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ABSTRACT 

We investigate the existence and the nature of the solutions of the matrix equation 
Ax = b, where A is a Z-matrix and b is a nonnegative vector. When x is required to 
he nonnegative, then an existence theorem is due to Carlson and Victory and is 
re-proved in this paper. We apply our results to study nonnegative vectors in the 
range of Z-matrices. 

1. INTRODUCTION 

In this paper we discuss the solvability of the matrix equation Ax = b, 
where A is a Z-matrix and b is a nonnegative vector. 

In the case where A is an M-matrix and x is required to be nonnegative, 
this problem is solved by Carlson [l]. A generalization of the results in [l] for 
the case of a Z-matrix A is due to Victory [5]. We consider these results as 
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very fundamental and important. Yet, the proofs in both papers are some- 
what involved. In Section 3 we give two simple proofs of the result in [5] 
(which yields the result [l]). Furthermore, our results go beyond conditions 
for solvability and provide additional information about the solutions. 

It is a characteristic of the problem described above that the existence 
and the nature of a solution depend entirely on graph theoretic conditions. In 
the case that nonnegativity of the solution is not required, we show in Section 
4 that there are no purely graph theoretic conditions for solvability. However, 
there are graph theoretic results concerning the nature of the solution. We 
prove some results of this type. 

We apply the results of Section 3 in Section 5. There we prove two 
theorems concerning nonnegative vectors in the range of Z-matrices. These 
results generalize assertions stated in [4]. 

This paper is the second in a sequence of related papers. The first paper 
in the sequence is [3] and the third one is [2]. 

2. NOTATION AND DEFINITIONS 

This section contains most of the definitions and notation used in this 
paper. In the main we follow the definitions and notation used in [4]. 

Let A be a square matrix with entries in some field. As is well known (see 
[4] for further details), after performing an identical permutation on the rows 
and the columns of A we may assume that A is in Frobenius normal form, 
namely a block (lower) triangular form where the diagonal blocks are square 
irreducible matrices. 

NOTATION 2.1. For a positive integer n we denote (n) = { 1,. . . , n }. 

CONVENTION 2.2. We shall always assume that A is an n X n matrix in 
Frobenius normal form (Ajj), where the number of diagonal blocks is p. Also 
every vector b with n entries will be assumed to be partitioned into p vector 
components bi conformably with A. 

NOTATION 2.3. Let b be a vector with n entries. We denote 

supp(b)= {iE(p):b@O}. 

DEFINITION 2.4. The reduced graph of A is defined to be the graph 
R(A) with vertices l,..., p and where (i, j) is an arc if and only if Aii f 0. 
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DEFINITION 2.5. Let i and j be vertices in R(A). We say that j 
accesses i if i = j or there is a path in R(A) from j to i. In this case we write 
i =< j. We write i --< j for i =< j but i z j. We write i +< j [if< j] if 
i =< j [i --< j] is false. 

DEFINITION 2.6. Let W be a set of vertices of R(A), and let i be a 
vertex of R(A). We say that i accesses W (W =< i) if i accesses (at least) 
one element of W. We say that W accesses i (i =< W) if i is accessed by (at 
least) one element of W. 

DEFINITION 2.7. A vertex i in R(A) is said to be final [initial] if for 
every vertex j of R(A), j =< i implies j = i [i =< j implies j = i]. A set W 
of vertices of R(A) is said to be final [initial] if for every vertex j of R(A), 
j =< W implies j E W [W =< j implies j E W]. 

NOTATION 2.8. Let W be a set of vertices of R(A). We denote 

below(W) = {vertices i of R(A): W=<i}, 

above(W)={verticesiofR(A):i=<W}, 

hot(W)= {iEW:jEW,i=<j j i=j}, 

top(W)= {iEW: jEW, j=<i * i= j}, 

DEFINITION 2.9. A vertex i of R(A) is said to be singular [nonsingular] 

if Aii is singular [nonsingular]. The set of all singular vertices of R(A) is 
denoted by S. 

NOTATION 2.10. Let W be a set of vertices of R(A). We denote 

A[ W] = the principal submatrix of A whose rows and columns are indexed 
by the vertices of G(A) that belong to the strong components in W, 

A(W) = A](P) \ WI. 

