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Cyclic and Diagonal Products on a Matrix

GERNOT M. ENGEL* axp HANS SCHNEIDER
University of Wisconsin
Madison, Wisconsin

ABSTRACT

We unify the theory of cyclic and diagonal products of elements of matrices. We
obtain some new results on diagonal similarity, diagonal equivalence, complete
reducibility and total support.

1. INTRODUCTION

Cyclic products of elements of matrices have been considered by
Ifiedler and Ptak [4]. Diagonal products were considered by Sinkhorn
and Knopp [11]. We attempt to give a unified treatment of both concepts,
thereby obtaining some new results.

In Sec. 2 we introduce the equivalence relations ¢ and S on the set
D, of all # x » matrices with elements in an integral domain D). Here 4 ¢ B
if all corresponding cyclic products for A and B are equal (2.6), and A s B
if all corresponding diagonal products are equal (2.8). We then introduce
the operators 4 — A°¢ and A — A*. We obtain 4°¢ from A4 by setting
equal to O all elements that do not lie on a nonzero cyclic product, and
similarly, we obtain A° using diagonal products. We introduce a partial

0
order <{ on D,,. Itis not hard to show that A¢ = sup{P, {P,A4):0€ S},
where S|, is the symmetric group on {1,..., n}. We prove considerably
more. If A hasa% x (n + 1 — &) block of zeros, and m = max{k,» +1 — &},
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then there exist permutation matrices Q4,..., Q, such that 0 =
sup{Q,~1Q;A)e:i =1,...,m}, Lemma 2.33. Further, the bound m is
sharp, (2.35). 1f A® = 0, it follows that there are permutation matrices
Qi1,-.., Q, such that A% = sup{Q,~1Q.,4)°: 7z = 1,...,n} (2.37), and the
bound # is sharp (2.38). If A% # O, then there is a permutation matrix P
for which 4% = P~Y(PA)e (2.37).

In Sec. 3, we present a unified theory of irreducible and fully indecom-
posable matrices. Using our definitions, we present proofs of some known
results, e.g. (3.14). Other results in this section are intuitively obvious,
but have not been stated before, since they require the definitions of
Sec. 2 for a formal statement, e.g. (3.15), (3.16).

In Sec. 4 we find necessary and sufficient conditions for two matrices
with elements in a field to be diagonally similar and to be diagonally
equivalent. We prove the following result (4.1), which is closely related
to Fiedler and Ptak [4, Theorem 3.12]. The following are equivalent:
(1) A ¢ B and (2) A° and B¢ are diagonally similar. An analogue is proved
in (4.11). The following are equivalent: (1) 4 $ B and (2) there exist
diagonal matrices D; and D, such that A* = D;B*D, and per DD, = 1.
We show, (4.5), that 4 is irreducible if and only if, for all B, 4 ¢ B implies
that 4 and B are diagonally similar; and we prove an analogous condition
for full indecomposability, (4.12).

Let a — 4 be a multiplicative mapping of the field, and let Bt be the
transpose of B. We then apply the results of this section to determine
necessary and sufficient conditions for a matrix to be diagonally similar
to a matrix B where B = B?, Secs. 4.14 and 4.19. Corollaries 4.20 and
4.22 generalize results of Parter and Youngs [9] concerning necessary and
sufficient conditions for a matrix to be diagonally similar to a symmetric
or skew-symmetric matrix.

In Sec. 5 we show that a fully indecomposable matrix 4 is diagonally
equivalent to a (0, 1) matrix if and only if all nonzero diagonal products
equal a constant with an #th root in the field (5.2). When 4 is a nonnegative
matrix, this result is due to Sinkhorn and Knopp [11]. Analogously, an
irreducible matrix A4 is diagonally similar to a (0, 1) matrix if and only
if all nonzero cyclic products equal 1 (5.8).

InSec. 6 we consider real and complex matrices, and present characteriza-
tions of full indecomposability, (6.10), and total support (6.13): Let 4 > 0.
Then 4 is totally supported if and only if, forall B, |B| < 4 and |per B| =
per A imply there exist diagonal matrices D, D, whose diagonal elements
have absolute value 1, such that 4 = D,BD,. As Corollary 6.14, we obtain:
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Let A >0. If |B| << 4 and |per B| = per 4, then A% = D,B*D, where
|D;| = |Dy| = I. This corollary parallels Ostrowski [8, Zusatz zu Satz 1]:
Let 4 be a nonsingular M-matrix. If B is a matrix with |b,,| < a;; and
|b:5l = — a;; and |det B| = det A then B¢ = D;A°D,, where D,, D, are
diagonal matrices with |D;| = |Dy| = I.

SECTION 2

DEerFiniTIONS 2.1.  Let # be a positive integer.

(i) A path of length m is a sequence f = (iy, ts,. .., i,,) Where m is a
positive integer, 1 i, <nfors=1,2,...,mandm > 1. If¢ = ¢, and
] =1, wesay £ is a path from i to j. We say a path § = (11, t5,..., tp)
passes through the pair (i, 1) if for some integers, i s <<m — 1,4, = fand
borp =17

(i) A closed path is a path § = (iy, %s,. . ., ¢ ) With i, = 7;.

(iii) A cycle is a closed path y = (i, ¢s,...,14,,) where 7, # ¢, if
2 s <t m.

{iv) Iff = (i, 43,..., 0, anda = (1, Jg,. . -, {,) are paths withi,, = j;
then fo will denote the path (i, %5,. .., 0, 72, - -, 74)-

CoMMENT. Fiedler and Ptak [4] say ‘‘cycle” where we say “closed
path,” and “‘simple cycle”” where we say “‘cycle.”

DeriniTIONS 2.2. (i) If G is a set, let &, denote the set of #n X %
matrices with elements in G.

(ii) LetDbea(commutative)integraldomainandlet f = (¢1,%5,...,%m)
be a path. For 4 € D, we define

m—1
HB(A) = H ai]’i]‘+1'
j=1

If 5 is a cycle I14(A) is said to be a cyclic product. 1f § is a path and
IT1,(A) # 0 we call § a nonzero path for A.

