THE GROWTH OF POWERS OF A NONNEGATIVE MATRIX*

SHMUEL FRIEDLAND[†] AND HANS SCHNEIDER[†]

Abstract. Let A be a nonnegative $n \times n$ matrix. In this paper we study the growth of the powers A^m , $m = 1, 2, 3, \cdots$ when $\rho(A) = 1$. These powers occur naturally in the iteration process

$$x^{(m+1)} = Ax^{(m)}, \qquad x^{(0)} \ge 0,$$

which is important in applications and numerical techniques. Roughly speaking, we analyze the asymptotic behavior of each entry of A^m . We apply our main result to determine necessary and sufficient conditions for the convergence to the spectral radius of A of certain ratios naturally associated with the iteration above.

1. Introduction. Let A be a nonnegative $n \times n$ matrix. In the iteration process

(1.1)
$$x^{(m+1)} = A x^{(m)}, \quad x^{(0)} \ge 0,$$

which is important in applications and numerical techniques, the powers A^m , m = 1, 2, \cdots occur naturally. In this paper, we study the growth of these powers. In the literature there are several studies of the growth of A^m when the elementary divisors belonging to the spectral radius $\rho(A)$ of A are linear. For example, see Gantmacher [7, Chap. 13, § 5–7] Varga [19, pp. 32–34] when A is irreducible, and Meyer–Plemmons [10] when $\lim_{m\to\infty} A^m$ exists. We deal here with the general nonnegative case, when the elementary divisors belonging to $\rho(A)$ may have degrees greater than 1. At the cost of ignoring nilpotent A, where the problem is trivial, we assume that $\rho(A) > 0$.

For a complex $n \times n$ matrix A, with $\rho(A) = 1$, there is a least integer k for which $m^{-k}A^m$ is bounded, $m = 1, 2, \cdots$. However, even in the simple case of an imprimitive, irreducible nonnegative A, $\lim_{m\to\infty} ||m^{-k}A^m||$ and, a fortiori $\lim_{m\to\infty} m^{-k}A^m$, do not in general exist. To obtain precise results for general nonnegative A with $\rho(A) = 1$, it is thus necessary to introduce some smoothing. For example, in [14] Rothblum considered Cesaro means of powers of A. In this paper we study the growth of

(1.2)
$$B^{(m)} = A^m (I + \dots + A^{q-1}), \quad m = 1, 2, \dots,$$

where q is a certain positive integer.

After some preliminaries in § 2, we use elementary analytic methods in § 3 to prove a theorem on the growth of $B^{(m)}$. As corollary, we obtain a known theorem on the index of the eigenvalue 1 of A, cf. Schaefer [17, Chap. 1, Thm. 2.7]. We also give a local form of the theorem; that is, we show that for $1 \le i, j \le n$ there exist integers k = k(i, j) and q = q(i, j) > 0 such that the element $b_{ij}^{(m)}$ of the matrix given by (1.2) satisfies

(1.3)
$$\lim_{m\to\infty} m^{-k} b_{ij}^{(m)} > 0.$$

The analytic results of § 3 motivate the investigations in the rest of the paper.

The main thrust of the paper is the use of the graph structure of the matrix A to decrease the integer q(i, j) and to determine the integer k(i, j) in (1.3). The requisite graph theoretic concepts are developed in § 4, and in § 5 we state our main result, Theorem (5.10). As a corollary, we obtain a striking theorem on the index of 1 due to

^{*} Received by the editors June 14, 1979, and in revised form December 4, 1979.

[†] Mathematics Department and Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706. This research was supported in part by the United States Army under Contract DAAG29-75-C-0024 and by the National Science Foundation under Grant MCS78-01087.

Rothblum [13]. Our results are related to those of U. G. Rothblum [14], [15], and in some instances, would also follow from his. But where Rothblum considers A^{qm} , $m = 1, 2, \dots$, we consider $B^{(m)}$ and this allows us to choose a smaller integer q. Our definitions of q(i, j) involves the greatest common divisor (g.c.d.) of certain periods where one might expect the least common multiple (l.c.m.). Consider the example

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}.$$

Then, by direct computation, for $1 \le i, j \le 2$, $\lim_{m \to \infty} b_{ij}^{(m)} = 1$, where $B^{(m)} = A^m(I+A)$. Thus k(i, j) = 0, and we may choose q(i, j) = 2 if $1 \le i, j \le 2$. Similarly k(i, j) = 0, q(i, j) = 3 if $3 \le i, j \le 5$. Yet $\lim_{m \to \infty} m^{-1}a_{ij}^{(m)} = \frac{1}{6}$ if $1 \le i \le 2, 3 \le j \le 6$, and so we have k(i, j) = 1, q(i, j) = 1. We might add that it may be possible that our choice of q(i, j) can be improved in the general case where we use an l.c.m. of certain g.c.d.'s.

In § 6, we apply our results to the iteration process (1.1) for any nonnegative matrix A satisfying $\rho(A) > 0$. For $x \ge 0$, $x \ne 0$ denote

(1.4i)
$$r(x) = \sup \{ \mu : \mu x \leq Ax \},$$

(1.4ii)
$$R(x) = \inf \{ \mu : \mu x \ge Ax \}.$$

In Theorem 6.8, we find necessary and sufficient conditions for $r(A^m x)$ and $R(A^m x)$ to converge to the spectral radius of A. We show that whether or not this happens depends only on what is in general a small part of the vector x. In § 7, we show that a theorem due to D. H. Carlson [3] on the existence of nonnegative solutions y for (I - A)y = x, $x \ge 0$, $\rho(A) = 1$ is a consequence of our main results and we extend the theorem.

2. Preliminaries.

Notations. Let $\varphi(1), \varphi(2), \cdots$, be a sequence of nonnegative numbers and $k \ge 0$ be an integer.

- (2.1) (i) $\varphi(m) = O(m^k)$ will denote that $\varphi(m)/m^k$, $m = 1, 2, \cdots$, is bounded.
 - (ii) $\varphi(m) = o(m^k)$ will denote that $\lim_{m \to \infty} \varphi(m)/m^k = 0$.
 - (iii) $\varphi(m) \approx m^k$ will denote that $\lim_{m \to \infty} \varphi(m)/m^k$ exists and is positive.
 - (iv) The above notations will also be used for $k = -1, -\infty$. In case that k = -1 $\varphi(m) = O(m^k), \ \varphi(m) = o(m^k), \ \varphi(m) \approx m^k$ will each indicate that there exists ρ , $0 < \rho < 1$, such that $\varphi(m)\rho^{-m} = O(1)$. In case that $k = -\infty$ the above notations will mean that $\varphi(m) = 0$ for all sufficiently large m. (Thus $\varphi(m) \approx m^{-\infty}$ implies $\varphi(m) \approx m^{-1}$.)
 - (v) The notation $A(m) \approx m^k$ will be used for a sequence of nonnegative matrices $A(1), A(2), \cdots$ to indicate the relation holds for each element.

Combinatorial result. Let $r \ge 0$ and t > 0 be integers. Then

(2.2)
$$\Gamma_t^r = \sum_{p_1 + \dots + p_t = r} 1^{p_1} 1^{p_2} \cdots 1^{p_t},$$

where the summation is taken over all nonnegative integers p_1, \dots, p_t whose sum is r. That is, Γ_t^r is the number of collections of r objects chosen from t distinct objects, with repetitions allowed. It is well-known that

(2.3)
$$\Gamma_t^r = \binom{r+t-1}{r}.$$

A simple way to prove this equality is by considering the coefficient of x' of both sides of the identity

$$\sum_{r=0}^{\infty} \binom{r+t-1}{r} x^r = \left(\sum_{r=0}^{\infty} x^r\right)^{-t}$$

which is derived from $(1-x)^{-t} = (1-x)^{-1} \cdots (1-x)^{-1}$. For a purely combinatorial proof see for example Brualdi [2, p. 37]. For t = 0 the above formula implies $\Gamma'_0 = 1$ for all $r \ge 0$.

We shall also need some results on the convergence of series.

