 

F=(O), or F=K, or F={ax:a>O}, wherexEbdyK. 

Hence K has DCC on cyclic faces. Thus the assumptions of Theorem 2.3 are 
verified, and so K =hull(ExtK). It follows also from (4.1.2) that ExtK 
=bdyK. 

We next show that K is indecomposable. Let K = K,03 K,. Then by 
Lemma 3.2 K, and K, are faces, and since dim(spanK) = dim V >2, either 
dim(spanK,)>l or dim(spanKa)> 1. Hence, by (4.1.2), either K,= K or 
K,= K, and the result follows. Thus K is indecomposable, and by Theorem 
3.3, 

Z EExtI’(K). 

Now let V= R”, the vector space of all real column n-tuples x= (xi), Let 

and 

(the n-dimensional ice cream cone). It follows from Theorem 3.3 that 
A E Ext lT( K,) for every A E R”,” such that AK,, = &. This result is used by 
Loewy and Schneider [6]. 
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We may use [6, Lemma 3.21 to show that the assumption that KerA = (0) 
cannot be dropped from condition (2) of Theorem 3.3. For u E bdy K,,, 
v E int K,, then A=uv~EI’(K,) and A(E~~K,)=~JI(u)cE~~K,,, but A!Z 
ExtI’(K,). (Here vt denotes the transpose of v.) 

EXAMPLE 4.2. Let V be the space of all real sequences (x0, x1, x2,. . . ) with 
finite support (i.e., x,#O for only a finite number of integers i). We shall 
write Xx, for Zy= ixi, and we put 

K1={x~V:xO>Z]ril}. (4.2.1) 

(Observe that K, is defined by 2x, > Z~&(xi], and that ZT_,,]x,] is a norm on 
V-which, however, is not strictly convex.) Clearly K, is full and algebrai- 
cally closed. We shall determine that faces of K, and then show that K, is 
indecomposable. 

By (4.1.1), 

bdyK,= {x~ V:xc=Z]x,]}. 

Let 77=(7ri,7rZ,... ) be a sequence with ri E { - LO, l}. Define 

F,={xEbdyK,:sgnx,=r+orx,=O, i=1,2,...}, 

where sgnx, equals 1, 0 or - 1 according as xi is positive, zero or negative. 

THEOREM 4.2.2. Let K, be defined by (4.2.1) and suppose that (0) 
C F C K,. Then F is a face of K, if and only if there exists a sequence 

~T=(?T~,IT~ ,...) with TEE{-l,O,l}, i=1,2 ,..., such that F=F,. 

Proof. We first show that F,, is a face of K,, for every sequence T. It is easy 
to check that F,, is a cone. Suppose 0 < y < x, where x E F,,. Then, if 
z=x- Y, 

whence 

x0= yo+zo>zlzil+z) y,l>Z(z,+ y,l=Zlx,l=x, 

Hence Ye=Z] Yi], and I y,J+lzJ=J yr+zi], i=l,%.... 
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It follows that either yi = 0 or sgn yi = TV, i = 1,2,. . . , whence y E F,. We 
have proved that F, is a face of K,. 

Conversely, let F be a face of K,, and suppose F# K,. Suppose there exist 
i > 1 and X, y E F such that (sgnxj)(sgn yr) <O. Let u = x+ y. Then 

since jxjl+l yrJ>)xi+ yJ. H ence, by (4.1.1), u E intK,, whence F= K,, which 
is a contradiction. Hence (sgnxJ(sgn y,) > 0 for aII i = 1,2,. . . and all x, y E F. 
Thus we can define a unique sequence r = (rrr,ra,. . .) by 

7r, = 1 if x,>O forsome XEF, 

?ri= -1 if x,<O for some XEF, 

q=o otherwise. 