NOTATION 2.11. Let V and W be sets of vertices of R(A). We denote 

A( V] W] = the submatrix of A whose rows and columns are indexed by the 
vertices of G(A) that belong to the strong components in ( p) \ V 
and W respectively. 
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NOTATION 2.12. Let W be a set of vertices of R(A), and let b be a 
vector. We denote 

b[ W] = the vector obtained by omitting all bi such that i E W, 

b(W) = H(p)\ WI. 

DEFINITION 2.13. A real (not necessarily square) matrix P will be called 
nonnegative (P > 0) if all its entries are nonnegative, semipositive (P > 0) if 
P > 0 but P # 0, and (strictly) positive (P z+ 0) if all its entries are positive. 

NOTATION 2.14. Let P be a nonnegative square matrix. We denote by 
p(P) the spectral radius of P (its Perron-Frobenius root). 

DEFINITION 2.15. A Z-matrix is a square matrix of form A = hZ - P, 
where P is nonnegative. A Z-matrix A is an M-matrix if X >, p(P). The least 
real eigenvalue of a Z-matrix A is denoted by Z(A) [observe that Z(A) = X - 

P(P)l. 

NOTATION 2.16. Let A be a Z-matrix. We denote 

T= {i:p(A,,)<O}, 

U= S \above(T). 

NOTATION 2.17. Let A be a square matrix. We denote 

N(A) = the null space of A, 
E(A) = the generalized null space of A, viz. IV( A”), where n is the order 

of A, 
F(A) = the subspace of E(A) which is spanned by the nonnegative vectors 

in E(A). 

DEFINITION 2.18. Let A be a square matrix in Frobenius normal form, 
andlet H= {cu,...,a,}, or< .+. 
semipositive vectors r r, . . . , 

< (Ye, be a set of vertices in R(A). A set of 
xq is said to be an H-preferred set (for A) if 

xj>>0 if q=< j 

x; = 0 i 
i=l 

if lYi#<j 
,...>Q, j=l ,.*.,p, 
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and 

4 
- Ax’= c cikxk, i=l ,...,9, 

where the cik satisfy 

k=l 

Cik>O if (Yi --< (Yk 

Cik = 0 if (Yi f<ak 
i,k=l,..., 9. 

DEFINITION 2.19. Let A be a square matrix in Frobenius normal form, 
and let H be a set of vertices in R(A). An H-preferred set that forms a basis 
for a vector space V is called an H-preferred basis for V. 

3. NONNEGATIVE SOLUTIONS OF Z-MATRIX EQUATIONS 

We start with a general lemma. 

LEMhU 3.1. Let A be a squure matrix in Frobenius rwrmal form, and let 
x and b be vectors such that Ax = b. Then 

(3.2) 

Furthemure, 

supp(b) c below(supp(x)). 

(3.3) top(supp(x)) nbelow(supp( b)) c top(supp(b)). 

Proof. Let p be the number of diagonal blocks in the Frobenius normal 
form of A. Let Ax = b. Observe that 

(3.4) 

where 

Aiixi = bi + yi, i=l ,***, P, 

(3.5) 

i-l 
yi= - c Aijxj, i=l,..., p. 

j = 1 
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Let i 4 below(supp( x)). Th en, xi = 0. Also, if A i j + 0, then x j = 0. Hence 
yi = 0. Therefore, it follows from (3.4) and (3.5) that i 4 supp(b), and so we 
have (3.2). Now let i E top(supp(x)) nbelow(supp(b)), and assume that 
i 6C top(supp( b)). Then th ere exists j in supp(b) such that j --< i. By (3.2), 
j E below(supp( x)), and hence there exists k in supp(x) such that k =< i. 
Thus, i E top(supp( x)), which is a contradiction. Hence, our assumption 
that i P top(supp( b)) is false. n 

PROPOSITION 3.6. Let A be a Z-matrix, let b be a nonnegative vector, 
and let x be a nonnegative vector such that Ax = b. Then 

~low(supp(4) = SUPPb), 

(3.7) 

Proof We remark that since top(supp( r )) n (S \T) c supp(x) n (S u 
T), it is enough to prove in the third statement in (3.7) that supp( x) n (S U 

T) G w&w(~)) n(s\V G (n)\wv(b). 
We prove our lemma by induction on p. For p = 1, if supp(x) = {l}, 

then necessarily the irreducible matrix A is either a singular M-matrix, in 
which case b = 0 and x X- 0, or a nonsingular M-matrix, in which case 
x >> 0. In both cases, (3.7) is clearly satisfied. Assume the claim holds for 
p < m where m > 1 and let p = m. By the inductive assumption we have 

below(supp(x))n(m-l)=supp(x(m)), 

(3.3) 

We have 

r [suPP(++l B 0, 

suPP(++W u T) = toP(suPP(x(m)))n(S\T) 

G (m - l)\supp(b). 