LEMMA 2.4. Given integers $k \ge 1$, q > 0, and let $b_p \ge 0$, $p = 0, 1, 2, \dots$ be a sequence such that

(2.5)
$$\lim_{p \to \infty} p^{-(k-1)}(b_p + \dots + b_{p+q-1}) = v,$$

where q > 0. Then

(2.6)
$$\lim_{m \to \infty} m^{-k} \sum_{p=1}^{m} b_p = \frac{v}{kq}$$

Proof. Elementary. Alternatively, check that $c_{m,p} = m^{-k}kp^{k-1}$ satisfies the assumptions of Hardy [8, Thm. 2, p. 43]. \Box

LEMMA 2.7. Suppose (2.5) holds. If $\lim_{m\to\infty} a_m = u$ then

(2.8)
$$\lim_{m \to \infty} m^{-k} \sum_{p=1}^{m} a_p b_{m-p} = \frac{uv}{kq}$$

Proof. According to Hardy [8, Thm. 16, p. 64]

(2.9)
$$\lim_{m \to \infty} \frac{\sum_{p=1}^{m} a_p b_{m-p}}{\sum_{p=1}^{m} b_p} = u$$

since

$$0 \leq \frac{b_m}{\sum_{p=1}^m b_p} \leq \frac{b_m + \dots + b_{m+q-1}}{\sum_{p=1}^m b_p} \leq \frac{2vm^{(k-1)}}{v(2kq)^{-1}m^{k}}$$

and the last expression tends to 0. If we apply (2.6) to (2.9) we obtain (2.8). \Box

3. Analytic approach. By \mathbb{R} , resp. \mathbb{C} , we denote the real, resp. complex field, and by \mathbb{R}_+ the nonnegative numbers. The set of real, resp. complex, nonnegative $r \times n$ matrices will be denoted by \mathbb{R}^m , resp. \mathbb{C}^m , \mathbb{R}^m_+ . We also write $A \ge 0$ for $A \in \mathbb{R}^m_+$ (A is nonnegative) and A > 0 when A is positive $(a_{ij} > 0, i = 1, \dots, r, j = 1, \dots, n)$.

Let $A \in \mathbb{C}^{nn}$. By spec A we denote the set of eigenvalues of A. Suppose that spec $A = \{\lambda_1, \dots, \lambda_r\}$, where the λ_{α} are pairwise distinct. It is known (cf. Gantmacher [7, Chap. 5, § 3]) that there exist nonnegative integers p_1, \dots, p_r and unique matrices $Z^{(\alpha\beta)} \in \mathbb{C}^{nn}, \beta = 0, \dots, p_{\alpha}, \alpha = 1, \dots, r$ which are linearly independent such that for each polynomial $f(\tau)$,

(3.1)
$$f(A) = \sum_{\alpha=1}^{r} \sum_{\beta=0}^{p_{\alpha}} f^{(\beta)}(\lambda) Z^{(\alpha\beta)}$$

The $Z^{(\alpha\beta)}$ are polynomials in A, $p_{\alpha} + 1$ is the size of a largest Jordan-block belonging to λ_{α} . The columns of $Z^{(\alpha p_{\alpha})}$ are eigenvectors of A corresponding to the eigenvalue λ_{α} , the rank of $Z^{\alpha p_{\alpha}}$ is equal to the number of Jordan blocks of size $p_{\alpha} + 1$ corresponding to λ_{α} . (The simplest way to obtain (3.1) is by assuming that A is in Jordan form.) As usual we define

index
$$(\lambda_{\alpha}) = p_{\alpha} + 1$$
.

That is, $p_{\alpha} + 1$ is the multiplicity of λ_{α} in the minimal polynomial of A. We shall also use a localized index. For $1 \leq i, j \leq n$ we put

index_{ii}
$$(\lambda_{\alpha}) = 1 + \max\{\beta : z_{ij}^{(\alpha\beta)} \neq 0, \beta = 0, \cdots, p_{\alpha}\},\$$

where $\operatorname{index}_{ij}(\lambda_{\alpha}) = 0$ if $z_{ij}^{(\alpha\beta)} = 0, \beta = 0, \dots, p_{\alpha}$. If $A \in \mathbb{C}^{nn}$ and *m* is any integer we shall denote the elements of A^m by $a_{ij}^{(m)}, 1 \leq i, j \leq m$.

Let $A \in \mathbb{R}^{n}_+$. We assume throughout the normalization $\rho(A) = 1$. It is well-known (see Frobenius [6], Gantmacher [7, Chap. 13], Berman–Plemmons [1, Chap. 2]) that if λ is an eigenvalue of A and $|\lambda| = 1$, then λ is a root of 1. Hence, there is a positive integer q such that $\lambda^q = 1$, for all $\lambda \in \text{spec } A$, $|\lambda| = 1$. The smallest such integer q will be called the *period* of A. If q = 1, A will be called *aperiodic*. For an irreducible and aperiodic matrix $A \ge 0$, the Frobenius theorem and the formula (3.1) imply

$$\lim_{m\to\infty}A^m=Z^{(10)}>0$$

where $\lambda_1 = 1$, see for example Berman–Plemmons [1, Chap. 2, Thm. 4.1]. Theorem 3.4 extends the above equality in a local way. Part (i) of the theorem is an extension of the known inequality apparently due to Schaefer [16, Thm. 2.4, p. 264],

(3.2)
$$\operatorname{index}(\lambda) \leq \operatorname{index}(1) \quad \text{if } |\lambda| = 1,$$

for nonnegative matrices; see also Schaefer [17, Chap. 1, Thm. 2.7], Berman-Plemmons [1, Chap. 1, Thm. 3.2]. This result and part (i) of Theorem 3.4 could easily be deduced from the classical Pringsheim theorem on analytic functions; e.g., see Titchmarsh [18, p. 214]. The use of the Pringsheim theorem in analyzing the spectral properties of nonnegative matrices can be traced back to Ostrowski [11] (see also Karlin [9] and Schaefer [16, Appendix] for the infinite dimensional case). See Friedland [5] for a detailed analysis of the Pringsheim theorem for rational functions which has certain analogs to the Frobenius theorem. For sake of completeness we bring a short and elementary independent proof of Theorem 3.4. To do so we need an easy lemma which probably is known.

LEMMA 3.3. Let λ_{α} , z_{α} , $\alpha = 1, \dots, r$ be complex numbers, where the λ_{α} are pairwise distinct. If $\lim_{m\to\infty} (\sum_{\alpha=1}^r \lambda_{\alpha}^m z_{\alpha})$ exists, then $z_{\alpha} = 0$ if $|\lambda_{\alpha}| \ge 1$, $\lambda_{\alpha} \ne 1$.

Proof. Since $\lim_{m\to\infty} \lambda_{\alpha}^m$ exists for $|\lambda_{\alpha}| < 1$ or $\lambda_{\alpha} = 1$, without loss of generality we may assume that $|\lambda_{\alpha}| \ge 1$, $\lambda_{\alpha} \ne 1$, $\alpha = 1, \dots, r$. Put $z = (z_1, \dots, z_r)^r \in \mathbb{C}^r$ and $u^{(m)} = (u_m, \dots, u_{m+r-1})^r$, where $u_m = \sum_{\alpha=1}^r \lambda_{\alpha}^m z_{\alpha}$. Let $\Lambda = \operatorname{diag}\{\lambda_1, \dots, \lambda_r\} \in \mathbb{C}^r$ and let $V = (v_{\alpha\beta})_1^r \in \mathbb{C}^r$ be the Vandermond matrix given by $v_{\alpha\beta} = \lambda_{\beta}^{\alpha-1}$, $\alpha, \beta = 1, \dots, r$. Then

$$u^{(m)} = V\Lambda^m z.$$

The assumption of the lemma implies that $\lim_{m\to\infty} u^{(m)}$ exists. Since V is nonsingular, $\lim_{m\to\infty} \Lambda^m z = \lim_{m\to\infty} V^{-1} u^{(m)}$ and so z = 0. \Box

THEOREM 3.4. Let $A \in \mathbb{R}^{nn}_+$ where $\rho(A) = 1$. Let $1 \leq i, j \leq n$.

- (i) If $\lambda \in \text{spec } A$, $|\lambda| = 1$, then $\text{index}_{ij}(\lambda) \leq \text{index}_{ij}(1)$.
- (ii) Let q be a positive integer such that $\lambda^q = 1$ if $\lambda \in \text{spec } A$, $|\lambda| = 1$ and $\text{index}_{ij}(\lambda) = 1$

 $index_{ii}(1)$. Put $k + 1 = index_{ii}(1)$ and let

$$B^{(m)} = A^m (I + \cdots + A^{q-1}).$$

Then $b_{ij}^{(m)} \approx m^k$. In particular, $a_{ij}^{(m)} \neq o(m^k)$ if $k \ge 0$.