(iii) Let S, denote the symmetric group on {1,2,...,#n}. For
g€ Sy and A € D, wedefine IT (4) = H:‘:I Ai5s)- Also, I1,(A) is said to be
a diagonal product.

REMARK 2.3. Let AeD,. Let 8 = (iy,...,1,) be a nonzero closed
path (cycle) for A. Then, for 1 <<v < m, p = (r, fpin, o o) Tty C1se - o5 By)
is also a nonzero closed path (cycle) for 4 and I1,(4) = I1,(A).
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Lemma 2.4. (i) Let B be a closed path. Then there exist cycles
V1, Vo, - -, Vi SUch that

IT,(A) = IT, (A) -+ - I, (A), forall AeD,.

@) Let 1<<i,j<<n Let B be a closed path through the pair (1, 7).
Then there exist cycles 1, ya,. .., y, such that y, passes through (i, 1) and
,(4) = 1T

y(A) - 11, (A), forall AeD,.

Proof. (i) Let f = (i1, 7s,...,4,) be a closed path. The proof is by
induction of m. If m = 2, then 8 is a cycle. Assume m > 2 and that the
result is true for all closed paths o = (1, 7s,...,7,) With 2 << p < m. If
B is a cycle there is no more to show. Otherwise, there exist integers ¢
and » with 1 < ¢ <7 <{m such that y, = (¢,,...,4,) is a cycle. Thus
0= (4, ... 0 r41,-- ., m) 15 a closed path and satisfies our inductive
hypothesis. Thus there exist cycles yy,...,y,_; such that IT,(4) =

I1,(4)--- 1, (A)forall AeD,. Clearly
1I5(A) = Ho(A)I,(A) = II,,(4) - - - I1,,(4)

forall AeD,.
(i) Let D be the integers, and let the elements of 4 be distinct
primes. The lemma follows by unique factorization. [

CoroLLARY 2.5. Let AeD,. Leti # j. The following are equivalent.

(1) There is a nonzero path 8 from 1 to q.

(2) There exist acycley = (iy, 99, ..,1,), ¥ =3, such that i = i, = i,
] =1t,_; and

r—2

[ ey # 0.

s=1

Proof. (2) — (1). Thisisimmediate since a cycle is a path. (1) — (2).
Suppose £ is a nonzero path from ¢ to j. Then « = f(j, 7) is a closed path
through the pair (f,7). By Lemma 2.4(ii) and Remark 2.3 there exist
cycles vy, ¥s,. .., y; such that y; = (4y,...,4,), 1 = ¢, = 4,, § = 4, and
II(E) = II, (E)---II,(E) for all E€ D,. Let K be the matrix:

Y1

krs = Qs (7: S) # (7; 1),
kﬁ = 1.
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Then I1,(K) # 0. Hence 1, (K) # 0. Thus

r—2

Haisis+1 #0. A

s==1

DerinNiTION 2.6. Let A, BeD,. Then 4 ¢ B if and only if for all
cycles y, I1,(A) = II,(B).

REMARKS 2.7. let A, BeD,. Let De D, where D is an invertible

diagonal matrix. The following statements are easily verified.
(i) ¢ is an equivalence relation on D,,.

(i) D1AD ¢ A.

(ii) A ¢ Bifandonlyif forall permutation matrices P, P-1AP ¢ P-1BP.

(iv) A4 ¢ Bimplies 4, ¢ B; where A,, B, are corresponding principal
minors of 4 and B respectively.

(v} A4 ¢ B if and only if for all closed paths 8, IT,(4) = II4(B), see
Lemma 2.4(i).

DeFiniTION 2.8. Let A, BeD,. Then A $ B if and only if for all
0 € Sny, 11,(4) = I1,(B).

REMARKs 2.9. Let 4, BeD,. Let Dy, Dy e D, be invertible diagonal
matrices. The following statements are easily verified.
i) S is an equivalence relation on D,,.
(ii) If per(DyDs) = 1 then D;AD, s A.
(ii) If A s B then PA $ PB, for all permutation matrices P.

0
DerFinNiTION 2.10. Let 4, BeD,. Then 4 < B if and only if 4;; # 0
implies b;; = a;;.

ReEMARKs 2.11. Let A, BeD,,.
0

0
(i) The relation <{ is a partial order on D,. We write 4 < B if
0
A < Band 4 # B.
0 0
(i) If A <B then for all permutation matrices P and Q, PAQ < PBQ.

0 0
(i) If A B, and Dy, D, are diagonal matrices, then D1AD, < D1BD,.

(iv) If D, and D, are nonsingular diagonal matrices, D4AD, = B

0
and 4 < B then 4 = B.
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0
(v) Let & = D, U{¢}. Define ¢ <L A for all AeD,. Then L isa
0
complete lattice with respect to <C (e.g. {3, p. 21]). All suprema and infima

0
in this paper refer to the relation! <.
0
DeriniTION 2,12, 1f A € D, we define A¢ = sup{B: B ¢ 4, B > A4}.

REMARKs 2.13. (i) Ac° ¢ A. This is a consequence of
(ii) af; = a;; if there is a cycle y which passes through the pair (7, 7)
such that I1,(4) # 0. Otherwise aj; = 0.

(i) Leta;; # 0. Then aj; = a,;if and only if there is a closed nonzero
path through the pair (7, 7), see Lemma 2.4

(iv) Foreveryre D, (A¢ + vI) = (4 + rI)e.

(v} Let ¢° = ¢. Then -¢is a closure operator on % (e.g. [3, p. 42]).

DeriniTiON 2.14. The matrix 4 € D, is said to be fotally reducible
if A° = 4. We will denote by % the set of all elements 4 € D, such that
Ac = A.

REMARKS 2.15. (i) A4 €D, is totally reducible if and only if for each
pair (¢, ) such that a,; # O there is a cycle ¢ which passes through the
pair (7, 7) such that I7,(4) # 0.

(i) % U {é} is the closure system corresponding to the operator -°.

0
(ili) A° = inf{Be¥:B > A} (see Theorem 1.1, [3, p. 43)).