(3.9) A,,,,q,, = b,,, + Y, 2 Y,, 

where 

m-l 

y,= - c A,jxj. 
j - 1 
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Clearly, y, >, 0. If m P below(supp(x)), then (3.7) follows from (3.8) im- 
mediately. Suppose that m E below(supp( r)). We distinguish between two 
cases: 

Case 1. m E top(supp(x)). Here x,>O, and since A,,x, >O it 
follows that the irreducible matrix A,, is either a singular M-matrix, in 
which case b,,, = 0 and r,,, Z+ 0, or a nonsingular M-matrix, in which case 
xm >> 0. In view of (3.8) we now have (3.7). 

Case 2. m G top(supp( x)). There exists k E (m - 1) such that k E 
below(supp(x)) and A,, Z 0. By (3.8), xk x== 0 and hence y,, > 0. It now 
follows from (3.9) that necessarily A,, is a nonsingular M-matrix. By 
multiplying both sides of (3.9) by the positive matrix A,:, we also obtain 
that x, Z+ 0. In view of (3.8) we now have (3.7). n 

REMARK 3.10. The condition that x is nonnegative cannot be omitted 
from Proposition 3.6, as demonstrated by the system 

A=( _y ;)> x=( -;), b=(y). 

Here none of the conditions in (3.7) hold. 

The following result follows immediately from Proposition 3.6. It was first 
proved in [5] and is a generalization of a result in [l]. 

THEOREM 3.11. Let A be a Z-matrix, and let b be a nonnegative vector. 
Then there exists a nonnegative vector x such that Ax = b if and only if 

(3.12) supp(b)nabove(SUT)=0. 

Proof. Suppose that (3.12) holds. Let W = below(supp( b)). Since by 
(3.12), A[ W] is a nonsingular M-matrix, it follows that there exists a (unique) 
nonnegative vector w such that A[ W] w = b[ W]. Since W is an initial set, it 
follows that by adjoining zero components to w we obtain a (unique) 
nonnegative vector x satisfying Ax = b and x(W) = 0. 

Conversely, suppose that there exists a nonnegative vector r such that 
Ax = b. Let i E below(supp(b)) n(S UT). By (3.2) and (3.7) we have 
i E top(supp(z)). and by (3.3), i E top(supp( b)). However, by (3.7), i 4 
supp( b), which is a contradiction. Therefore, below(supp( b)) fl (S U T) = 0, 
which is equivalent to (3.12). n 
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We now give an alternative proof of the “only if” direction in Theorem 
3.11. The previous proof used Lemma 3.1 and Proposition 3.6, which are of 
interest in themselves. However, the following proof is a more direct one. 

Proof. Suppose that there exists a nonnegative vector x such that 
Ax = b. We prove (3.12) by complete induction on p. Assume that our claim 
holds for p < m, where m > 0, and let p = m. If S U T = 0, then (3.12) holds 
trivially, let S U T # 0, and let j be the smalIest integer such that j E S U T 
+ 0. Let p = Z(A jj) and let J = above(j). It follows from the preferred basis 
theorem (e.g., Theorem 4.14 in [3]), applied to the singular M-matrix Ar[ J] 
- PI, that Ar[.Z] has a (strictly) positive eigenvector u associated with ~1. By 
adjoining zero components to u we obtain a semipositive eigenvector v for 
AT associated with p which satisfies 

(3.13) u[Z] > 0. 

Since u, b, and x are nonnegative and ~1 d 0, we have 

0 >, puTx = uTAx = uTb >, 0. 

Thus necessarily uTb = 0, and hence by (3.13) 

(3.14) supp(b)nJ=0 

Observe that .Z is a final set of vertices of R(A). Therefore, it follows 
that x(J) is a nonnegative vector satisfying A(J)x(J) = b’ >, b(J). By the 
inductive assumption we have supp( b’) n above( (S U T )\ J) = 0. Since 
supp( b( J)) c supp( b’) it now follows that 

(3.15) 

We now obtain (3.12) from (3.14) and (3.15). 

THEOREM 3.16. Let A be a Z-matrix, let b be a nonnegative uector, and 
let W = below(supp( b)). Zf (3.12) holds, then there exists a unique vector x0 
such that 

(3.17) Ax’=b and x”(W)=O. 