Proof. (i) Let $\{\lambda_1, \dots, \lambda_r\}$ be the eigenvalues with $|\lambda_{\alpha}| = 1, \alpha = 1, \dots, r$, where the λ_{α} are pairwise distinct. Let

$$d+1 = \max \{ \operatorname{index}_{ij} \{ \lambda_{\alpha} \} : \alpha = 1, \cdots, r \}.$$

If d = -1 then there is nothing to prove. So assume that $d \ge 0$. Suppose that $z_{\alpha} \equiv z_{ij}^{(\alpha d)} \neq 0$ for $\alpha = 1, \dots, s$ where $1 \le s \le r$ and $z_{ij}^{(\alpha d)} = 0$ for $\alpha = s + 1, \dots, r$. It follows immediately from (3.1) that

$$a_{ij}^{(m)} = m^d \left(\sum_{\alpha=1}^s \lambda_{\alpha}^{m-d} z_{\alpha}\right) + o(m^d).$$

Hence, by Lemma (3.3), $a_{ij}^{(m)} \neq o(m^d)$.

Let q be a positive integer such that $\lambda_{\alpha}^{q} = 1$, $\alpha = 1, \dots, s$. Define

 $\varphi_m(\tau) = \tau^m (1 + \tau + \cdots + \tau^{q-1}).$

If we take the *d*th derivative of $\varphi_m(\tau)$, we obtain

$$\varphi_m^{(d)}(\tau) = m^d \varphi_{m-d}(\tau) + o(m^d)$$

for any fixed τ , $|\tau| \leq 1$, and also $\varphi_{m-d}(\lambda_{\alpha}) = 0$ for $|\lambda_{\alpha}| = 1$, $\lambda_{\alpha} \neq 1$, $1 \leq \alpha \leq s$. Put $B^{(m)} = \varphi_m(A)$. By (3.1) and the equality above we have

(3.5)
$$b_{ij}^{(m)} = m^d \left(\sum_{\alpha=1}^r \varphi_{m-d}(\lambda_\alpha) z_\alpha \right) + o(m^d).$$

Now suppose that $\operatorname{index}_{ij}(1) < d+1$. Then (3.5) implies that $b_{ij}^{(m)} = o(m^d)$. But $b_{ij}^{(m)} = a_{ij}^{(m)} + \cdots + a_{ij}^{(m+q-1)} \ge a_{ij}^{(m)} \ge 0$, and this is a contradiction. Thus d = k and this proves (i).

(ii) Suppose that $\lambda_1 = 1$. If k = -1, by an argument like that above, $a_{ij}^{(m)} = b_{ij}^{(m)} \approx m^k$. Let $k \ge 0$. By (3.5) and the preceding argument we obtain

$$b_{ij}^{(m)} = m^k q z_1 + o(m^k)$$

where $z_1 = z_{ij}^k > 0$. This proves (ii). \Box

We now state a global version of Theorem 3.4 (ii) which follows immediately from Theorem 3.4.

THEOREM 3.6. Let $A \in \mathbb{R}^{nn}_+$ where $\rho(A) = 1$. Let q be a positive integer such that $\lambda^q = 1$ if $\lambda \in \text{spec } A$, $|\lambda| = 1$ and index $(\lambda) = \text{index } (1) = k + 1$. Let

$$B^{(m)} = A^m (I + \cdots + A^{q-1}).$$

Then

$$\lim_{m \to \infty} m^{-k} B^{(m)} = F,$$

where $F \ge 0$ and F is not identically zero.

It should be noted that the assumption that A is nonnegative was used crucially in the proof of Theorems 3.4 and 3.6. For example, let A = -I; then there are no k, q for which the limit of (3.7) exists and is nonzero. Also, the assumption that $\rho(A) = 1$ is used

in an essential way. Let

$$A = \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix}.$$

Then $\lim_{m\to\infty} \rho(A)^{-2m} A^{2m} (I+A)$ and $\lim_{m\to\infty} \rho(A)^{-(2m+1)} A^{2m+1} (I+A)$ exist, but are distinct. It follows that no k, q exist for which $\lim_{m\to\infty} \rho(A)^{-m} m^{-k} B^{(m)}$ exists and is nonzero.

Our subsequent work discusses the nature of k, q and F.

4. Graph theoretical concepts. Let $A \in \mathbb{R}^{nn}_+$ and let $\rho(A) > 0$. We may assume, without loss of generality, that after simultaneous permutations of rows and columns, A is in the Frobenius [6] normal form which can be found in many references, e.g., Gantmacher [7, Vol. II, p. 75]. Thus

(4.1)
$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1\nu} \\ & A_{22} & & & \\ & & \ddots & & \\ & & & \ddots & \\ & 0 & & & A_{\nu\nu} \end{bmatrix},$$

where the diagonal blocks $A_{\alpha\alpha}$, $\alpha = 1, \dots, \nu$ are irreducible and all subdiagonal blocks are 0. (The 1×1 matrix 0 is considered to be irreducible.)

Let A be in Frobenius normal form (4.1). Then the (reduced) graph G(A) of A is a subset of $\langle \nu \rangle \times \langle \nu \rangle$, where $\langle \nu \rangle = \{1, \dots, \nu\}$ and $G(A) = \{(\alpha, \beta) \in \langle \nu \rangle \times \langle \nu \rangle: A_{\alpha\beta} \neq 0\}$. (Observe that many authors would call G(A) the arcset of the graph ($\langle \nu \rangle, G(A)$), but we have no need to mention the vertex set $\langle \nu \rangle$ explicitly.)

If $(\alpha, \beta) \in G(A)$, we call (α, β) an *arc* of G(A). If (α, β) is an arc of G(A), then $\alpha \leq \beta$; also $(\alpha, \alpha) \in G(A)$, $1 \leq \alpha \leq \nu$, unless $A_{\alpha\alpha}$ is the 1×1 matrix 0. Thus we define a (simple) path from α to β in G(A) to be a sequence $\pi = (\alpha_0, \dots, \alpha_s)$, where either $s \geq 1$, $1 \leq \alpha = \alpha_0 < \dots < \alpha_s = \beta \leq \nu$ and $(\alpha_{i-1}, \alpha_i) \in G(A)$, $i = 1, \dots, s$, or s = 0 and $\alpha = \alpha_0 = \beta$ and $(\alpha, \alpha) \in G(A)$. The support of π is the set supp $\pi = \{\alpha_0, \dots, \alpha_s\} \subseteq \{1, \dots, \nu\}$. We always assume that the α_i , $i = 0, \dots, s$, have been listed in strictly ascending order.

If $1 \le \alpha \le \nu$, then we call α a singular vertex (of G(A)) if $\rho(A_{\alpha\alpha}) = \rho(A)$. (This terminology is consistent with that of Richman–Schneider [12].) Let $1 \le \alpha \le \beta \le \nu$. For any path π from α to β in G(A), let $k(\pi) + 1$ be the number of singular γ in the support of π . (Thus note each distinct γ is counted only once in $k(\pi) + 1$.) Let $\alpha_{j_0} < \alpha_{j_1} < \cdots < \alpha_{j_k}$, where $k = k(\pi)$, be all singular vertices in supp π . We set

(4.2)
$$k(\alpha, \beta) = \max \{k(\pi) : \pi \text{ is a path from } \alpha \text{ to } \beta \text{ in } G(A) \}.$$

If there is no path from α to β in G(A) we put $k(\alpha, \beta) = -\infty$. We shall call $k(\alpha, \beta)$ the singular distance from α to β . If (i, i) is a position in $A_{\alpha\alpha}$ and (j, j) a position in $A_{\beta\beta}$ then we shall also call $k[i, j] = k(\alpha, \beta)$ the singular distance from i to j (note our use of square brackets).

