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ABSTRACT 

We give a common, concise derivation of some important determinantal identities 
attributed to the mathematicians in the title. We also give a formal treatment of 
determinantal identities of the minors of a matrix. 

0. INTRODUCTION 

In this report we show how some important determinantal identities 
associated with the gentlemen in the title admit a common derivation. Each 
of these identities can be obtained in several ways. The novelty of our 
approach is not with any individual proof but with the conciseness of the 
collective derivation of the identities. Our development is self-contained 
except for use of two basic results which may be found in any elementary 
textbook. These are first, that Gaussian elimination does not alter a determi- 
nant and, second, that a determinant has a Laplacian expansion. We give a 
formal treatment of determinantal identities of the minors of a matrix and 
then provide a careful exposition of two methods for obtaining from a given 
determinantal identity another determinantal identity. These are the not 
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particularly well-known “law of extensible minors” and “law of complemen- 
tarities.” Many other results would readily follow, some of which are con- 
tained in the interesting and extensive surveys of Ouellette [23], Cottle [8], or 
Henderson and Searle [ 151. 

In what follows we use names to describe the identities attributed to these 
various 18th and 19th century mathematicians by writers in the present 
century. 

1. GAUSS, SCHUR, AND CAUCHY 

Our first character is Gauss, for it is Gaussian elimination that constitutes 
our basic technique. Let A = [a i j] be an n x n matrix over a field F which is 
partitioned as 

E F 
[ 1 G H’ 

where E = A[l,.. . ,k(l,. .., k] is the leading principal k X k submatrix of A 
and 1~ k Q n. We assume that E is invertible. We apply Gaussian elimination 
of the following type to reduce G to a zero matrix: 

In this elimination, linear combinations of the first k rows of A are added to 
the last n - k rows. From (1) we obtain that H’ = H - GE- ‘F, the Schur 
complement A/E of E in A: 

(2) H’=A/E=H-GE-‘F. 

It follows from (1) that the Schur complement A/E is invertible when A 
is, and that Schur’s identity 

(3) det A = (det E)(det A/E) 

holds. We note for later use that the Schur complement always results in the 
lower right comer whenever G is reduced to a zero matrix by Gaussian 
elimination on A which does not add linear combinations of the last n - k 
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rows to any of rows 1,. . . ,n. That is, if 

then Y = - GE- ’ and H’ = A/E. Returning to (1) and the Schur comple- 
ment, we index the entries of H’ = A/E using k + 1,. . . ,n: 

h;+l,k+l **- 4c+1*n 

Let k + 1~ i, j < n. Since the Gaussian elimination in (1) has only added 
linear combinations of the first k rows of A to the other rows, it follows that 
the determinant of a (k + s)x(k + s) submatrix of A which contains E as a 
(principal) k x k submatrix does not change. So, if k + 1~ i, < * * - < i, < n 
and k+l<h<.** < j, < n, and we consider the s X s submatrix B of the 
Schur complement whose rows are indexed by ii,. . . , i, and whose columns 
are indexed by jr,...,js: 

B = H’[i l,...,islJ;,...,jsl, 

we obtain 

=(detE)(detB). 

From this we obtain a result which we shall apply several times: 

In particular, the entries of the Schur complement A/E satisfy 

We conclude this section by mentioning a special case of the Schur 
complement formula (3). Let k = n - 1, so that H is the 1 X 1 matrix [a,,“], 
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and F and G are column and row vectors, respectively. We then obtain from 
(2) and (3) that det A = (det E)(a,, - GE-IF). Since E-l = (det E)adj E, 
where adjE is the adjoint (adjugate) of E, we obtain a formula called by 
Aitken [l, p. 741 the Cuuchy expansion of det A: 

(6) detA=a,,,detE-G(adjE)F. 

Let k+l<i<n. We may regard hil, j=k+l,...,n, as the error in 
column j when the ith row of A is replaced by a linear combination of the 
first k rows of A so that the first k entries are unaltered. Indeed, the formula 
(5) gives the error even for 1~ jg k, since then it yields 0. Further, (5) is 
symmetric in i and J; and therefore hll (k + 1 d i, j< n) is also the error 
obtained when the $h column of A is linearly interpolated by means of the 
first k columns. 

, 

2. SYLVESTER 

Another form of (4) is the identity of Sylvester on bordered determinants: 
Let C= [cij] be the (n - k)x(n - k) matrix where 

(7) cif=detA[l ,..., k,i]l,..., k, j] (k+l Gi, j< n). 

Then, by (5), 

C=(detE)(A/E) 

and hence with use of (3), we get 

(8) detC=(detE) “-‘det A/E = (det E)“-k-‘det A. 