)
0
{iv) A is totally reducible if and only if for all BeD,, B > 4 and
B ¢ Aimply B = 4.

LimMma 2.16. Let A€ D,. Then the following are equivalent.

(1) 4e%.

(2) For all 1,1, 1 < 4,7 < n, if there is a nonzero path (for A) from
1 0 §, then there is a nonzero path from { to 1.

Proof. (1) > (2). Let A€ ¥, and suppose f = (¢1,..., i) ¢1 =1,
i,, = 7 is a path such that I7,(4) # 0. Let 1 <{s < m. Since Aigigyy # 0,
it follows by Remark 2.13(iii) that there is a nonzero path §, from 7, to
5. Let 0 = 0py_10,_2° - 0;. Then § is a nonzero path from g to 1.

0
1 1t is helpful to read: 4 < B as ‘4 has fewer zeros than B.”
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(2) — (1). Suppose (2) holds, and let a;; # 0. Then there exists a
nonzero path 8 from j to 7. Hence (7, 7)5 is a nonzero closed path through
the pair (4, 7). By Remark 2.13(iii), af; = a,;. Hence 4° = 4, and so
Ac¥4. R

0
DeFiNiTION 2.17. If A €D, we define A* = sup{B: B $ A, B > 4}.

ReEMARKS 2.18. (i) A* s A. This follows from:

(i) a3; = a;; if there is a permutation o€ S, such that o(i) = 7
and I1,(A) # 0. Otherwise a;; = 0.

(iii) If we put ¢* = ¢, then -*is a closure operator on Z.

REMARKS 2.19.  Let & be the set of (0, 1) matricesinD,,. Let 4,Be Z.

(i) A Be%and A ¢ BthenAd = B.
0
(i) IfAc%and B ¢ A, then B < 4.
(i) A° = sup{Be Z:B ¢ A}.
If A s B then A* = B
0

)
)

(vi If BS A, then B < 4~
)

v

—

(vi) A® =sup{Be Z:B s A}.

DErFINITION 2.20. The matrix 4 € D,, is said to be fotally supported
if A = A*. We will denote by .# the elements 4 € D,, such that 4 = 4%

ReMARKs 2.21. (i) AeD, is totally supported if and only if for
each pair (4, ) such that a,; # 0 there is a permutation ¢ such that o(i) = §
and I7,(4) # 0.

(i) L U{¢p} is a closure system with respect to the operator -

0
(iiiy A* =inf{Be ¥: B = A}.
0
(iv) A is totally supported if and only if forall B, B> A and B s 4
imply B = A.
DEFINITION 2.22. A = {4 eD,: [ [, as # O}

LEMMA 2.23. Let A,BeD,.
(i) IfA ¢Bthen A S B.
(i) Let AeN. If A SBanday;=>by for 1 <i<mn,then A £B.
(i) Let X = diag(ayy,. - ., @ny) and Y =diag(byy,. .., bps). Let A €N,
If A s Bthen YA ¢ XB.
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Proof. (1) Assume A ¢ B. Let g€ S,,. Then there exist cycles
Y1, Vo, - -, yesuch that [T, (M) = IT, (M)IT, (M) - - I, (M) forall M e D,,.
Hence I1,(A) = I1,(B), and (i) follows.

(i) Assume AeA, 4 $B and a;; = b,; for 1 <i < n. Clearly
Apy = byn. Let y be a cycle, say y = (iy,...,17,). Define 0§, by

a(ty) = ¥y, t=1,...,9 —1,
a(k) = k, otherwise.
Let R = {k:o(k) = k}. Since
11,(4) = H(A)cgar = 11,(B) L egbi = 11,(B),
and (ii) follows.

(i) Let A" =YA, B = XB. Then A’e A", B' s A’ and b, = a”
i =1,...,n The result follows by (ii). W

0 0
LevMA 2.24. A < A° < A*, forall A€ D,

0
Proof. By Definition 2.12, A <{ 4¢. Combining Lemma 2.23(i) and
0
Definition 2.17 we conclude A¢ < 4. 1

LEMMA 2.25. If A €N then A% = A°.

Proof. Since A s A° we have by Lemma 2.23(ii) that 4 ¢ A%. Thus
0 0
by Definition 2.12, A¢ >> 4*. By Lemma 2.24, A° < A%. Hence 4¢ = 4°.

CoroLLARY 2.26. (1) ¥ < .
@ ANF=A4NE.

0 0
Proof. (i) Ifde P thend <A< 4* = Athusd = A¢and 4 €%.
(ii) This is immediate from Lemma 2.25. [l

CorROLLARY 2.27. If A€ D,and A # O then the following are equivalent.
(1) Ae%.
(2) There is a permutation matrix P such that PAe A" N¥E.
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Proof. (1) —(2). If Ae % and 4 # 0 then there is a permutation
matrix such that PA €eA4". Thus PAe S/ ' NF = A NE.
2) - (1). f PAe A" NE then PAe ¥, whence Ae¥. Wl

LemMA 2.28. Let A €D, and P be a permutation matrix.
(i) (P1AP)* = Pt4°P.
(i) (PA) = P(A4¥).

Proof. (i) A ¢ A° thus by Remark 2.7(iii), P'AP ¢ P714°P. By
0 0
Lemma 2.24, A¢ > A and hence, by Remark 2.11(ii), P~14°P > P714P.

0
Thus, by Definition 2.12, P~14°P < (P-1AP)¢. Conversely, by Remark
2.13(i) (P~14P)c ¢ P-14P. Thus, by Remark 2.7(iii) 4 ¢ P(P~1AP)°P~!

0 0
and, by Definition 2.12, A¢ == P(P~1AP)°P~'. Hence (P1AP)¢ < P714°P
and (i) follows.

(i) The proof of (ii) is similar. [l

LEmMA 229, Let A, BeD,.
(i) If Ac€¢, B€¥ and A ¢ B then a,;; = 0 if and only if b;; = 0.
i) If Ac ¥, Be¥ and A S B then a;; = 0 if and only if b;; = 0.