A path π from α to β will be called a *maximal path* if the number of singular vertices in the support of π is $k(\alpha, \beta) + 1$. Let $1 \leq \alpha, \beta \leq \nu$. Let $\mathcal{P}(\alpha, \beta)$ be the set of maximal paths from α to β . For each $\pi \in \mathcal{P}(\alpha, \beta)$ let $q(\pi)$ be the g.c.d. of periods of $A_{\gamma\gamma}$ with $\gamma \in \text{supp } \pi$ and singular (viz. $\rho(A_{\gamma\gamma}) = \rho(A)$).

Then we define

(4.3)
$$q(\alpha,\beta) = \text{l.c.m.} \{q(\pi) \colon \pi \in \mathscr{P}(\alpha,\beta)\}.$$

We shall call $q(\alpha, \beta)$ the local period of (α, β) . If $k(\alpha, \beta) < 0$ then $q(\alpha, \beta) = 1$. Also if

(i, i) is a position in $A_{\alpha\alpha}$ and (j, j) is a position in $A_{\beta\beta}$ then we shall put $q(\alpha, \beta) = q[i, j]$, the local period of (i, j).

5. The main results. Let $A \in \mathbb{R}^{nn}_+$, where $\rho(A) = 1$, be in Frobenius normal form (4.1). It follows from the Perron-Frobenius theory for nonnegative matrices, e.g., Gantmacher [7, Chap. 13] that there is a diagonal matrix X with positive diagonal elements so that, upon replacing A by $X^{-1}AX$,

(5.1)
$$A_{\alpha\alpha} = \rho(A_{\alpha\alpha})A'_{\alpha\alpha}$$

where $A'_{\alpha\alpha}$ is a stochastic matrix,

(5.2)
$$\|A_{\alpha\beta}\|_{\infty} \leq \sigma, \qquad 1 \leq \alpha < \beta \leq \nu,$$

where $1 > \sigma$ and $\sigma > \max \{\rho(A_{\alpha\alpha}) : \rho(A_{\alpha\alpha}) < 1, \alpha = 1, \dots, \nu\}$ if such α exist. Here $\| \|_{\infty}$ is the l_{∞} -operator norm,

$$\|Z\|_{\infty} = \max\left\{\sum_{j=1}^{n} |z_{ij}|: i=1, \cdots, r\right\} \text{ for } Z \in \mathbb{R}^{m}.$$

The diagonal matrix X can be constructed as follows. Let $u^{(\alpha)}$ be a positive vector satisfying $A_{\alpha\alpha}u^{(\alpha)} = \rho(A_{\alpha\alpha})u^{(\alpha)}$. Denote by X_{α} a diagonal matrix, whose diagonal entries are the elements of $u^{(\alpha)}$. Then X is of the form diag $\{X_1, \varepsilon X_2, \cdots, \varepsilon^{\nu-1}X_{\nu}\}$ for some small enough positive ε . In our subsequent proofs we may assume that A has been normalized as above.

Let π be a path in G(A). Denote by s + 1 the cardinality of supp π . That is

(5.3i)
$$\operatorname{supp} \pi = \{\beta_0, \cdots, \beta_s\}, \qquad 1 \leq \beta_0 < \beta_2 < \cdots < \beta_s \leq \nu.$$

We define the *path matrix* $A(\pi)$ by

(5.3ii)

$$A_{ii}(\pi) = A_{\beta_i\beta_i}, \qquad i = 0, \cdots, s,$$

$$A_{i,i+1}(\pi) = A_{\beta_i\beta_{i+1}}, \qquad i = 0, \cdots, s-1,$$

$$A_{ij}(\pi) = 0, \qquad i, j = 0, \cdots, s \text{ otherwise},$$

$$A(\pi) = (A_{ij}(\pi))_0^s.$$

Thus $A(\pi)$ is in Frobenius normal form and has s+1 irreducible diagonal blocks $A_{ii}(\pi) = A_{\beta_i\beta_i}$, $i = 0, \dots, s$. To avoid ambiguity, we write $A(\pi)_{ij}^{(m)}$ for the (i, j) block component of $A(\pi)^m$, $i, j = 0, \dots, s$.

We now prove a sequence of lemmas for the path matrix $A(\pi)$ of a given path.

LEMMA 5.4. Let $A \in \mathbb{R}^{nn}_+$ where $\rho(A) = 1$. Let $1 \leq \alpha, \beta \leq \nu$ and π be a path in G(A)from α to β . Put $k = k(\pi)$, where $k(\pi) + 1$ is the number of singular vertices in supp π . If $A(\pi)$ is the path matrix given by (5.3), then $||A(\pi)_{0s}^{(m)}||_{\infty} = O(m^k)$.

Proof. We note that

(5.5)
$$A(\pi)_{0s}^{(m)} = \sum_{p_0 + \dots + p_s = m-s} A_{00}^{p_0}(\pi) A_{01}(\pi) A_{11}^{p_1}(\pi) \cdots A_{(s-1)s}(\pi) A_{ss}^{p_s}(\pi).$$

So

$$\|A(\pi)_{0s}^{(m)}\|_{\infty} \leq \sigma^{s} \sum_{p_{0}+\dots+p_{s}=m-s} \|A_{00}(\pi)\|_{\infty}^{p_{0}} \cdots \|A_{ss}(\pi)\|_{\infty}^{p_{s}}$$

Suppose first that π does not contain singular vertices, i.e., k = -1. Then

$$\|A(\pi)_{0s}^{(m)}\|_{\infty} \leq \sigma^{m} \sum_{p_{0}+\cdots+p_{s}=m-s} 1^{p_{0}}\cdots 1^{p_{s}} = \sigma^{m} \Gamma_{s+1}^{m-s},$$

where Γ_t^r is given by (2.3). As $\Gamma_s^{m-s} \leq m^s$ we immediately deduce

$$\lim_{m\to\infty} \tau^{-m} A(\pi)_{0s}^{(m)} = 0 \qquad \text{for any } \tau, \, \sigma < \tau < 1.$$

Suppose now that $k \ge 0$. Then

$$\|A(\pi)_{0s}^{(m)}\|_{\infty} \leq \sigma^{s} \sum_{q_{0}+\dots+q_{s}=m-s} 1^{q_{0}} \dots 1^{q_{k}} \sigma^{q_{k+1}} \dots \sigma^{q_{s}}$$

$$= \sigma^{s} \sum_{u=0}^{m-s} \left(\sum_{q_{0}+\dots+q_{k}=u} 1^{q_{0}} \dots 1^{q_{k}} \right) \left(\sum_{q_{k+1}+\dots+q_{s}=m-s-u} \sigma^{q_{k+1}} \dots \sigma^{q_{s}} \right)$$

$$= \sigma^{s} \sum_{u=0}^{m-s} \Gamma_{k+1}^{u} \Gamma_{s-k}^{m-s-u} \sigma^{m-s-u}.$$

Hence

$$\|A(\pi)_{0s}^{(m)}\|_{\infty} \leq \Gamma_{k+1}^{m-s} \left(\sum_{\nu=0}^{\infty} \Gamma_{s-k}^{\nu} \sigma^{\nu+s}\right).$$

The last series converges by the ratio test and $\Gamma_{k+1}^{m-s} \leq m^k$. This establishes the lemma. \Box

LEMMA 5.6. Let the assumptions of Lemma 5.4 hold. Assume furthermore that $k \ge 0$, *i.e.*, the support of π contains singular vertices. Then, for sufficiently large m,

(5.7)
$$\sum_{j=0}^{2(s+1)(n-1)} A(\pi)_{0s}^{(m+j)} \ge Gm^{k},$$

where G is a positive matrix.