3. KFtONECKER 

A special case of Sylvester is the following identity of Kronecker on 
bordered determinants: Let B = [ b,J be the (n - k) x (n - k) matrix where 

uir **. alk %j 

bij=det : (k+l<i,j<n). 
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Then every (k + l)X(k + 1) submatrix of B has a vanishing determinant: 

(9) detB[i, ,..., ik+rljr ,... &+r]=O 

for k + 1< i, < * -. < i k+l<n and k+l<h<*** <i+ran. To prove (9) 
one may assume n = 2k + 1. Taking the submatrix H of A to be 0, we have 
C = B with det A vanishing identically. Hence (9) is a consequence of (8). 
Alternatively, it follows from (5) and (2) that 

B = (det E)( A/E - H) = (det E)( - GE-IF) 

Hence rank B < rank G < k, and (9) follows. 

4. JACOBI 

We now assume A is invertible and continue the Gaussian elimination on 
A begun in (1): 

E-l - E-‘F( H’) -’ 

0 (H’)-’ ][ -& Ird[: f;] 

-E-‘F(H’)-’ E F 

Ir 1 
(H’)-’ 0 H’ 

Ik o 

= 0 In-k * [ 1 
Hence, multiplying the first two matrices on the left, we obtain 

(10) 
E-‘+E-‘F(H’)-‘GE-’ -E-‘F(H’)-’ 

- (H’) -‘GE-’ (H’)-’ 1. 
Since H’ = A/E, it follows from (10) that the inverse of the Schur comple 
ment of E in A is the submatrix of A-’ which is “complementary to E.” From 
(3) we now obtain the identity of Jacobi, which can be stated in either of the 
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forms 

(11) detA-‘[k+l,...,n,k+l,...,n]= detA[l,;l~ty~‘ly”“kl , 

or 

det(adjA)[k+l,... ;nlk+l,..., n]=(detA)“-‘-‘detA[l,..., kll,..., k]. 

Let l<f,C.** < i, Q n and 1 G & < - - - -z h Q n, and let 1 Q i;+r < -. - i 
(‘,<n and l<$+r<... <$gn, where {ir ,..., &,i;+r,...,iA}=(h ,..., 
jk, $+I, . . . . g}=(l)..*, n}. To obtain from (11) Jacobi’s identity in its usual 
forms, 

(12) detA-‘[$+, ,..., $]i;+r ,..., ik] 

_ (-1) 
i,+...+ik+jl+-.+& 

det A 
detA[i ~,.‘.,~~ljp,jJ 

or 

(13) det(adjA)[$+, ,..., gli;+r ,..., ih] 

=(-1) ‘1+““f~+B”..+b(detA)“-k-1detA[il,...,i~l6,...,1;], 

we need only replace A by PAQ where P and Q are permutation matrices 
such that 

A[i I,... ,i& ,..., jJ * 
PAQ = 

* A[$+, ,..., i;l$+r ,..., $1 1 ’ 

For then, 

and 

det( PAQ) = ( - 1) i,+‘..+i,+j,+...+AdetA, 

(PAQ)[l,..., kll,..., k] =A[i, ,..., iklj, ,..., h], 

(PAQ)-‘[k+l,...,nlk+l ,..., ra]=(Q-rA-‘P-‘)[k+l I..., nlk+l,..., n] 

= A-‘[$+l ,..., fli;+r ,..., i;]. 
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5. BINET, CAUCHY, AND LAPLACE 

NowletFbeakxZmatrixandGanZXkmatrix.Letn=k+Z,and 
define an n X n matrix A by 

(14) A= 
-I, F 1 1 G 0’ 

The Schur complement of - I, in A is 

A/( -Z,)=O-G( -ZJlF=GF, 

and hence by (3), 

det A = det( - I,)[det A/( - Z,)] = ( - 1)“det GF, 

or, equivalently, 

(15) detGF=( -1)“detA. 

Upon applying the expansion of Laplace (e.g. Aitken [l, p. 781) to evaluate 
det A in (15), we obtain the determinant formula of Bin& and Cuuchy: 

06) detGF= c detG[l,..., Iii, ,..., il] 
Isi,<... <ilCk 

XdetF[& ,..., i,Jl,..., Z]. 

In particular we have shown that for square matrices F and G we have 

detGF=detGdetF. 