Fwthermure, this vector satisfies x”[ W] x= 0. 
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Proof. By the first part of the proof of Theorem 3.11 there exists a 
unique vector x0 such that Ax0 = b and x’(W) = 0. By Lemma 3.1, 
W L below(supp( x)).. By Proposition 3.6 we thus have x”[ W] x=. 0. n 

THEOREM 3.18. Let A be a Z-matrix and let b be a rumnegative vector. 
Zf x is a nonnegative vector satisfying Ax = b, then x > x0, where x0 is the 
vector satisfiing (3.17). 

Proof. Let W = below(supp( b)). Observe that 

(3.19) A[W]x[W] >, b[W] =A[W]x’[W]. 

Since A[ W ] is a nonsingular M-matrix, its inverse is nonnegative and the 
result follows from (3.19). n 

In view of Theorem 3.18, we shall call the unique vector x0 which 
satisfies (3.17) the minimal nonnegative solution of Ax = b. 

THEOREM 3.20. Let A be a Z-matrix, let b be a nonnegative vector, and 
let x be a nonnegative vector such that Ax = b. Then 

x=x0@ 
i t&“)C,xip 

where x0 is the minimal nonnegative solution of Ax = b, the set 
{xi: i E hot(U)} forms a hot(U)-preferred basis for F(A)n N(A), and the 
coejjkients cir i E hot(U), are all nonnegative. 

Proof. Let z = x - x0. By Theorem 3.18, z > 0. Thus z E N(A)n F(A), 
and by Corollary 5.12 in [3] z is a linear combination of elements of a 
bet(U)-preferred basis for F(A) n N(A). The nonnegativity of the coeffi- 
cients follows from the structure of a preferred basis. n 

The following immediate corollary to Theorem 3.20 summarizes the 
information obtained on nonnegative vectors x and b such that Ax = b, 
where A is a Z-matrix. 
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COROLLARY 3.21. Let A be a Z-matrix, let b be a nonnegative vector, 
and let x be a nonnegative vector such that Ax = b. Let x0 be the minimal 
nonnegative solution of Ax = b, viz., the solution which satisfies (3.17). 
Then: 

below(supp( z)) = supp(r), 
x[supp(x)l X= O, 
supp(x)nabove(s U T) c hot(U), 
supp(x)nabove(T)=0, 
belowFupp( b )) G supp( x ), I~~\ 

(f) below(supp(b))nabove(S u T) =0, 
(g) x 2 x0. 

To illustrate Corollary 3.21, we consider the following example. 

EUMPLE 3.22. Let A be the Z-matrix 

A= 

0 0 0 0 00 0 
0 0 0 0 00 0 

-1 0 0 0 00 0 
0 -1 0 1 00 0. 
0 -1 0 0 10 0 
0 0 -1 -1 0 1 0 

-0 0 0 0 -1 0 -1, 

The reduced graph R(A) is 

3 t 
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where 0 denotes a singular M-matrix vertex, + denotes a nonsingular 
M-matrix vertex, and - denotes a nonsingular component Aii with &A,,) 
< 0. 

We have 

S= {1,2,3}, 

T= {7}, 

SuT= {1,2,3,7}, 

above(T) = {2,5,7}, 

above(S U T) = { 1,2,3,5,7}, 

u= {1,3}, 

hot(U) = (3). 

By Theorem 3.11, there exists a nonnegative x such that Ax = b a 0, if and 
only if supp(b) c {4,6}. So we choose 

b=[o o o 1 o o 01’. 

We now have 

supp(b) = (4) > 

below(supp( b)) = {4,6}. 

The minimal nonnegative solution of Ax = b is 

xO=[o 0 0 0 1 0 1 01’. 

Note that supp(x’) = below(supp( b)). Another nonnegative solution of Ax 
= b is 

x=[o 0 1 1 0 2 01’. 
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SUPP(X)= {3,46}, 

supp(x)Oabove(S u T) = (3) = hot(U), 

supp(x)nabove(T) =0, 

x > x0, 

below(supp( b)) c supp( x). 

4. GENERAL SOLUTIONS OF Z-MATRIX EQUATIONS 

The discussions in the previous section raise the question as to what can 
be said about general (not necessarily nonnegative) solutions x for the 
equation Ax = b, where b is nonnegative. The following example shows that 
in general there is no purely graph theoretic characterization for the solvabil- 
ity of this equation. 