Proof. Let

.

$$B_{ii}(\pi) = I + A_{ii}(\pi) + \cdots + A_{ii}(\pi)^{(n-1)}, \qquad i = 1, \cdots, s.$$

Since $A_{ii}(\pi)$ is irreducible, and its dimension does not exceed *n*, we have $B_{ii}(\pi) > 0$, Wielandt [20], Berman-Plemmons [1, Chap. 2, Thm. 1.3]. Clearly (5.5) implies, for t = 2(s+1)(n-1),

$$\sum_{j=0}^{l} A(\pi)_{0s}^{(m+j)} \ge n^{-(s+1)} \sum_{p_0+\dots+p_s=m-s} B_{00}(\pi) A_{00}(\pi)^{p_0} B_{00}(\pi) A_{01}(\pi) B_{11}(\pi) A_{11}^{p_1} B_{11}(\pi) \cdots A_{s-1,s}(\pi) B_{ss}(\pi) A_{ss}^{p_s}(\pi) B_{ss}(\pi).$$

For $i, j = 0, \dots, s$, let E_{ij} be the matrix all of whose entries equal 1 and whose dimension is that of $A_{ij}(\pi)$. Clearly $B_{00}(\pi) \ge c'_0 E_{00}$, $B_{ss}(\pi) \ge c'_s E_{ss}$ where $c'_0, c'_s > 0$. Since $A_{i,i+1}(\pi) \ne 0$, we have

$$B_{ii}(\pi)A_{i,i+1}(\pi)B_{i+1,i+1}(\pi) \ge c_i E_{i,i+1},$$

where $c_i > 0$, $i = 1, \dots, s-1$, and hence, for some c > 0,

(5.8)
$$\sum_{j=1}^{t} A(\pi)_{0s}^{(m+j)} \geq c \sum_{p_0 + \dots + p_s = m-s} E_{00} A_{00}(\pi)^{p_0} E_0, \dots, E_{s-1,s} A_{ss}(\pi)^{p_s} E_{ss}$$

In the inequality (5.8) we may restrict the sum on the right-hand side by letting $p_j = 0$ if $\rho(A_{ij}(\pi)) < 1$. So let $\gamma_0 < \cdots < \gamma_k$ be the subscripts of A_{ii} which are singular vertices

and put $\bar{A}_{ii} = A_{\gamma_i \gamma_i}(\pi)$. Since $E_{ij}E_{jk} \ge E_{ik}$, it follows that

$$\sum_{j=0}^{t} A(\pi)_{0s}^{(m+j)} \ge c' \sum_{p_0+\dots+p_k=m-s} \bar{E}_{-1,0} \bar{A}_{00}(\pi)^{p_0} \bar{E}_{01} \cdots \bar{A}_{kk}^{p_k} \bar{E}_{k,k+1},$$

where c' > 0 and the $\overline{E}_{i,i+1}$, $i = -1, \dots, k$ are matrices all of whose entries are 1. But $\overline{A}_{ii}(\pi)$ is a stochastic matrix, $i = 0, \dots, k$, whence $\overline{A}_{ii}(\pi)^{p_0} \overline{E}_{i,i+1} = \overline{E}_{i,i+1}$, $i = 0, \dots, k$. It follows that

$$\sum_{j=0}^{t} A(\pi)_{0s}^{(m+j)} \ge 2\Gamma_{k+1}^{m-s}G,$$

where G > 0. The lemma now follows from (2.3) since $\Gamma_k^{m-s} \ge \frac{1}{2}m^k$ for sufficiently large m. \Box

LEMMA 5.9. Let the assumptions of Lemma 5.4 hold, and suppose that $k = k(\pi) \ge 0$. Let $q = q(\pi)$ be the g.c.d. of periods of $A_{\gamma\gamma}$ for singular $\gamma \in \text{supp } \pi$. Let

$$B(\pi)^{(m)} = A(\pi)^m (I + A(\pi) + \cdots + A(\pi)^{q-1}).$$

(i) If (i, j) is any position in $A(\pi)_{0s}$ then, in $A(\pi)$, index_{ij} (1) = k + 1.

(ii) $b(\pi)_{ij}^{(m)} \approx m^k$.

Proof. (i) Let $k^* + 1 = \text{index}_{ij}(1)$ in $A(\pi)$. By Theorem 3.4 there is a positive integer q^* such that for

$$B^{*}(\pi)^{(m)} = A(\pi)^{m} (I + A(\pi) + \cdots + A(\pi)^{q^{*}-1}),$$

we have $b^*(\pi)_{ij}^{(m)} \approx m^{k^*}$. But $k^* > k$ contradicts Lemma 5.4. Since the sum in (5.7) can be majorized by a sum of terms of the form $B^*(\pi)_{0s}^{(m+j)}$, $j = 0, \dots, 2(s+1)(n-1)$, it follows that $k^* < k$ contradicts Lemma 5.6. Hence $k^* = k$.

(ii) Now suppose that $\lambda \in \text{spec } A(\pi)$, $|\lambda| = 1$ and $\text{index}_{ij}(\lambda) = \text{index}_{ij}(1) = k + 1$ in $A(\pi)$. Then

$$\operatorname{index}_{ii}(\lambda) \leq \operatorname{index}(\lambda) \leq \operatorname{mult}(\lambda),$$

where mult (λ) is the algebraic multiplicity of λ in $A(\pi)$. But, by the Perron-Frobenius theorem for irreducible matrices,

$$\operatorname{mult}(\lambda) \leq \operatorname{mult}(1) = k + 1.$$

Hence mult $(\lambda) = k + 1$ and, by Perron-Frobenius, λ is an eigenvalue of every $A_{\gamma\gamma}$ for which γ is singular. It follows that $\lambda^q = 1$, where $q = q(\pi)$. Hence the conditions of Theorem 3.4 (ii) are satisfied and the lemma follows.

We state our main result.

THEOREM 5.10. Let A be nonzero $n \times n$ matrix normalized by the condition $\rho(A) = 1$. Assume $1 \leq i, j \leq n$. Let k = k[i, j] be the singular distance from i to j and q = q[i, j] be the local period of (i, j). Put $B^{(m)} = A^m(I + A + \cdots + A^{q-1})$. Then $b_{ij}^{(m)} \approx m^k$.

Proof. As usual, we assume that A is in the Frobenius form (4.1). Suppose that (i, j) is a position in $A_{\alpha\beta}$. Denote by $\Pi(\alpha, \beta)$ the set of all paths connecting α to β . Then we obviously have

$$A_{\alpha\beta}^{(m)} = \sum_{\pi \in \Pi(\alpha,\beta)} A(\pi)_{0s(\pi)}^{(m)}.$$

So

$$B_{\alpha\beta}^{(m)} = \sum_{\pi \in \Pi(\alpha,\beta)} B(\pi)_{0s(\pi)}^{(m)}$$

Assume first that $k = k(\pi) = -\infty$; then, clearly, $B_{\alpha\beta}^{(m)} = A_{\alpha\beta}^{(m)} = 0$. If $k = -1 \ge k(\pi)$ then Lemma 5.4 implies that each $A(\pi)_{0s(\pi)}^{(m)} \approx m^{-1}$. So $A_{\alpha\beta}^{(m)} \approx m^{-1}$ and again $A_{\alpha\beta}^{(m)} = B_{\alpha\beta}^{(m)}$.

Assume now that $k \ge 0$. If $k > k(\pi)$, Lemma 5.4 implies that $B(\pi)_{0s(\pi)}^{(m)} = O(m^k)$. However, if $k = k(\pi)$, then according to Lemma 5.9 $\lim_{m\to\infty} m^{-k}B(\pi)_{0s(\pi)}^{(m)} = F_{0s}(\pi) > 0$ as $q(\pi)$ divides $q(\alpha, \beta) = q[i, j]$. By the definition of $k(\alpha, \beta)$ there exists $\pi \in \Pi(\alpha, \beta)$ such that $k(\pi) = k(\alpha, \beta)$. So $\lim_{k\to\infty} m^{-k}B_{\alpha\beta}^{(m)} = F_{\alpha\beta} > 0$. \Box

COROLLARY 5.11. Under the conditions of Theorem 5.10,

$$\sum_{p=1}^{m} a_{ij}^{(p)} \approx m^{(k+1)}$$

Proof. For $k \ge 0$, the result is immediate by Lemma 2.4. If k = -1, then by Theorem 5.10 the nonnegative series above converges. The assumption k = -1 implies that at least one term is positive. Finally if $k = -\infty$, $a_{ij}^{(p)} = 0$, $p = 1, 2, \cdots$, and the result follows. \Box

Comparing Theorems 3.4 and 5.10 we first deduce a local version of Rothblum's equality and then the equality itself.

THEOREM 5.12. Let $A \in \mathbb{R}^{nn}_+$ where $\rho(A) = 1$. Assume that $1 \leq i, j \leq n$; then

$$index_{ij} (1) = k[i, j] + 1.$$

COROLLARY 5.13 (Rothblum [13]). Let $A \in \mathbb{R}^{nn}_+$ where $\rho(A) = 1$. Then index (1) = $\max_{1 \le i,j \le n} \operatorname{index}_{ij}(1) = \max_{1 \le i,j \le n} k[i,j] + 1$.