By the preceding argument, F C F,,. 
We must show that F = FT. Let j > 1 and suppose that r/#O. Define 

efEVbye,j=l,e/=7+ande, r=O for i> 1, i#j. Clearly e!EK,. We claim 
that eiEF. For there exists an XEF such that sgnx~=~~. Let O<E<(X~(. 
Then it follows that 0 < x-se/, whence ei E F. Since for every x E F, we 
have x=Z{lxtle~:7r~#0}, we deduce that F,CF, Hence F=F,,. We have 
proved Theorem 4.2.2. n 

COROLLARY 4.2.3. Let XE V. Then XE ExtK, if and only if there is a j, 
i > 1, such that lxtl = x0, and x, = 0 otherwise. 

COROLLARY 4.2.4. The cone K, has DCC on cyclic faces. It does not 
have DCC on faces, ACC on cyclic faces or ACC on faces. 

Proof Let 7,~’ be two sequences with ri,ri E { - l,O, l} for i = 1,2,. . . . 
Then F,, c F,, if and only if ri = 0 implies r,! = 0, and (sgn~i’)(sgn~r,) > 0. 

We first show that K, has DCC on cyclic faces. Let q( x0) > ‘p( x’) > p(x2) 
3 * * * > cp(x k, be a strictly descending chain of cyclic faces. Then 
x/~bdyK,, i=l,..., k, by Lemma 2.2. By Theorem 4.2.2 there is a sequence 
I~~=(T{,~TL ,,.. )with?r/~{-l,O,l),i=l,2 ,,.., suchthatcp(rf)=F,,,.Hence 
we must have IT/ = sgn xf, i = 1,2, . . . . Hence k < p + 1, where p is the number 
of non-zero x:, i = 1,2,. . . . Thus K, has DCC on cyclic faces. 

We next show that K does not have DCC on faces. For j = 1,2,. . . , define 
r,(f)=0 if l<i<j, and r/fl=l if i>i. Then F,+>F,p~>-** is a strictly 
descending chain of faces. Hence K, does not have DCC on faces. 

The last two statements are proved similarly. n 
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COROLLARY 42.5. The cone K, is indecomposable. 

Proof. Since, by Corollary 4.2.4, K, has DCC on cyclic faces, it follows 
by Theorem 2.3 that K, = hull(extK,). Hence, by Theorem 3.3, it is enough 
to show that I E Extr(K,). So let A E Hom( V, V) satisfy 0 < A < I. Then 
Ax < x for every x E ExtK,, whence Ax = &, where 0 < & < 1. For j 
=1,2,... let f’,gf E V be defined by 

f6= 1, fl= 6,, i > 1, 

.g(j= 1, g/ = - I$/, i> 1. 

Let G={f~:j=l,2,...}u{g~:j=l,2,...}. Suppose Afi=P#, Agf=yigi. 
Let j>l. Sincef’+g’=fj+gi, it follows that /Ilf’+ylg’=Piff+y~gi. But 
f’,g’,ff, g’ span a three-dimensional linear space, whence & = yr = PI = yt. 
Hence, for all x~ G, Ax= &x, Since, by Corollaries 4.2.3 and 4.2.4 K, 
= hull G and K, is full, it follows that A = &Z. 

EXAMPLE 4.3 Let V be the space of Example 4.2 and for O# xE V let 
nr = m(x) be smallest integer in the support of x, and n = n(x) be the largest 
integer in the support of x. For j = 0, 1,2,. . . , let e 1 E V be defined by e/ = arr, 
i=O,1,2 ,.... 

(i) Let 

K,= {xE V:%>O} u (0). 

Then the non-zero faces of K, are given by cp(e’), j = 0, 1,2,. . . , with 
q(ef) 1 (p(ek) if j < k. Hence K, has ACC on faces, but not DCC on faces. 
The cone K, is not algebraically closed. 

(ii) Let 

K,={x~V:x,>0}~{0}. 

Then the faces of K, other than (0) and K3 are again given by cp(e’), 
j=o,1,2 ,...) with q(e’)> (p(ek) if j > k. Thus K, has DCC on faces, but not 
ACC on faces. Further, K, is not algebraically closed. 