Proof. (i) 1If a;; # 0 then there is a cycle § which passes through
the pair (7, 1) and [14(A) # 0. Since A ¢ B, II4(B) # 0 and hence b,; # 0.
Similarly b;; # O implies a;; # 0.

(ii) The proof of (ii) is similar. W

DeriNiTIONS 2.30. (i) If 4 €D,andand Jaresubsetof{1,2,... #u}
then A[I|]] is the submatrix of A lying in rows 7 and columns j with
ielandje].

(i) If A[I|J] = O we shall call A[I|]] a zero submatrix of A.

(ili) By |I] we denote the number of elements in /.

LemMA 231. Let AeD, and (I, ]) be a partition of {1,2,..., n}.
If A{J|I] = O then A°[I|]] = 0.

Proof. There is no nonzero path for 4 from § to ¢, if je J, tel.
Hence, by Lemma 2.16, there is nononzero path from4 toj. Thusa{; = 0. W
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DEeriNiTION 2.32. (i) If 0€5(4) then P,eD, willdenote the permutation
matrix such thatif 4 e D, and B = P,4 then b;; = a,,;forl < 7,7 < n.
The set of all permutation matrices in D,, will be denoted by 2.

(ii) For 1 <4, < n, let «(t, 1) € S(y be the transposition of ¢ and j.

We now prove the following combinatorial relation between the -¢
and the -¢ operators.

LeEmMMA 2.33. Let A €D, and let k be an integer, 1 < k < n, and let
m = max{k, #u + 1 — k}. Suppose that a; =0 for i =1,...,k j =
k,...,n. Then

(1) there exist R, S,€ P, 1 = 1,..., m such that

0 = sup{R, Y (R;4S)¢S; 11 =1,...,m};
(i) there exist Q, € P-4 = 1,..., m such that
0 = sup{Q,71(Q;4)c: 7 = 1,...,m}.

Proof. (i) Define

R; =P, i=1,...,k—1,
R, =1, i1=~Fk,...,m,
Si = Pyrrin it=1,...,n — k&,
S;=1, i=n+1—kFk,...,m
Let
B, = R, Y{R;AS,)°S;71,
B =sup{B;:7=1,..., m}.
Let
Ji=1{,...,k—1},
I, =1{&,...,n}
Je={1,... &},

12={k+1,...,n}.
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We consider 5 (overlapping) sets such that each pair (7,7), 1 <7,7<n
belongs to one of these sets, and we prove b;; = 0 in each case.
1) 1<i<<k kB

Since R,, = S,, = I, it follows that B,, = A°. But a;; = 0, hence putting
F = B, we have f;; = 0. Thus b;; = 0.

@) r<i<n,  1<j<k—1

Since A[J|I;] = 0, it follows by Lemma 2.31, that a;; = 0. Hence for
F = B,, we have f;; = 0. Thus b;; = 0.

(3) Let 1<i<k—1, 1<j<k—1

Let C; = R,AS;. Let G = C;5. Since C,[J4|I;] = 0, it follows by Lemma
2.31 that g,; = 0. Hence for F = B;, we have f;; = 0. Thus b;; = 0.

(4) Let E+1<<e<m, 1<j <k

Since A[J3|I5] = 0, it follows by Lemma 2.31 that a;; = 0. Hence
for F = B,,, we have f;; = 0. Thus b;; = 0.

(5) EH1<i<n, k+1<j<n

Let C; = R;_4AS; ;. Let G = C;o. Since C,[Js|lo] = 0, it follows by
Lemma 2.31 that g;; = 0. Hence for F = Bf;; = 0, and so b;; = 0. We
have proved (i).

(i) Let R;, S; be defined as in (i), and put @, = S;R;, ¢ = 1,..., m.
Then by Lemma 2.28(i),

R,YR,AS)°S;,7 = R;718,7Y(S;R;,AS;S;)°S,S;,7! = Q.7 1Q.4)".
Hence by (i),
0 = sup{Q; Y(Q;4):s=1,....,m}. W

We shall show that there exists a matrix 4 for which # permutations
are actually required in Lemma 2.33. To show this, we define a matrix
A such that, for each o € S(,,, either (P,4)¢ = P,A or (P,A)° has precisely
one zero row and column.

Lemma 234, Let 1 <<k < n Let AeD, bedefined by:
a; =1, t=1,...,k i=1,...,k—1,
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a; =1, 1 =k+1,...,n, =k ..., n
a;; = 0 otherwise.

Letoe Sy andlet B = P,A.

(i) If there exists an i, B + 1 < ¢ < n such that (i) <<k — 1, then
Be = B.

(i) Otherwise, there is a q, 1 < q < #n such that:

(@) byy=1and bj; =0 if either i =qand j=1,....k —1ori=
ok+1),...,0n) and | = q and

(b)  bf; = by; for all other (i,7), 1 < 1,7 < n.

Proof. Let
I, =0{l,...,Fk},
I, =ofk +1,...,u},
Ji=11,...,k—1}
Jo={k,..., n}

Then b;; = 1 if either te€ Iy, j€ J, or 1€ l,, j€ J,; otherwise b;; = 0.
Since |I]| 4 |Jz| =7 + 1 we have I, N J, # ¢. Hence, there is a g,
1< g <n such that geI, N J,. We shall partition the set of (z,7),
1 < 7,7 < into 4 sets, and consider &j; in each case.

(1) 1€ J1, jel;.
Then (j, 7) is a nonzero path (for B), whence b;; = b,;, by Remark 2.13(iii).
(2) 1€ Jy, j €l
Again (7, #) is a nonzero path, whence b;; = b;.
(3) 1€ ]y, 7€ 1,.
(7, ¢, %) is a nonzero path and b;; = b;;, by Remark 2.13(iii).
(4) 1€ Jo, jel,.

Now we must consider two cases.