6. Convergent iterative methods for the spectral radius of a nonnegative matrix. Let $A \in \mathbb{R}^{nn}_+$ and assume that $\rho(A) > 0$. Let r(x) and R(x) be defined as in (1.4). Clearly $0 \le r(x) \le R(x) \le +\infty$. It is obvious that

$$r(x) \leq r(Ax) \leq R(Ax) \leq R(x).$$

So the sequence $r(A^m x)$, $m = 0, 1, \cdots$ is an increasing sequence bounded above by R(x), and the sequence $R(A^m x)$, $m = 0, 1, \cdots$ is a decreasing sequence bounded below by r(x).

In [4], Collatz observed that, for $A \in \mathbb{R}^{nn}_+$ and x > 0,

(6.1)
$$r(x) \leq \rho(A) \leq R(x),$$

and when A is irreducible, this inequality is valid for all $x \ge 0$, $x \ne 0$; see Wielandt [20], Varga [19, p. 32]. Thus the question arises when, for $A \ge 0$ and $x \ge 0$, $x \ne 0$,

(6.2)
$$\lim_{m \to \infty} r(A^m x) = \rho(A) = \lim_{m \to \infty} R(A^m x).$$

Wielandt's [20] characterization of $\rho(A)$ for irreducible A easily implies that (6.2) holds for primitive A and all $x \in \mathbb{R}^n_+$, $x \ge 0$, $x \ne 0$ (cf. Varga [19, p. 34]). This result follows from the fact that

$$\lim_{m\to\infty}\rho(A)^{-m}A^m=Z>0$$

when A is primitive, where $Z = uv^t$, v > 0, $Au = \rho(A)u$, v > 0, $v^t A = \rho(A)v^t$, $v^t u = 1$. If A is irreducible but imprimitive then (6.2) does not hold unless x is orthogonal on all eigenvectors of A^t corresponding to λ such that $|\lambda| = \rho(A)$ and $\lambda \neq \rho(A)$. We shall show that this condition can be put in equivalent forms. If A is irreducible and of period q, then by simultaneous permutations of rows and columns we now put A into the form

(6.3)
$$\begin{bmatrix} 0 & A_{12} & 0 & \cdots & 0 \\ 0 & 0 & A_{23} & \cdots & 0 \\ \vdots & & & & \\ 0 & 0 & 0 & \cdots & A_{q-1,q} \\ A_{q1} & 0 & 0 & \cdots & 0 \end{bmatrix},$$

where the diagonal blocks 0 are square (see Frobenius [6], Gantmacher [7, Vol II, p. 62], Berman–Plemmons [1, Chap. 2, Thm. 2.20]).

LEMMA 6.4. Let A be an irreducible nonnegative matrix of period q in form (6.3), and suppose that $\rho(A) = 1$. Let $v^t A = v^t$, Au = u, where v > 0, u > 0, $v^t u = 1$, $A^t y^i = \omega^i y^i$, $j = 1, \dots, q-1$, $\omega = e^{2\pi i/q}$. Let $0 \neq x \in \mathbb{R}^n_+$ be partitioned conformally with A, $x^t = (x_{(1)}^t, \dots, x_{(q)}^t)$. Then the following are equivalent

- (i) $\lim_{m\to\infty} A^m x = (v^t x) u$,
- (ii) $\lim_{m\to\infty} A^m x \text{ exists},$
- (iii) $x^{t}y^{j} = 0, \quad j = 1, \cdots, q-1,$
- (iv) $v_{(1)}^{t} x_{(1)} = \cdots = v_{(q)}^{t} x_{(q)},$
- (v) $\lim_{m\to\infty} R(A^m x) = \lim_{m\to\infty} r(A^m x) = 1,$

where $v^{t} = (v_{(1)}^{t}, \dots, v_{(q)}^{t})$ has been partitioned conformally with A.

Proof. We first derive a formula for $A^m x$, $m = 1, 2, \dots$. Let ω be a primitive *q*th root of unity. It is well-known that the eigenvalues of A on the unit circle are $\lambda_{\alpha} = \omega^{\alpha-1}$, $\alpha = 1, \dots, q$ and that each λ_{α} is a simple zero of the characteristic polynomial. It follows, in the notation of § 3, that $p_{\alpha} = 0$, $\alpha = 1, \dots, q$ and that

$$Z^{(\alpha 0)} = D^{\alpha - 1} u v^{t} D^{1 - \alpha}, \qquad \alpha = 1, \cdots, q,$$

$$y^{\alpha} = D^{(1 - \alpha)} v, \qquad \alpha = 1, \cdots, q,$$

where

$$D = \begin{bmatrix} I_{11} & & & \\ & \omega I_{22} & 0 \\ & 0 & \ddots \\ & & \ddots & \\ & & \ddots & \\ & & & \omega^{q-1} I_{qq} \end{bmatrix},$$

and $I_{\alpha\alpha}$ is an identity matrix of the same order of $A_{\alpha\alpha}$, $\alpha = 1, \dots, q$. Hence by (3.1),

$$A^{m} = \sum_{\alpha=0}^{q-1} \omega^{m\alpha} D^{\alpha} u v^{t} D^{-\alpha} + o(1);$$

and so

(6.5)
$$A^m x = \sum_{\alpha=0}^{q-1} \omega^{m\alpha} a_\alpha (D^\alpha u) + o(1),$$

where

(6.6)
$$a_{\alpha} = v^{t} D^{-\alpha} x = x^{t} y^{\alpha}, \qquad \alpha = 0, \cdots, q-1.$$

Let

$$c_{\boldsymbol{\beta}} = v_{(\boldsymbol{\beta}+1)}^{t} x_{(\boldsymbol{\beta}+1)}, \qquad \boldsymbol{\beta} = 0, \cdots, q-1.$$

Then it follows immediately from (6.6) that

$$a_{\alpha} = \sum_{\beta=0}^{q-1} \omega^{-\alpha\beta} c_{\beta}, \qquad \alpha = 0, \cdots, q-1.$$

We now prove the equivalence of our five conditions. We show $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i) and (i) \Rightarrow (v) \Rightarrow (iv)$.

(i) \Rightarrow (ii). Trivial.

(ii) \Rightarrow (iii). Since $\lim_{m\to\infty} A^m x$ exists, $\lim_{m\to\infty} v^t D^{-\alpha} A^m x$ also exists, $\alpha = 0, \dots, q-1$. But $v^t u > 0$, and hence $a_{\alpha} = x^t y^{\alpha} = 0$, $\alpha = 1, \dots, q-1$ by Lemma 3.3. (iii) \Rightarrow (iv). Consider the identity (6.7). Since the Vandermonde matrix $q^{-1/2}(\omega^{-\alpha\beta}), \alpha, \beta = 0, \dots, q-1$ is unitary the assumption $a_{\alpha} = x^t y^{\alpha} = 0, \alpha = 1, \dots, q-1$ implies that $c_0 = c_1 = \dots = c_{q-1}$, which proves (iv).

(iv) \Rightarrow (i). If (iv) holds, then $c_0 = c_1 = \cdots = c_{q-1}$ and (6.7) implies $a_1 = \cdots = a_{q-1} = 0$. This establishes (i) in view of (6.5) and (6.6).

(i) \Rightarrow (v). Trivial, since $v^t x > 0$ and u > 0.

(v) \Rightarrow (i). Let m = ql + r, $0 \le r \le q - 1$. Then (6.5) implies

$$\lim_{l\to\infty} A^{ql+r} x = \tilde{x}^{(r)}, \qquad r = 0, \cdots, q-1$$

for some $\tilde{x}^{(r)} \ge 0$, $\tilde{x}^{(r)} \ne 0$. Also

$$A^{r}\tilde{x}^{(0)} = \tilde{x}^{(r)}, \quad r = 0, \cdots, q-1, \quad A^{q}\tilde{x}^{(0)} = \tilde{x}^{(0)}.$$

As A^q is a direct sum of q irreducible and primitive matrices the assumption $x \ge 0, x \ne 0$ implies that $\lim_{l\to\infty} (A^q)^l x = \tilde{x}^{(0)} \ne 0$. Obviously $x^{(0)} \ge 0$.