6. THE QUOTIENT PROPERTY 

We give two proofs of the quotient property of Schur complements. The 
first proof makes uses of the remark on uniqueness following (3). Suppose the 
k x k submatrix E of A is also partitioned so that 

I , 



776 RICHARD A. BRUALDI AND HANS SCHNEIDER 

where K is t X t and N is (k - t)x(k - t). Assume that both E and K are 
invertible. Reducing M to a zero matrix by Gaussian elimination, we obtain K L F, 

[ 1 0 E/K F; 

G, G, H 

where E/K is invertible. Reducing G, to a zero matrix, we then obtain 

07) 

where by our remark 

K L FI 
0 E/K F; 
0 G,* H* 

(18) A/K= 
E/K F,* 

G; H* 

Hence E/K is an invertible, principal submatrix of A/K. By reducing G,* to 
0 in (17)‘and in (18) we arrive at - 

K L FI 

i 1 0 E/K F,* , 
0 0 H’ 

where, using our remark again, H’= A/E. Hence 
property 

(19) A/E = (A/K)/(E/K). 

we obtain the quotient 

The second proof of (19) uses the quotients (4) and (5) directly. Let 
H”=[h;;]=A/K. Then H”[t+l,..., klt+l,..., k]=E/K, and applying 
Schur’s identity we obtain 

det E = (det K)(det E/K); 

in particular E/K is invertible. Let 

H”‘= [/a/y] = H”/H’[t +l,...,kjt +l,...,k] =(A/K)/(E/K) 
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Applying (5) to the Schur complement of E/K in A/K = H”, we obtain 

(20) h$’ = 
detH”[t+l ,..., k,ilt+l,..., k, j] 

detH”[t+l,..., klt+l,..., k] 
(k+lGi, j<n). 

Applying (4) to the Schur complement H” of K in A and using (20), we get 

h ,,!, = detA[l,..., k,i]l,..., k,j] detA[l,..., kll,..., k] -’ 
‘I detA[l,...,tll,..., t] detA[l,..., tll,..., t] 

det A[1 ,..., k,ill,,.., k, j] 
= detA[l,...,kll,,..,k] 

(k+l<i, j<n). 

It now follows from (5) that h:y = hii (k + 1~ i, ja n), which is the quotient 
property (1% 

7. MUIR AND CAYLEY 

In Sylvester’s identity (8) we may replace det C by its defining expansion 
in terms of its entries as given in (7) and obtain 

(21) detA[l,..., kll,..., k]“-k-ldetA[l ,..., nil ,..., tz] 

=x(signc)j=$+idetA[l ,..., k,ill,..., k,a(i)], 
(r 

where the summation is over all permutations u of k + 1,. . . , n. We observe 
that (21) may be obtained formally by adjoining the sequence 1,. . . , k to each 
sequence in 

(22) detA[OIO]“-k-‘detA[k+l ,..., n]k+l,..., rr] 

= ~(si~.)i=~+~detA[il.ol 
0 

Of course, (22) is just the usual expansion of detA[k+l,...,nlk+l,...,n] 
made homogeneous by inserting a factor of det A [ 0 ) 0 ] “- k- ‘. Here 0 is the 
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empty set and det A [ 0 ( 0 ] is defined to be 1. This method of obtaining an 
n x n determinantal identity from an 1 X E determinantal identity (2 = n - k) 
is called e&en&on and works in a general setting. Muir [20] called it the “law 
of extensible minors,” and it leads to a somewhat bewildering variety of 
identities. We now formalize Muir’s law and give a proof. We begin by 
attempting a definition of a determinantal identity for the minors of a matrix, 
a matter which appears to have been largely ignored. 

We now suppose that X = [ xij] is an 1 x 1 matrix whose entries are 
pairwise commuting indeterminates over the field F. For the sake of future 
convenience, we assume that the rows and columns of X are indexed by 
k +l,..., n = k + Z for some integer k > 0. By a term of an Z x 1 determinantal 
identity we shall mean a (possibly empty) product T(X) of the form 

cm det X [ a(‘)]P(‘)] - - - det x [a(p)]/?(p)], 

where a(‘) and /3(‘) are naturally ordered subsequences of the same length of 
the sequence k + 1,. . . ,n for each i = 1,. . . ,p. Thus a term is a product of 
minors of X, possibly of different orders. A formula of the form 

i c,~,(X) = 0, 
q=l 

where T,(X) is a term and cqeF for q=l,...,t, is an ZXZ d&erminuntuZ 
identity provided (24) becomes an identity in xij (k + 1 d i, j< n) when each 
factor det X[ a(*)[/?(‘)] of each term T,(X) is replaced by its expansion in 
terms of the entries of X. We observe that if (24) is an 1 X 1 determinantal 
identity, then for any 1 x 1 matrix B = [ bij] with entries from an extension 
field F’ of F (in particular with the entries from F), we have 

(25) i c,J,(B) = 0. 
q=l 

This is so because the mapping xii + bij (k + 1 d i, Jo n) induces a home 
morphism of the ring F[x~+~,~+~,x~+~,~+~,...,x~,] into the field F’. 