Case (i). Ip,NJ,# ¢. If pe N J; then (7, p, 7) is a nonzero path.
Thus b;; = b,;, by Remark 2.13(iii).
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Case (ii). I3NJ, = ¢. Inthiscase{g} = I; N J,. Alsol; = J;U{q},
Jo=1IyU{g}. 1If b;; % 0, then le J, CI,. Hence by induction on the
length of the path from 7 to /, if (7,..., ) is a nonzero path, then /e J,.
Thus there is no nonzero path (7,. .., 7). Ifte I, j€ Jyorif¢ = 7 = ¢, then
b;; = O whence b;; = 0. If7 = ¢g,and j € J, then b;; # 0 while, by Remark
2.13(iii), b;; = 0. Similarly if 1€ l; and § = ¢, b;; # 0, while 8}; = 0.

We have now considered all pairs (4,7), 1 <{7,7 <<% In case (i)
by = b3 foralld,f =1,...,n Incase (i), b; # O and &), = 0if i = ¢
and j=1,...,k —1oriti =0k +1),...,0#) and j = ¢; otherwise
bfj =b; N

THEOREM 2.35. Let A be the matrix in Lemma 2.34, and let m =
max(k,n +1 — k). Let P,e?, ¢=1,...,1 If 0=sup{P,YP;A)":
1=1,..., 0} then [ = m.

Proof. Let ! be an integer. Let F = sup{P,”YP;A)¢:i =1,...,1}.
By Lemma 2.34, F has at most / rows with all zero entries and / columns
with all zero entries. Hence if ¥ = 0, then/ > m. W

LEMMA 2.36. Let AV, A@ .. A® be matrices in D,. Let P, Q€ 2.
Then

Psup{d™:r =1,2,.. k)0 = sup{PANQ:r =1,2,..., k}.

Proof. Let ¢ and 7 be the permutation associated with P and @
respectively. Let 4 = sup{d™W:» =1,..., &}, C'"" = PAMQ, and C =
sup{CW:7 = 1,..., k}. Then ¢;; = aype, ¢ = @iy 47 =1,..., %
Further, a;; = a(}) if a{) = a{), » = 1,.. ., k, otherwise a;; = 0. Similarly
ciy=c if ¢ =), r=1,...,k otherwise ¢;; =0. The lemma
follows.

THEOREM 2.37. Let AeD,.
(i) If A%+ O, then there exists a permutation matrix Q such that

A0 = Q71Q4)e.
(i) If A®* =0, then there exists m, 1 < m < n and permutation
matrices Qy, Qo,. . ., Q,, such that

4% = sup{Q,HQ;4)¢:2 =1,..., m}.
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Proof. (i) Let A% # 0. By Corollary 2.27 there exists g € S, such
that P,A*e #"N¥. Hence, by Lemma 2.25, A® = P,~YP,A4)* =
PP A)e.

(i) Suppose A% = 0. By the Frobenius-Konig theorem (see (6, p. 97]),
there exist P, Q € # and thereexistsa k, 1 <{ & <{ nsuch that forC = PAQ,
we have C[I|J] =0 where I ={1,...,k}, J={k...,n}. Let m =
max{k, # + 1 — k}. Then m <{#n. By Lemma 2.33 there exist @,/ € Z,
1 =1,2,..., msuch that

0 = sup{(0/)(Q/C)e:i = 1,..., m}.
Let Q; = QQ,/P. Then
sup{Q;1(Q;4)¢: ¢ = 1,...,m}
= sup{P1Q,/ Y Q/PAQ)QL:i =1,..., m}
= P~ lsup{Q,/~HQ.,C):i=1,..., m}Q1
by Lemma 2.36. Hence
sup{Q, 1@, A)¢:e=1,....m}=0=4*. W
REMARK 2.38. Let 4 be the matrix
a; =1, t1=1,...,n, 7=1...,n—1
a;, =0, 1=1,..., n.
Then, if P,e#,i=1,...,l and
0 = sup{P, (P, A):i=1,...,1}

then, by Theorem 2.35, / >> ». Thus the bound on the number of permuta-
tion matrices in Theorem 2.37 is the best possible.

COROLLARY 2.39. If Ae€D,, then:
(i) A* = sup{P,(P,A):0€ S}
(il) A4° = sup{(AP,)°P,l:0€ S},

(i) A® = sup{P, YP,AP,)P,1:0,7€ S}
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0
Proof. (i) By Theorem 2.37, A* < sup{P, }(P,4)°:¢0€ S(,}. But,
0 0
foralloe S, 4% = P, {P,A)* = P, Y(P,A4)°. Thus 4* == sup{P,}(P,A4)°:
g€ S(n)}'
(i) Lemma 2.33 can be proved for post multiplication by permuta-

tion matrices. Hence (ii) follows similarly.
0

(i) A* < sup{P,YP,AP,)P,: 6,7 € S(n)}. Foralla, 7€ Se,, A° =
0 0
P,"Y(P,AP,)*P,"1> P,~}(P,AP,)*P,~1. Thus 4° > sup{P,~}(P,AP,)°P,™1:
0, T€E S(n)}' .

DErFINITION 2.40. A"y = AU {zero matrix}.

CoroLLARY 241. (i) & =N{P,C:0€ S}
(il F =U{P(ANoNE):0€E S}

Proof. (i) By Corollary 2.26(i), for all o€ S(,, & = P,¥ < P,%,
whence & < N{P,F:0€S,} Let AeN{P,€:0cS,}. Then for all
0 € Sn), Wwe have P,A €. Hence (P,A)° = P,A. Hence by Corollary
2.39, A¢ = sup{P," Y (P,A):0€S,y} = 4. Thus 4 e %.

(i) By Corollary 2.26(ii), for all 0 € S, & 2 P,(A o NE). Thus
F 2 U{P,(NoNE):6€ S} Converselyif A eU{P, (A NE):0ES}
then there exists P such that PAe A/ yN%. If PA = 0 then 4 = 0 and
Ae¥. If A #0 then PAeA/ N¥ = A4 N, by Corollary 2.26(ii).
Thus PAe ¥andAe¥. A

SECTION 3

DerFinITION 3.1. Let 7,§ bein the set {1,2,...,n}. Let AeD, We
shall say i 4 j if either 1 = §, or there exists a closed pathy = (i1, %2, . -, %p)
and an integer s, 1 <{s <<m, such that ¢ =4, =4, and j =4, and
I1,(4) # 0.