Now (v) implies that

$$x^{0} \leq x^{(1)} = Ax^{0} \leq x^{(0)},$$

whence $x^{(1)} = x^{(0)}$ and thus $x^{(r)} = x^{(0)}$ for $r = 1, \dots, q-1$. So $\lim_{m \to \infty} A^m x = x^{(0)}$ and (i) follows. \Box

In what follows, we give necessary and sufficient conditions on a reducible matrix A to satisfy (6.2). To do so we need a few more graph theoretical concepts.

Let G be a graph on $\langle \nu \rangle = \{1, \dots, \nu\}$. Let J be a nonvoid subset of $\langle \nu \rangle$. Then $\alpha \in J$ is called a final state with respect to J if for any $\beta \neq \alpha$ and $(\alpha, \beta) \in G$, $\beta \notin J$. Denoting by $\mathscr{F}(J)$ the set of all final states with respect to J. If $J = \langle \nu \rangle$, then α is called a final state, i.e., $(\alpha, \beta) \in G$ implies that $\beta = \alpha$. Define

$$d(\boldsymbol{\beta}, J) = \max \{ k(\boldsymbol{\beta}, \alpha) : \alpha \in \mathcal{F}(J) \}.$$

If $J = \langle \nu \rangle$, then write $d(\beta)$ instead of $d(\beta, \langle \nu \rangle)$. Let $A \ge 0$ be a reducible matrix. We assume that A is in the Frobenius form (4.1).

As in § 4, denote by G(A) the (reduced) graph of A. Let $x \ge 0$, $x \ne 0$. Partition x conformably with A given by (4.1). That is $x^t = (x_{(1)}^t, \dots, x_{(\nu)}^t)$. The support of x is the set supp $x = \{\alpha_1, \dots, \alpha_s\} \subseteq \{1, \dots, \nu\}$ such that $x_{(i)} \ne 0$ if and only if $i \in \text{supp } x$. We shall always assume that α_i , $i = 1, \dots, s$ have been listed in strictly ascending order.

THEOREM 6.8. Let $A \in \mathbb{R}^{nn}_+$, $\rho(A) > 0$. Assume that A is in the Frobenius form (4.1). Moreover, if A_{ii} is imprimitive then A_{ii} is the Frobenius form (6.3). Let $x \ge 0$, $x \ne 0$. Then (6.2) holds if and only if any final state α with respect to the support of x satisfies

- (i) α is a singular vertex (i.e., $\rho(A_{\alpha\alpha}) = \rho(A)$),
- (ii) either $A_{\alpha\alpha}$ is primitive, or $A_{\alpha\alpha}$ and $x_{(\alpha)}$ satisfy the condition (iv) of Lemma 6.4.

Proof. Without loss of generality we may assume that $\rho(A) = 1$. Next we note that

(6.9)
$$(A^m x)_{\alpha} = \sum_{\beta \in \text{supp } x} A^{(m)}_{\alpha\beta} x_{(\beta)}.$$

Suppose that $\alpha \in \mathscr{F}(\operatorname{supp} x)$. Then

$$(A^m x)_{\alpha} = A^m_{\alpha\alpha} x_{(\alpha)}.$$

By the definition of R(x) and r(x) we have

$$r(A^m x)A^m x \leq A^{m+1} x \leq R(A^m x)A^m x.$$

So

$$r(A^{m}x)A_{\alpha\alpha}^{m}x_{(\alpha)} \leq A_{\alpha\alpha}^{m+1}x_{(\alpha)} \leq R(A^{m}x)A_{\alpha\alpha}^{m}x_{(\alpha)}$$

Hence, since $A_{\alpha\alpha}$ is irreducible, by (6.1),

$$r(A^{m}x) \leq r(A^{m}_{\alpha\alpha}x_{(\alpha)}) \leq \rho(A_{\alpha\alpha}) \leq R(A^{m}_{\alpha\alpha}x_{(\alpha)}) \leq R(A^{m}x).$$

Assume now that (6.2) holds. Then for any final state α with respect to supp x, we must have

$$\lim_{m\to\infty} r(A^m_{\alpha\alpha}x_{(\alpha)}) = \lim_{m\to\infty} R(A^m_{\alpha\alpha}x_{(\alpha)}) = \rho(A_{\alpha\alpha}) = 1.$$

So α is a singular vertex. If $A_{\alpha\alpha}$ is imprimitive, then the condition (v) of Lemma 6.4 holds. Hence, $A_{\alpha\alpha}$ and $x_{(\alpha)}$ satisfy (iv) of Lemma 6.4. This proves one direction of our theorem.

Assume now that if $\alpha \in \mathscr{F}(\operatorname{supp} x)$ then $\rho(A_{\alpha\alpha}) = 1$; and if $A_{\alpha\alpha}$ is not primitive then $A_{\alpha\alpha}$ and $x_{(\alpha)}$ satisfy the condition (iv) of Lemma 6.4.

Let $1 \le \beta \le \nu$. Let $d = d(\beta, J)$. By our assumption, $d \ne -1$. If $d = -\infty$, then $(A^m x)_{\beta} = 0, m = 1, 2, \cdots$. If $d \ge 0$, then

$$m^{-d}(A^m x)_{\beta} = m^{-d} \sum_{\alpha \in K} A^{(m)}_{\beta\alpha} x_{\alpha} + o(1),$$

where $K = \{\alpha : k(\beta, \alpha) = d\}$. Clearly $K \subseteq \mathcal{F}(\text{supp } x)$. Thus, to show

(6.10)
$$\lim_{m\to\infty} m^{-d} (A^m x)_{\beta} > 0$$

it is enough to prove

$$(6.11) mtextbf{m}^{-d}A^{(m)}_{\beta\alpha}x_{\alpha} > 0$$

for $\alpha \in \mathscr{F}(\text{supp } x)$, $k(\beta, \alpha) = d$. To prove (6.11), let D be the matrix obtained from A by setting $D_{\alpha\alpha} = 0$ and $D_{\gamma\delta} = A_{\gamma\delta}$ in all other cases, $1 \leq \gamma, \delta \leq \nu$. We then have

$$m^{-d}A^{(m)}_{\beta\alpha}x_{\alpha} = m^{-d}\sum_{p=0}^{m}D^{(m-p)}_{\beta\alpha}A^{p}_{\alpha\alpha}x_{\alpha}$$

Since in D, the singular distance from β to α is d-1, we have, by Corollary 5.11,

$$\lim_{m\to\infty}m^{-d}\sum_{p=0}^m D_{\beta\alpha}^{(m-p)}=U_{\beta\alpha}>0,$$

and by Lemma (6.4)

$$\lim_{p\to\infty}A^p_{\alpha\alpha}x_{\alpha}=v_{\alpha}>0.$$

It easily follows from Lemma 2.7 that

$$\lim_{n\to\infty}m^{-d}A^{(m)}_{\beta\alpha}x_{\alpha}=\frac{1}{d}U_{\beta\alpha}v_{\alpha}>0.$$

Thus, for each β , $1 \le \beta \le \nu$, either $(A^m x)_{\beta} = 0$, $m = 1, 2, \cdots$ or (6.10) is satisfied. From this (6.2) follows immediately. \Box

COROLLARY 6.12. Let $A \in \mathbb{R}^{nn}_+$, $\rho(A) > 0$. Assume that A is the Frobenius form (4.1). Let J be an nonempty set of $\langle \nu \rangle$. Then for any $x \ge 0$ whose support is the set J, (6.2) holds if and only if for all final states α with respect to J, $\rho(A_{\alpha\alpha}) = \rho(A)$ and $A_{\alpha\alpha}$ is primitive.

COROLLARY 6.13. Let $A \in \mathbb{R}^{nn}_+$, $\rho(A) > 0$. Assume that A is in the Frobenius form (4.1). Then for any $x \ge 0$, $x \ne 0$, (6.2) holds if and only if for each α , $\alpha = 1, \dots, \nu$, $\rho(A_{\alpha\alpha}) = \rho(A)$ and $A_{\alpha\alpha}$ is primitive.

7. Nonnegative solutions of (I - A)y = x. As an application of our results we give a simple proof of a theorem concerning nonnegative solutions y of (I - A)y = x for given $x \ge 0$. For $1 \le \alpha, \beta \le \nu$ we shall say that β has access to α in G(A) if there is a path from β to α in G(A), viz., $k(\beta, \alpha) \ge -1$.