Now suppose that (24) is an Z X 1 determinantal identity. By incorporating 
a suitable power of det X [ 0 ( 01 in each term, we may assume that all terms 
have the same number p of factors with at least one term having no factor 
det X[ 0101. Let A = [ail] be an n X n matrix whose entries are pairwise 
commuting indeterminates over F. Applying the identity (24) to the matrix 
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B=H’,whereH’=A/EistheSchurcomplementofE=A[l,...,kll,...,k] 
(evidently E is invertible), we obtain (25). If we now replace each minor of H’ 
by its value given by (4) and multiply by (det E)P, we obtain from (25) an 
n X n determinantal identity 

(26) 
t 
c cqpq(A) = 0. 

q=l 

In (26) each minor in Tq(A) is the extension of the corresponding minor in 
T,(X) by y=(l,...,k). Thus (26) is the extension of (24) obtained by 
replacing each term T,(X) of the form (22) by 

fq( A) = det A [y U &)ly U /WI. * . det A [y U &‘)ly U p(p)]. 

Now suppose (24) is an n X n determinantal identity. We may apply (24) 
to the matrix B = adj X to obtain (25). Let det X [ a’~p’] be a minor in a term 
Tq(X)givenby(22)wherecy’=(~+1,...,jnl)andp’=(i;+,,...,i:,).ByJacobi 
(13) we may replace the minor det B [ a’] p’] in Tq( B) by 

t-0 il+~~~+i~+il+“‘+~(detx)“-k-ldetx[Pla], 

where X [ PIa] is the k X k submatrix of X which is “complementary to 
X[o’l/3’] in Xf.” If we do this for each minor in every term (23), we obtain 
another n X n determinantal identity 

(27) i ciT,‘(X) = 0. 
q=l 

The identity (27) is called the compkmentary identity of (24). The fact that 
(27) is a determinantal identity when (24) is, is called by Muir [20] the “law 
of complementarities,” and he attributes this law to Cuyby. For example, the 
complementary identity of the defining expansion 

is 

detX[l,..., nil ,..., n] = ~(signo)ifiidetX[ilo(i)] 
0 

(detX)“-‘detX[010] =E(signe)ini( -l)i’u’i)detX(a(i)li), 
(I 
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where X(a(i)]i) is the matrix obtained from X by eliminating row a(i) and 
column i. Since det X [ 0 10 ] = 1, this is equivalent to 

(28) (det X)“-’ = det(adjX), 

a theorem of Cauchy (see Aitken [l, p. lO4]), which in turn is a special case of 
Jacobi (13). It is a consequence of the development above that Cayley’s “law 
of complementarities” has a relation to Jacobi’s theorem and the adjoint 
which is similar to the relation of Muir’s “law of extensible minors” to 
Sylvester’s identity and the Schur complement. 

8. MUIR AND CAYLEY AS MODERN ALGEBRAISTS 

We give in this section a more precise and formal treatment of de- 
terminantal identities and the replacement processes involved in Muir and 
Cayley laws. We continue to use the notation in Section 7. 

Let integers k >, 0 and 12 1 be given. For p = 0, 1, . . . ,Z we denote by SE, Ir 
or for brevity SJ’, the set of all sequences of integers a = (ii,. . . , iv) where 
k+l<i,<-- < i, Q k + 1 = n. In particular we note that SF consists only 
oftheemptysequence 0.Ifa~S&,thenwesayahaslengthpandwrite 
Ial = P. 

Now let F be a field, and let II, be a set of pair-wise commuting, 
algebraically independent indeterminates r [ a]/31 indexed by the set of all 
ordered pairs [a]/31 with [alp] E u L,,(Sf X SJ’). Let F[lI,] be the poly- 
nomial domain over F generated by the indeterminates in II,. We refer to the 
elements of F[&] as formulas. Let f be a nonzero formula. Then 

(29) f=Cc&qCb, 
Q 

where each cq is a nonzero element of F and each #q is a term of the form 

for some t > 0. (If t = 0, then \cq is an empty product and equals 1.) We 
assume that in the representation (29) no two of the terms (30) are equal. The 
formula f is called t-homogeneow if each of its terms Jb has the same number 
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t of factors. We define the weight of the term Icq in (30) to be 

w(+qcb) = i IA = I? I&I. 
i=l i=l 

More generally, if k + 1~ j< n, we define the row weight of the index j in Jb, 
denoted by w(j; \Ib), to be the number of occurrences of j in the sequences 
(Yr,..*, (Y,. The column weight of the index j in $q is the number w($~; j) of 
occurrences of j in the sequences &, . . . , /3,. We note that 