REMARK 3.2. (i) 47 if and only if there exist paths yy, s such
that y, is a path from ¢ to 7, y, is a path from  to ¢ and 11, (A)I1,,(A4) # 0.

(ii) 4 is an equivalence relation.

0
(i) Let BeD,and B << A. Then, for1 < i, § < n,if i 44 theni Bj.

(iv) If (I, ]) is a partition of {1,2,...,#} and A[I|J] = 0 then

i~jforiel, je].
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(v) LetAe®%. Ifa;+#0,thenidy.
(vi) Let A ¢ B. Theni4jif and only if ¢ Bj.

DrriniTION 3.3. Let A €D, and let 4 be the equivalence relation
of Definition 3.1. Then 4 is called i#reducible if i 4§ for all 4,4, 1 <
1,7 < n. If A €D, isnot irreducible, then A4 is called reducible. We denote
the set of irreducible matrices in D,, by €.

Lemma 3.4.  The following are equivalent:

(1) Ae¥,.

(2) For all v and §, i # 1§, there is a cycle v, y = (i1, is,. .., 1,), Such
that j =iy = i, ¢ =4,y and | 2} ag,, # 0.

Proof. (1) — (2). This is Corollary 2.5 and Definition 3.3.

(2) - (1). Let7andjbegivenl <+ < § << #n. Then thereis a path 9,
from ¢ to § and a path y, from § to ¢ such that IT, , (4) # 0. Thus ¢4j
forallz,j,i#jand Ae%;. A

REMARKS 3.5. (i) Every ! x 1 matrix is irreducible.

(i) ¢, <¢%.

(iii) Let Ae%,. Let (I, J) be a partition of {1,...,n}. Then there
exist ¢ € I, € J such that a;; # 0.

(iv) Let E, F be two equivalence classes for 4. We may define E < F
if there exist ¢ € E and j € F such that there is a nonzero path for 4 from
i toj. Then it is easy to see that <{isa partial order on the set of equivalence
classes. Further, if E < F, then A[F|E] = 0.

(v) It is easy to see that any finite partially ordered set has a total
ordering consistent with the partial ordering. Let E,,..., E, be the
equivalence classes for 4 ordered so that E; << E;implies¢ < 7,1 < 1,7 <.
Thus there exists a permutation matrix P such that

A[E.|E,) A[E(|E;] -+ A[E4|E,]
0 A[ES|Es]  --- A[E,|E,]
0 0o - .

PTAP =

0 0 A[E,|E,]
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where PTAP is in block triangular form and A[EJE,Je%;, 1 <i<r.
(vi) By Remark 3.2(v), the following are equivalent
(1) Ae¢%.
(2) Thereis a Pe&, such that PTAP =5, ®--- D B,,, where
Bef,1 <1<,

DerFiniTION 3.6. (i) Let AeD,. We call A fully indecomposable if
A # 0 and PA is irreducible for all P € .

(ii) The set of fully indecomposable matrices in D, will be denoted
by & 1

ReMARK 3.7. (i) If > 1, then &) = N{P, ¥, 0€ S}
(i) If n =1, &, consists of all nonzero matrices.

DEeriNiTION 3.8. Let # be defined as in Remark 2.11(v). Let M be a
nonempty subset of #. Then M is an initial segment of £ if A € M and

0
B < A imply Be M.

ReEMARK 3.9. (i) It is easily seen that the intersection of a set of
initial segments is again an initial segment, since ¢ belongs to every such
segment.

(ii) AU {¢}is an initial segment of Z.

LemMa 3.10. (i) %, U {¢p} ¢s an initial segment.
(i) F1U{d} is an initial segment of L.

0
Proof. (i) Let A€€,andlet B < A, where BeD,. Then, by Remark

3.2(iti) ¢ A 7 implies i Bj, 1 <4, <n. But Aec€, 147, foralli,j, 1<
i,i <n. HenceiBj, foralli,{,1<4i,i<n
0
(i) If nw =1, distinct elements of &, are incomparable under < and
0

the result is true. Assume n > 1. If B< A then by Remark 2.11(ii),

0
PB < PAforall Pe P. Henceby (i), P€, U {¢} is an initial segment of L.

By Remark 3.7, #1 = N {P, €1, 6 € S(n)}, whence, by Remark 3.9(1), £, U {¢}
is an initial segment. W

LemMma 3.11. %, = &
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Proof. Ifn=1 %, =. Letun > 1. By Remark 3.5(ii), ¥, < ¥.
By Remark 3.7(i) and by Corollary 2.41(i)

y1=n{P0%1:GES(,ﬂ)} < n{Pa%:GES(n)}‘;‘ .

As Remark 3.7(i) shows, it is immediate from our definitions that
we may replace ¥ by &, and € by %, in Corollary 2.41(i). The same
replacements may be made in Corollary 2.41(ii), but the proof is harder. Wl

LeEmMA 3.12. Let BeD,, and letc € S,y. If P,B € N theni Ba(i), for
1=12,..., 5

Proof. 1f 6(3) = 1, then i B o(i). So suppose o(i) # i. Let 1 <<i << #n
and suppose ¢™(i) =7, o*(¢) # 14, 1<k <m. Let y be the cycle
[#, o(7),. .., o™()]. Let G = P,B. Then for 2 =1,2,...,m — 1,
boks 1oty = Bakgpohisy 7= O Since G € 47, Hence IT,(B) # 0 and tBo(i). W

LemMa 3.13. LetBeD,andletoe Sy,. Ifoli)Bijori=1,2,...,n
and G = P,B then i G| implies i Bj, 1 < 1,j < n.

Proof. By definition, ¢ B4, 1 = 1,...,n. So suppose § # i. Let
1G 7. Then there exists a closed path y = (iy, 75, .., i,,) and an s, 1 <
s < m,suchthati, =i, = 4,7, = jand I1(G) = 8iyiBizi,” " Bimeyim # 0-
Hence boi,yi,b00i01, " * " botim—pyim # 0. But 1, Bo(iy), k= 1,...,m — L.
Hence there exist paths 8, from 7, to ¢(sz) such that IT;,(B) # 0. Let
y = {B1lo(iy), 12082+ * Bulo(im-1), tm]}- Then IT,(B) # 0 and y is a closed
path which satisfies Definition 3.1. Hence:B{. W

The following lemma is analogous to a lemma of Brualdi, Parter, and
Schneider [2, Lemma 2.3].