The next example will show that (1) and (4) of Theorem 3.3 are not 
necessarily equivalent if K # hull(Ext K ). 

EXAMPLE 4.4 Let V- C [0, 11, the space of continuous real functions on 
[0, 11, and let 

K={fEV:f(x)>O,forallxE[O,l]}. 
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Then K is full and algebraically closed. Let 0 # f E K and define g(z) = g(x), 
O<x~l.ThenO<g~f,andg#otfforanya~R.HenceExtK={O},and 
so K#hull(ExtK). 

THEOREM 4.4.1. The cone K is indecomposable. 

Proof Suppose K = K,@K,. Then K, and K, are faces of K. For i = 1,2, 
let 

9& ={azE[O,l]:f(x)=OforallfEK,}. 

It is clear that %, is a closed subset of [0, 11, i = 1,2, and %l n 9Zs =8: We 
claim that ‘?X, u !& = [0, 11. For suppose that 8 = [0, l]\( %, u &,) #B: Let 
x,~g. There existf’EK,, i=1,2, such thatf’(x,)>O. Let g=min{f’,f’}. 
Since Ki is a face, we have gEKi, i=1,2. Since g(x,)>O, K,nK,#{O}. 
This is a contradiction, and hence %, u ?&,= [O,l]. But GJti is closed, 
whence either %, = [0, l] or %z = [O, 11, say ‘%s = [0, 11. Then K, = { 0}, and 
the theorem is proved. n 

It is easily seen that ExtI’(K)={O}. For suppose that AEI’(K), AZO, 
and define B Er(K) by (Bf)(r)= x(Af)(x), O< x < 1. Then O< B < A, and 
B#&, for any (Y, O< cy < 1. In particular, I !ZExtr(K), although K is 
indecomposable. 

5. SUFFICIENT CONDITIONS FOR AK = K. 

THEOREM 5.1. Let V be a vector space over R such that dim V > 2. Let 
K be an algebraically closed, full cone in V. Let A E Hom( V, V) map V onto 
V. If A(bdyK)GbdyK, then AK=K. 

Proof. Since K is algebraically closed, it follows from Lemma 2.1 that 
K = hull(bdyK). Hence 

AK=A(hull(bdyK))=hull(A(bdyK))chull(bdyK)=K. 

We next show that A int K C int K. For let x E int K and suppose that v E V. 
There exist u E V such that Au = v. There exists also E >0 such that 
z + EU E K. Since AZ + EV = A (z + EU) E K, it follows that AZ E int K. 
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Suppose the theorem is false. Then there exists x Ebdy K such that 
x $? AK. Since AV= V, there exists x’ E V, x’ $5 K, such that Ax’ = x. Let 
z’ l intK, and put u’= z’- x’. There exists (Y, 0 < (Y < 1, such that y’ = x’ + 
(YU’ E bdy K. Since x = Ax’ E bdy K and A (x’ + u’) = AZ’ E int K, it follows that 
Ay ’ = A (x’ + au’) E int K. But this contradicts the assumption that A (bdy K ) 

cbdyK.HenceAK=K. n 

The assumption that K is algebraically closed cannot be omitted in 
Theorem 5.1 in general. For let V= R3, and let K be the three-dimensional 
ice cream cone (see Example 4.1) with the half line { (~(0, 1,1) : a > 0} 
deleted. If A is any proper rotation about the axis (O,O, l), then A(bdyK) 
cbdyK, but obviously AK G K. 

The assumption that K is full cannot be omitted, in general, either. For let 
V be the space of all real sequences (x1, x2,. . . ) with finite support. Let T be a 
positive integer and let K be the cone of all non-negative sequences x such 
that x,=0 for i=r+l,r+2,.... Let A EHom( V, V) be defined by Ax 
= x2,x3,... ( ), the shift left operator. Then raiK#B, AV=V, A(rabK) 
CrabK, but AKZK. 
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