WNqcb) = 

Now let X = [xii] be an I X I matrix whose entries are 1’ pair-wise 
commuting, algebraically independent indeterminates over F. As before, we 
assume that the rows and columns of X are indexed by k + 1,. . . , n = k + I for 
some k > 0. The mapping 

~[Ol-, detX[4Pl WIPI E r-4) 

(where det X[$+#I] = 1) in uces d a homomorphism 9 from F[ II,] to 
F[xk+1,k+1,Xk+l,k+2,...,Xn,n] which we call the determinantal hotnomor- 
phism. If f is a formula, then we write 

Q(f > = f(X). 

Thus if f is given by (29) and (30), then 

f(X) = Cc&(XL 
9 

where 

The formulas fin the kernel Lll of 9, that is, for which f(X) = 0, are the Z X Z 
determinantal identities. 

By combining terms with the same number of factors, every formula 
f E F[II,] can be written as a sum of homogeneous polynomials of different 
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degrees. If t is the largest degree of a term off, then by introducing factors of 
n [ 0 ] 0 ] in the terms of f, we can convert f into a t-homogeneous formula $ 

(31) f is a determinantal identity if and only j-is. 

The formula f is said to have constunt weight if each of its terms has the 
same weight, denoted w(f). By combining terms of the same weight, each 
formula f can be uniquely written as a sum of formulas, f= fi + - - - + f,, 
where each x has constant weight and w(A) * w( fi) for i * j. 

(32) If f is a determinantal identity, then each of fi,. . . ,f, is also a 
determinantal identity. 

To verify (32), we choose an indeterminate y, independent of 
Xk+l,k+l~Xk+l,k+2~"'~Xn,n~ and let Y = yX. It then follows that 

0 = f(Y) = y”‘fi’fi(X)+ * * - + y"'$'f,(X). 

SinCeyiSilldependentOf xk+l,k+l,xk+l,k+2,...,x,,,andSincew(~)#;w(~) 
for i * J it follows that A(X) = 0, that is, A is a determinantal identity for 
i=l , . . . , r. We note that since the sum and product of determinantal identi- 
ties are determinantal identities, there do exist identities having terms of 
different weight. 

Constant weight identities can be further classified by consideration of the 
row weight and column weight of indices. Let f be a formula and let 
k + 1 Q j< n. By combining terms of f for which j has the same row weight, f 
can be uniquely written as a sum of formulas, f= g, + * * * + g,, where for 
each i, each term of gi has the same row weight a j,i for the index j, and 
~~,~==a. for l<i<k<s. I. k 

(33) If f is a determinantal identity, then each of g,,. ..,g, is a de 
terminantal identity. 

For proof, we choose an indeterminate x, independent of 
Xk+1,k+l~Xk+1,k+2~"'~Xn.n~ and let Z be the matrix obtained from X by 
multiplying the entries of row j by z. It then follows that 

0 = f(z) = f%g1( X) + * * * + z”+gs( X) 

andg,(X)=Ofori=l,...,s. 
By considering each row index and each column index we arrive at the 

following. Let f be a nonzero formula. Then f can be written as a sum of 
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formulas,f=h,+ *** + h,, such that the row weight of j for each term of h, 
is by and the column weight of j for each term is c,? (1~ u d p, k + 1 G j< n), 
where 

(b;,, ,..., b,“,c;+lr . . . . cn”)f(b;:+1,...,b~,ckD+1,...,c,D) 

for 1 < u < U d p. 

(34) If f is a determinantal identity, then each of h,, . . . , h, is also a 
determinantal identity. 

Less formally, (34) says that a determinantal identity can be written as a 
sum of identities h l,. . . , h, such that each hi has the property that for each 
index j, the row weight of j is the same in each term of hi and the column 
weight of jis the same in each term of hi. We call such identities constant row 
and column weighted identities. 

Many familiar determinantal identities are constant row and column 
weighted identities. For example, such an identity is the identity correspond- 
ing to the Laplace expansion on row i of a matrix: 

f=n[l,..., nil ,..., fl] - g ( -l)i+‘~[ilj]~(ilj) 
j=l 

where we write Ir(i]j) for a[1 ,..., i-l,i+l,...,nJl,..., j-1, j+l,..., n]. 
However, f + f2 is not a constant row and column weighted identity. The 
identity corresponding to the defining expansion of the determinant, 

g = vr[l,..., nil ,..., n] -~(signu)~[llu(l)]~~~~[nJu(n)l, 
0 

where the summation extends over all permutations u of (1,. . . , n}, is also a 
constant row and column weighted identity, Since g is an identity, 

det X = c (signu)x,,cl) - . . x,,(,). 