LeEmMA 3.14. Let A e D,. The following are equivalent.
() Ae%,.
(2) There exists a P € &P such that PA e /" N¥,.

Proof. (1) —(2). Let A€ &,. By Corollary 2.27 and Lemma 3.11,
there is a P € & such that PA € #". By Definition 3.6, PA € %,.

(2) = (1). LetG = PAeA NE,. Letoge S, and B = P,71G. Since
P,Be .4, it follows by Lemma 3.12 that : Bo(s), forall 4,1 = 1,..., n.
Since G € €, wehave i G §, foralls, j,1 < 4,{ << n. Hence, by Lemma 3.13,
1Bjfori<i,{ <m Thus Be%,. Since ¢ was arbitrary, Ae ;. W
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COROLLARY 3.15. &) = U{P (A NEF):0€e Sy}

LeMMA 3.16. (i) A€€,and B £ A imply Be¥,.
(i) Ae. S and B S A imply Be ¥;.

Proof. (i) follows from Remark 3.2(vi).

(i) By Lemma 3.14, there is a P such that PA € 4" N €. By Remark
2.9(ii1), PA s PB. Let A’ = PA,B’ = PB,and let X = dlag(au, ),
Y = diag(by,. .., b,,). By Lemma 2.23(iii), YPA ¢ XPB. By Lemma
3.16(i), XPBe #/"N%,. Hence PBe A N%,, and so by Lemma 3.14,
Be?,. &

The next lemma is the diagonal product analogue of Lemma 3.4 for
fully indecomposable matrices. It is similar to a lemma due to Brualdi
[1, Lemma 1].

LemMA 3.17.  The following are equivalent.

(1) Ae ;.

(2) For all i and j there is a permutation o € S, such that ¢(t) = 1 and
[ Tewi @xoar # .

Proof. (1) - (2). Assume 4 € ;. Then there is a permutation
pESn such that P, A€, N A. Let B=P,A. Let i, be given, 1 <
1,7 < n

Case 1. If p71(i) = g, then let 0 = p. Then, since B e .4,

0 # Hbu = H“p(m = H“ka(k)-

I#p—2) I#£p—1(1) (.22

Case 2. Let p7i) # j. By Lemma 3.4, there is a cycle y =
({4,-.., %1, %,y such that i, = 4, = jand i, ; = p—1 yand [ [i2% by, , #
0. Define y € S(,y by p(6) = 4,01, s =1,...,7 — 1, () = I, otherwise.
Then since B € A", we have

0# Hbmz) = n“pmy(n = Hala(l):

Ltp—1(i) I#p—1(3) Ii

where ¢ = yp!

(2) = (1). Let pe Sy, and let B = P,4. We first shall show that
B satisfies (2). Let 1 <{4,j <{n. By assumption there exists a o€ S,
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such that op(i) = j, and H,#(i) ey # 0. Lety = op. Then y(f) = j and

[ Towm = T Tawmm = [ Lawm # 0.

ki ki I#p(i)

Now we show that B satisfies Lemma 3.4(i). Let1 <{¢,j <<wmandi # 7.
Lety € Sy, p() = f,and [ [, bxy # 0. Thereisacycley = (iy,...,4,),
withi, = p*2(7),j = 1,...,7,andé = ¢, 3,f = ¢y =4, and [ [} b, s, # 0.
Thus, by Definition 3.3, B € ¢, andit follows by definition, that A %;.

LemMa 3.18. Let A €D,. Then the following are equivalent.
(1) Ae%.

0
(2) Forall BeD,,if B<L A°and B ¢ A, then B = A°.

0

Proof. (1) = (2). Let Ae%,, B<{A%and B ¢ A. Then Be¥,, by

0 0

Lemma 3.16(1)). Hence B = B¢ =sup{C:C ¢ B,C > B}. Thus B >
A¢ = A, and so B = A°.

{(2) — (1). Suppose A ¢ %,. Then there exist s, ¢, 1 < s, ¢ < » such

A4 4c
that s ~ f. Let G = A°. Then, by Remark 3.2(iii), s +~ ¢. Hence by Remark
3.2(v), g = 0and I14(G) = 0for every path § from ¢ tos. Define Be D, by

bst =1,

b;; = g, otherwise, 17,7 n.

Then B % G = Ac. Let y be a cycle through the pair (s, ¢). Then I7,(B) =
b, [1,(B) where f is a path from ¢ to s which does not pass through (s, #).
Hence IT4(B) = II4(G) = 0. If y is a cycle that pass through (s, £), then
clearly I1,(B) = II,(G). Hence B ¢ G = A°. Thus (2) does not hold. i

LEMMA 3.19. Let AeD,, and if n = 1,let A # 0. Then the following
are equivalent.
(1) Ae .
0

(2) ForallBeD,, if B<L A*and B S A then B = A*.
Proof. (1) > (2). The proof is similar to the proof of Lemma 3.18,

(1) — (2), with ¢ replaced by s.
(2) - (1). CasE (i). A4®*=0. Then#n > 1.
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0
Let B = (b;;) where by; = 1, b;; = 0 otherwise. Then B << 4% and
B s A. Hence (2) is false.

Casg (ii). A®* # 0. Assume (2). There exists a Pe# such that
A’ = PAe#. We now verify that Lemma 3.18(2) holds for 4’. So let

0 0
B < (4") and B’ ¢ A’. Then, by Lemma 2.25, B’ < (4)%, and, by

Lemma 2.23(i), B’ s A’. Let B = P~'B’. Then B <0 P-1{PA)* = A5, by
Lemma 2.28, and B $ A. Hence, by assumption B = 4A°. Hence B’ =
PAs = (4'). But (4')* = (4")°. Hence B’ = (A")°>. We have verified
Lemma 3.18(2). By Lemma 3.18, we now deduce that A’e /" N¥;. It
now follows from Lemma 3.14 that 4 = P14’ %;. W

REMARK 3.20. (i) In view of Remark 2.19, a similar proof to Lemma
3.18 yields: Let 4 € &. Then the following are equivalent.
(1) Ae¥,.
(2) Forall Be Z,if B ¢ A then B = A°.
(ii} Similarly, let A € &. Then the following are equivalent.
(1) 4e#&.
(2) Forall Be &, if B S A then B = A>.