EXAMPLE 4.1. Let 

[ 
0 0 0 A= -1 0 

-2 0 
0, 1 b= 
0 

0 [I 1 . 
1 

The equation Ax = b has no solution. However, if we replace the - 2 in the 
(3,l) position in A by - 1, then a solution does exist. 

However, we have the following results. 

PROPOSITION 4.2. Let A be a Z-matrix and let Ax = b >, 0. Let W = 
( p)\below( S U T). Then 

x[w] 20. 

Furthermore, we have 

(4.3) x[below(supp(b)O W)] z+ 0. 

Proof. Since W is a final set, we have A[W]x[W] =(Ar)[W] >O. 
Since A[W] is a nonsingular M-matrix, its inverse is nonnegative and hence 
x[ W] >, 0. The inequality (4.3) follows from Lemma 3.1 and Proposition 3.6. 

I 
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The following proposition is closely related to Theorem 3.11. 

PROPOSITION 4.4. Let A be a Z-matrix and let Ax = b >, 0. Let i E 
supp(b)n (S U T). Then there exists a vertex j such that j =< i and xi has a 
negative entry. 

Proofi Suppose that our claim is false. Then xi > 0. Also, 

yi = c - Aiixi>O. 
jCw 

Hence Aii = bi + yi > 0. Since xi >, 0, it follows that i 4 S U T, which is a 
contradiction. W 

5. NONNEGATIVE VECTORS IN THE RANGE OF Z-MATRICES 

The special cases of Theorems 5.1 and 5.2 below for M-matrices are stated 
without proof in Corollary 4.8 and Theorem 4.9 of [4]. 

THEOREM 5.1. Let A be a Z-matrix. Then the following are equivalent: 

(i) z > 0 and Az > 0 imply that Az = 0; 
(ii) every initial vertex of R( A) belongs to S U T. 

Proof. (i) * (ii): If (ii) is false, then above(S U T) # (p). It now follows 
from Theorem 3.11 that there exist semipositive vectors x and b such that 
Ax = b, in contradiction to (i). 

(ii) = (i): By (ii) we have above(S U T) = (p). Hence, by Theorem 3.11, 
(i) follows. n 

THEOREM 5.2. Let A be a Z-matrix. Then the following are equivalent: 

(i) Az > 0 implies that Az = 0; 
(ii) A is an M-matrix, and the set of all initial vertices of R(A) equals S. 

Proof. (i) * (ii): Suppose that (i) holds. If A is not an M-matrix, then 
let u be a seminegative eigenvector of A associated with l(A). We have 
AU > 0. which contradicts (iI. Thnr A ic an M-matrix WD nnw h-x,- +a =I--=, 
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that the set of aII initial vertices of R(A) equals S. By Theorem 5.1 every 

initial vertex of R(A) is in S. If there is a singular vertex in R(A) which is 
not initial, then by the preferred basis theorem (e.g., [4, Theorem (7.1)] or [3, 
Theorem (4.14)]) we can find a semipositive vector z [by the Spreferred 
basis for E(A)] such that A( - z) > 0, in contradiction to (i). 

(ii) * (i): We proceed by induction on p. If p = 1, then A is a sing&r 
irreducible M-matrix, and as is well known, AZ > 0 implies AZ = 0. Assume 
that the implication holds for p < m where m > 1, and let p = m. Since A 
satisfies (ii), it follows that A(1) satisfies (ii), and by the inductive assumption 
we have 

(5.3) A(l)u>O * A(l)u = 0. 

Suppose that A,, is singular. By (ii), 1 is an initial vertex in R(A). Thus 
A( 1 ]I] = 0, and A is a direct sum of A ii and A(1). Since A,,u >, 0 implies 
that A,,u = 0, it follows from (5.3) that (i) holds. Suppose now that A,, is 
nonsingular. By (ii), 1 is not an initial vertex of R(A). Therefore, 

(5.4) A(l]l] < 0. 

Let AZ > 0. Assume that zi # 0. Then A,,z, > 0 and hence zi >> 0. It now 
follows from (5.4) that A(l)z(l) > 0, in contradiction to (5.3). Thus we have 
zi - 0. By (5.4) we now have A(l)z(l) z 0. By (5.3) we have A(l)z(l) = 0, 
and it follows that (AZ)(~) = 0. Also, zi = 0 implies that A llzl = 0, and we 
obtain AZ = 0. n 

We remark that we have a shorter proof of Theorem 5.2. That proof uses 
results on alternating sequences obtained in [2]. 
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