THEOREM 7.1. Let $A \in \mathbb{R}^{nn}_+$ with $\rho(A) = 1$, and suppose that A is in the Frobenius normal form (4.1). Let $x \in \mathbb{R}^{n}_+$. Then the following are equivalent:

- (i) there is a $y \in \mathbb{R}^{n}_{+}$ such that (I A)y = x;
- (ii) no singular vertex β has access in G(A) to any $\alpha \in \text{supp } x$;
- (iii) $\lim_{m\to\infty} (I + \cdots + A^m) x \text{ exists};$
- (iv) $\lim_{m\to\infty} A^m x = 0.$

Further, if (iii) holds and $y = \lim_{m \to \infty} (I + A + \cdots + A^m)x$, then (I - A)y = x and

(7.2) $y_{\beta} = 0$ if β does not have access to any $\alpha \in \text{supp } x$,

(7.3) $y_{\beta} > 0$ if β has access to some $\alpha \in \text{supp } x$.

Proof. Let $S^{(m)} = I + A + \cdots + A^m$. If $1 \le \beta \le \nu$, then

(7.4)
$$(S^{(m)}x)_{\beta} = \sum_{\alpha \in \text{supp } x} S^{(m)}_{\beta\alpha} x_{\alpha},$$

and, by Corollary 5.11, for $k = k(\beta, \alpha) \ge -1$,

(7.5i)
$$\lim_{m \to \infty} m^{-(k+1)} S^{(m)}_{\beta\alpha} = U_{\beta\alpha} > 0;$$

while for $k(\beta, \alpha) = -\infty$,

(7.5ii)
$$S_{\beta\alpha}^{(m)} = U_{\beta\alpha} = 0, \qquad m = 1, 2, 3, \cdots.$$

We shall prove (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i), (iii) \Rightarrow (iv) \Rightarrow (ii). (i) \Rightarrow (ii). Suppose that (I - A)y = x, where $y \ge 0$. Then

$$S^{(m)}x = (I - A^{m+1})y \leq y.$$

Let β be a singular vertex. If β has access to α , then $k = k(\beta, \alpha) \ge 0$ and, by (7.4) and (7.5),

$$y_{\beta} \ge (S^{(m)}x)_{\beta} \ge \frac{1}{2}m^{(k+1)}U_{\beta\alpha}x_{\alpha}$$

for large *m*. Hence $x_{\alpha} = 0$ and $\alpha \notin \text{supp } x$.

(ii) \Rightarrow (iii). Suppose (ii) holds and let $1 \leq \beta \leq \alpha$.

If $\alpha \in \text{supp } x$, then $k = k(\beta, \alpha) = -1$, or $k = -\infty$. Hence, $\lim_{m \to \infty} S_{\beta\alpha}^{(m)} x_{\alpha} = U_{\beta\alpha} x_{\alpha}$ exists for $\alpha \in \text{supp } x_{\alpha}$. So, by (7.5), $\lim_{m \to \infty} S^{(m)} x$ exists.

(iii) \Rightarrow (i). Let $y = \lim_{m \to \infty} S^{(m)}x$. Clearly $y \ge 0$. Since $AS^{(m)}x = S^{(m+1)}x - x$, y satisfies (I - A)y = x. This proves (i).

 $(iii) \Rightarrow (iv)$. Trivial.

(iv) \Rightarrow (ii). Suppose that (iv) holds but that (ii) is false. Then there exists a singular β and an $\alpha \in \text{supp } x$ such that $k(\beta, \alpha) \ge 0$. Let $q = q(\beta, \alpha)$ be the local period and let $B^{(m)} = A^m (I + \cdots + A^{q-1})$. Then $\lim_{m \to \infty} B^{(m)} x = 0$. But by Theorem 5.10 for all sufficiently large m,

$$(B^{(m)}x)_{\beta} \ge B^{(m)}_{\beta\alpha}x_{\alpha} \ge cm^{k}x_{\alpha\beta}$$

where c > 0, and $x_{\alpha} \neq 0$. This is a contradiction, and the implication is proved. To complete the proof of the theorem observe that, for $y = \lim_{m \to \infty} S^{(m)}x$,

$$y_{\beta} = \sum_{\alpha \in \operatorname{supp} x} U_{\beta \alpha} x_{\alpha}$$

in view of (ii) and (7.5). Since $U_{\beta\alpha} > 0$, if β has access to α and $U_{\beta\alpha} = 0$ otherwise, we immediately obtain (7.2) and (7.3). \Box

The equivalence of conditions (i) and (ii) in Theorem 7.1 is due to D. H. Carlson [3]. We remark that Carlson also showed that if a nonnegative solution y of (I - A)y = x exists, then the solution satisfying (7.2) and (7.3) is unique. It should be observed that the assumption that A is in Frobenius normal form is not needed for conditions (i), (iii) and (iv) of Theorem 7.1, which may easily be proved equivalent directly. Conditions (iii) and (iv) are equivalent for general $A \in \mathbb{R}^{nn}$ and $x \in \mathbb{R}^{n}$. We observe that for

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \qquad x = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

there is a $y \in \mathbb{R}^n$ such that (I - A)y = x; yet the equivalent conditions (ii), (iii) and (iv) do not hold. Clearly, no y satisfying (I - A)y = x can be nonnegative.

REFERENCES

- [1] A. BERMAN AND R. J. PLEMMONS, Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979.
- [2] R. A. BRUALDI, Introductory Combinatorics, North Holland, Amsterdam, 1977.
- [3] D. H. CARLSON, A note on M-matrix equations, J. Soc. Indust. Appl. Math., 11 (1963), pp. 1027–1033.
- [4] L. COLLATZ, Einschliessungssatz f
 ür die charakteristischen Zahlen von Matrizen, Math. Z., 48 (1942), pp. 221–226.
- [5] S. FRIEDLAND, On an inverse problem for nonnegative matrices and eventually nonnegative matrices, Israel J. Math., 29 (1978), pp. 43-60.
- [6] G. F. FROBENIUS, Über Matrizen aus nicht negativen Elementen, S. B. Kön. Preuss. Akad. Wiss. Berlin, (1912), pp. 456–477; Gesammelte Abhandlungen, vol. 3, Springer, Berlin, 1968, pp. 546–567.
- [7] F. R. GANTMACHER, The Theory of Matrices, Chelsea, New York, 1959.
- [8] G. H. HARDY, Divergent Series, Clarendon, Oxford, England, 1949.
- [9] S. KARLIN, Positive operators, J. Math. Mech., 8 (1959), pp. 907-937.
- [10] C. D. MEYER AND R. J. PLEMMONS, Convergent powers of a matrix with applications to iterative methods for singular systems, SIAM J. Numer. Anal., 14 (1977), pp. 699–705.
- [11] A. OSTROWSKI, Uber die Determinanten mit überwiegender Hauptdiagonale, Comment. Math. Helv., 10 (1937), pp. 69–96.
- [12] D. RICHMAN AND H. SCHNEIDER, On the singular graph and the Weyr characteristic of an M-matrix, Aequationes Math., 17 (1978), pp. 208–234.
- [13] U. G. ROTHBLUM, Algebraic eigenspaces of nonnegative matrices, Linear Algebra and Appl., 12 (1975), pp. 281-292.

- [14] U. G. ROTHBLUM, Expansions of sums of matrix powers and resolvents, Yale Univ. Rep., New Haven, CT, revised Jan. 1977; SIAM Rev., to appear.
- [15] —, Sensitive growth analysis of multiplicative systems I: The dynamic approach, Yale Univ. Rep., New Haven, CT, revised Jan. 1977.
- [16] H. H. SCHAEFER, Topological Vector Spaces, Macmillan, New York, 1964.
- [17] H. H. SCHAEFER, Banach Lattices and Positive Operators, Springer, New York, 1974.
- [18] E. C. TITCHMARSH, The Theory of Functions, 2nd ed., Oxford University Press, London, 1939.
- [19] R. S. VARGA, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, NJ, 1962.
- [20] H. WIELANDT, Unzerlegbare, nicht negative Matrizen, Math. Z., 52 (1950), pp. 642-648.