One of the purposes of our symbolism is to have a clear distinction between 

det X, alias n[l,..., nil ,..., n], 

and 

c hP4~lo(l) . * * X,0(“), alias ~(signu)a[l(u(l)]~~~a[n(u(n)] 
cl 0 
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The left hand sides are equaI as elements of F[x,,, x12,.. . ,x,,,J; the right 
hand sides are different elements of F[ II,]. 

We now mention two basic properties of the ideal 4, of determinantal 
identities. 

(35) 4, is a prime ideal. 

To verify (35) we suppose f is an identity and f = gh where g and h are 
formulas. Then O=f(X)=g(X)h(X). Since F[x~+~,~+~,x~+~,~+~,...,x~,“] 
is an integral domain, g(X) = 0 or h(X) = 0. Hence g or h is an identity, and 
it follows that Lll is a prime ideal. 

For [4Pl E UpeICSf’ X S/Y, let 

(36) g,,p=~[4bl -C(signo)n[i,lo(i,)l...n[i,la(i,)] 
0 

where a=(i, ,..., i,), P =(h ,..., &), and the summation extends over all 
bijections a:{ir ,..., i,}+{h ,..., &}. B y convention, when (Y = p = 0, the 
summationin(36)islandg,,,=?r[0]0]-1. 

(37) G=k,8:14=IPI*U is an irredundant set of generators of the 
ideal $I of determinantal identities. 

We first show that the formulas in G generate $. It follows from the 
defining expansion of the determinant that each g,, ,s E G is an identity. Let f 
be any nonzero identity given by (29) and (30). Replacing in (29) each 
~r[a~]&] for which (c+] = ]&I * 1 by 

g,,,p, + C(sign~)~[~~l~(~~)l~~~~[~,lo(i,)]~ 
0 

we obtain, 

where h,, EF[~] and hEF[n[i(j]:k+lgi,jdn]. Sincefand gol,B are 
identities, it follows that h is an identity. Hence h(X) = 0. Since h(X) E 
F[ xii: k + 1 G i, j< n], it follows that h is identically zero and 

f= c k&&3* 
[4Bl 

We conclude that G generates 4,. 
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We now establish the irredundancy of G as generators of ST1. Suppose to 
the contrary that for some [cll,]&], 

where p,,@ EF[IIJ. First suppose [q&J=[0l01. Then 

a[0]0]=1+ c PLz,,g&,. 
[WI f [0l@l 

Substituting for each pa, B the expression given by (36), we obtain 

n[0]0]=l+h, 

where h is a formula in F [ II,] each term of which has as a factor at least one 
of the indeterminates in II, different from n[ 0 101. This contradicts the 
algebraic independence of the indeterminates in III,. Now suppose [ CQ]&] * 
[ 0,0 1. Then using (36) again, we obtain 

where each term of h has as a factor at least one of the indeterminates 
different from T[ Q]&] and VT [ 0 ] 01. It follows that the coefficient of 
72 [ (~a I @,,I on the right hand side of the above equation is not 1, contradicting 
again the algebraic independence of II,. 

A less formal way of stating (36) is that the defining expansions of the 
minors of order different from 1 of X generate irredundantly all the identities 
satisfied by the minors of X. 

We now turn to a precise formulation of Muir and Cayley laws. Let 4; be 
the set of all homogeneous determinantal identities [cf. (31)]. We define the 
Muir mmwmurphi.sm %, from F[II,] to F[II,] as the mapping induced by 

where y ={l,..., k}. Then arguments in the previous section show that 

which is a reformulation of Muir. 
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The Cayky isomorphism (ZI of F[II,] into itself is defined to be the 
mapping induced by 

Qm++-1) il+...+ip+il+...+bs[l,...,n(l,...,n]P-17C[)Blal] 

where (Y= (i i,.*.&), S=(&..,&), and (Y’ and j3’ are complementary to CY 
and @, respectively. We then obtain Cayley in the form 

Using (34), we can give a simpler version of Cayley. Suppose h is a 
constant row and column weighted t-homogeneous identity. Let the row 
weight of i in h be c,, and the column weight be di. Then each term of e,(h) 
contains as a factor 

(-l)“a[l,..., n]l,..., n]“-’ 

where p = &ici +&id,. Hence we may write 

e,(h)=( -l)“a[l,..., nil,..., n]“-%;(h). 

Now let f be a t-homogeneous identity. Then from (34) it follows that 
f= h, + . . . + h,, where each h, is a constant row and column weighted, 
t-homogeneous identity. Hence if we define k?j( f) by 

b?;(f)=e;(h,)+ ..a +CZ;(h,), 

then we see that e;(f) is al so a t-homogeneous identity obtained from f by 
replacing each a[a]P] by a[/3’] ] h a’ w ere (r’ and /3’ are complementary to a 
and p, respectively. It follows that 

induces an isomorphism of F[ II,] onto itself, denoted 6?;, where 

Q?;( 4:) = cl:. 

We call 62; the modij?ed Cayley isomurphism. 
We now denote by Q. the natural embedding of F[ II,] into F [ II,,] 

induced by a[@] + m[ a]/?] whenever (Y and j3 are subsequences of {k + 
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1 , . . . , n} of the same length. It now follows from the definition of the Muir 
and the modified Cayley mappings that 

(38) 3n, = (&e;. 

Thus Muir can be regarded as a consequence of (modified) Cayley. 
Finally, we mention that there are identities, which one generally would 

regard as determinantal identities, that are not included in our definition as 
given in this section. For example, there is no formula (and hence no identity) 
corresponding to the fact that the determinant changes sign when two rows 
are interchanged. Such a formula could be obtained by not insisting that the 
indices in the indeterminantes n[ a]/31 be in strictly increasing order. Other 
identities-in particular, those involving more than one matrix-could be 
included by expanding our definition of determinantal identities. 

9. HISTORY 

We begin this section with references to the theorems discussed as they 
appear in Muir’s history [21]. Muir heads each paper (or group of papers) 
reviewed by the author, title, and the date, which may differ by a year or two 
from the date of publication (cf. Muir’s own article [ZO]). We follow this 
procedure, deleting the title but adding the page reference in [21]. Early 
theorems on determinants are numbered by Muir; where available, we 
append the number. 

LupZuce (1772), I, 24-33, Theorem 14, our Reference [18]. 
&net (1812), I, 80-92, Theorems 17 and 18, our [3]. 
Cuuchy (1812), I, 92-131, our [S]. 
Here Theorem 37 is the Cauchy expansion (6), Theorems 18 and 42 are 
Binet-Cauchy (15), and Theorem 17 is the special case of the product 
theorem for square matrices. Theorem 21 is the special case (28) of Jacobi. 

Jacobi (1841), I, 258-272, our [16]. 
Sylvester (1851), II, 58-61, our [27]. (see also Chid (1853), I, 79-81, our 

[71)* 
Kronecker (1870), III, 191, our 1171. 
CuyZey, see Tanner (1878), III, 277, our [6]. 
Muir (1881), IV, 7-8, our [ZO]. 

We have relied on the attributions in Muir’s remarkably complete history 
[21] and have made only a modest attempt at independent verification of 
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historical accuracy. As Muir [21, I, p. 331 points out in remarks on Laplace’s 
contribution to the expansion that bears his name, some attributions may be a 
matter of judgement. Other histories that we have consulted are Spottiswoode 
(1856) [25; 21, II, p. 811, Studn%ka (1876) [26; 21, III, p. 581, and Giinther 
(1877) [13; 21, III, p. 661. 

The above list of attributions omits Schur, who published the determinan- 
tal identity (3) in [24]. This paper [24] is devoted to power series, and perhaps 
for this reason, there is no reference to [24] in Muir [21], or in some standard 
books on matrices first published before 1940, e.g. Macduffee (1933) [19], 
Wedderbum (1934) [29], both of which contain many references. Schur’s 
identity (3) may be found in Banachiewicz [2], who apparently rediscovered 
it. The result is mentioned in. Gantmacher (1953) [12, pp. 45-461. The 
introduction by Haynsworth [14] in 1968 of the term “Schur complement” 
has influenced subsequent exposition. 

We end this section with brief remarks on the history of determinants as it 
relates to the theorems we have discussed and the proofs we have given. The 
appearance of determinants in the 17th and 18th centuries was closely related 
to the elimination of unknowns in systems of linear equations and the solution 
of such equations: e.g. Leibnitz (1693), Cramer (1756), Vandermonde (1771), 
Laplace (1772) among others; see [21, I, Chapter 11. However, in the first 
systematic expositions of the theory of determinants the sections on systems 
of linear equations are of the nature of applications: see Cauchy (1812) [5; 21, 
I, pp. 92-1311 and Jacobi (1841) [16; 21, I, pp. 253-2721. Here the 
determinant’s character as an alternating function of its rows is heavily 
exploited. Cauchy and Jacobi use the mu&linearity of a determinant as a 
function of its rows as a natural consequence of the defining expansion 
det A = C,(signa)a,,o) - - - a,,,,(,,). However, the explicit formulation of the 
mu&linear property appears to be due to Scherk (1825) [21, I, pp. 159-159, 
Theorems 46 and 473, while the theorem that addition of a multiple of one 
row to another does not alter a determinant apparently was not formulated 
until the third of Jacobi’s memoirs of 1841; see [21, I, p. 272, Theorem 591. In 
each case Muir expresses surprise at the Iate date of these theorems [21, I, pp. 
155, 2721. The second of these theorems, viz. Theorem 59, is of course the 
basis for the use of Gaussian elimination in proving theorems on determi- 
nants. Aitken [l, p. 461 uses Gaussian elimination, calling it condarsation, for 
this purpose and states that the method is ascribed to C&ii, in 1853, although 
he adds it was “ virtuaUy used by Gauss more than forty years earlier in 
evaluating symmetric determinants.” 

Unfortunately Aitken does not give a precise reference to the result of 
Gauss he had in mind, but apparently he is referring to Chib’s 1853 paper [7; 
21, II, p. 79-811. In that paper Chio proves that det B = a;c2det A where 
A=[a,J is an nXn matrix and B=[b,J is the (n-l)X(n-1) matrix 
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defined by bij=detA[l,i]l,j] (i,j=2,...,n). Chio uses this identity to 
express the solution of a system of 2n nonlinear equations as the roots of a 
polynomial of degree n. However, we do not know who first proposed the 
technique of Gaussian elimination as a systematic technique for proving 
theorems on determinants. 

10. CODA 

We now compare our proofs with some of those found in the literature. 
Our basic technique of Gaussian elimination leads to Schur and Sylvester. 
Here we seem to be following an outline of a proof of Sylvester in de Boor 
and Pinkus [4, p. 831 where (4) and (5) may be found. We then use Schur to 
obtain Jacobi, Jacobi to obtain Cayley, and Sylvester to obtain Kronecker and 
Muir. We combine Schur and Laplace to obtain Binet-Cauchy. Two proofs of 
Sylvester are given by Frobenius [lo, 111. He also points out that Kronecker is 
a special case of Sylvester. Our first proof of Kronecker is similar to that of 
Frobenius; our second proof is similar in spirit to Kronecker’s, since he too 
obtains a rank inequality from a factorization of the matrix B. 

Aitken [l] does not state Schur except for the special case of Cauchy [l, p. 
741. Our proof of Binet-Cauchy is, nevertheless, essentially the same as 
Aitken’s [l, p. 851, since Aitken in effect computes the Schur complement of 
- I, in (14). Note however that Aitken evaluates det A in (15), using what he 
calls the extended Cauchy expansion. But for A given by (14) this reduces to 
the Laplace expansion. Thereafter Aitken applies Binet-Cauchy to obtain 
Jacobi [l, pp. 98-991 and uses Jacobi to obtain Cayley. A double application 
of Cayley then yields Muir and hence Sylvester [l, pp. 193-1051. The 
explanations of Muir and Aitken in deriving Muir from Cayley seem to be 
incomplete, since one apparently has to use (34) in the derivation. 

We conclude with some other brief references to the literature. Gant- 
macher proves Schur [12, pp. 45-461, Sylvester [12, pp. 31-331, and Jacobi 
[12, pp. 21-221; J ace b i is also proved in Ouellette [23, pp. 205-2081. The 
entries of the Schur complement are obtained in Crabtree and Haynsworth 
[9] by appealing to the special case of Schur which we have identified as the 
Cauchy expansion. The formula (10) for A- ’ may be found in Banachiewicz 
[2], to whom it is attributed by Ouellette [23, p. 2011. The quotient property 
is proved in Crabtree and Haynsworth [9], Ostrowski [22], and OuelIette [23, 
p. 2101. Our second proof is similar to that given in [9]. Our first proof uses 
Gaussian elimination and is similar in spirit but not in detail to that in [22] 
which is couched in terms of successive transformation of variables. Many 
additional properties and applications of the Schur complement can be found 
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in Cattle [8], Ouellette [20], and Henderson and Searle [15]. These contain 
extensive bibliographies. Cauchy’s identity (28) has been generalized by 
Taussky [28], who proves that adj A can be factored into a product of n - 1 
matrices each of which has det A as its determinant. 

We acknowledge with thunks comments received j?om G. W. Stewart, G. 
Styan, and 0. Taussky Todd which huve helped to improve our paper. We 
thank, in particular, Carl de Boor for a remark on which the 2ast paragraph of 
Section 1 is based, and W. Gautschi for obtaining for us a copy of Chti’s 
paper. 
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