SECTION 4
In the sequel, F will denote a field.

THEOREM 4.1. Let A, Be €. Then the following are equivalent.

(1) A e¢B.

(2) There exists a nonsingular diagonal matrix D € ¥, such that A =
D-1BD.

Proof. (2) — (1). By Remark 2.7(ii).

(1) - (2). Let I4,..., I, be the equivalence classes for 4, and choose
representatives ;€ I, s = 1,...,7. We shall define d;, ¢ = 1,...,n. If
I, = {z}, put d; = 1. Next suppose that |I,| > 1, and let i€ I,. Since
A € € there exist nonzero paths §; from 7, to ¢ and y, from ¢ to i,. Since
Byy:is a closed path it follows by Remark 2.7(v) that

HB,(A)HH(A) = Hﬁivi(A) = Hﬁiri(B) = Hﬁt(B)Hn(B)



322 G. M. ENGEL AND H. SCHNEIDER

Hence I1,,(B) # 0. Put

M,4)  IL(B)
“= L)~ A D

Let j € I,. Since f;(4, 1)y, is a closed path, we similarly obtain

Hﬁi(A)ainVj(A) =1, (B)bijnyj(B)»

i
whence

HB,‘(B) HV,(B) _
i = bij = di lbud:'-
Hﬂi(A) HY;(A)

a

Letl <s<{r,andletj¢ 1,1 <j<n Then by Remark 3.2(v), a;; = 0
and, by Remark 3.2(vi) b; = 0 whence a;; = d;71b;d;, Let D =
diag(d,,...,d,). Then A = D1BD. I}

REMARK 4.2. Let U be a subset of the field F. Let A, Be¥ and
A ¢ B. Let 8, 1 <7<, be the paths in the proof of Theorem 4.1. If
1, (A)1;(B))"'e %, ¢ = 1,...,n then it follows from Eq. (4.1) that
there is a nonsingular D € ¥%,, such that A = D-1BD. In particular if F
is an ordered field, and A4, BeF,* then there is a DeF,* for which
A = DBD.

CorOLLARY 4.3. Let A, BeF,. Then the following are equivalent:

(1) A4 c¢B.

(2) There exists a nonsingular diagonal matrix D € F,, such that A¢ =
D=1B¢D.

COROLLARY 4.4. Let A€ ¥,, and let BeF,. Then the following are
equivalent.

(1y 4 ¢ B.

(2) There exists a nonsingular diagonal matrix D, unique up to a scalar
multiple, such that A = D™1BD.

(8) There exists a nonsingular matrix D such that A = D-1BD.

Proof. (1) - (3). Assume (1). By Lemma 3.16, Be%,, and (3)
follows by Theorem 4.1.

(3) — (2). Suppose A = D73BD = D'-1BD’. Let G = D-1D’. Then
G'AG = A. Suppose that ¢ =gy =+ = g4, where 1 <<k <n.



CYCLIC AND DIAGONAL PRODUCTS 323

Clearly ¢ # 0. Since 4 is irreducible, there exists 7, 1 <+ <% and j,
k + 1 < j < nsuch that a;; # 0. Hence a;; = g;'a;,g;;, whence g,; = c.
The lemma follows by induction.

(2) - (1). By Remark 2.7(ii).

THEOREM 4.5. Let A € F,. Then the following are equivalent.

(1) A is irreducible.

(2) For all BeF, if A ¢ B then there exists a nonsingular diagonal
D eV, such that D-1BD = 4.

Proof. (1) — (2). This is immediate by Corollary 4.4.
(2) - (1). Let A be reducible.

Case (i). A = A¢. Then by Lemma 3.18, there exists B & F, such
0
that B ¢ Aand B << A¢ = A. Hence, foralldiagonal matrices D, D-1BD # A.

0
Case (ii). A4 # A°. Then 4 < A¢, and A ¢ A¢. Hence there is no
diagonal matrix D such that D-14¢D = A. W

LEMMA 4.6. Let Ae AV and A S B. Let X be a diagonal matrix. Then
XA ¢ Bif and only if X = diag(by1/a11,- - -, bnnltnn)-

Proof. LetG = XA ¢ B. Sinceg,; = b, ¢ = 1,. .., n, it follows that
X, =bylay, i =1,..., n Conversely, let X be as in the statement of the
lemma, and put G = XA. ThenGe A, andg,; = b,;,,7 = 1,..., n. Hence
by Lemma 2.23(ii), G ¢ B.

REMARK 4.7. In Lemma 4.6, per X = 1.
THEOREM 4.8. Let A, BEF,. Then the following are equivalent:
(1) 4 sB.
(2) There exist diagonal matrices Dy, D, with per D1Dy = 1 such that
As = DlBng.
Proof. (2) — (1). By Remark 2.9(ii),
A ;SAS = DlBsDz = (DlBDz)sﬁDlBDziB.

(1) = (2). CaseI. A4* = 0. Then B* = 0, and (2) follows.
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Case II. A® # 0. Since A*e &, it follows by Corollary 2.27 that
there exist P € # such that PA*e /"N ¥. Since P4 € 4", by Lemma 4.6
there is a diagonal matrix X such that per .X = 1 and XPA ¢ PB, whence
also (PB)¢c A". Thus by Corollary 4.3 there is a nonsingular diagonal
matrix D such that D-3(PB)¢D = (XPA)¢, and by Lemma 2.25, (PB)° =
(PB)s, (XPA)t = (XPA)s. Thus

D-PB'D = D-YPB)'D = (XPA)* = XPA*

by Lemma 2.28(ii). Let D, = P-1X-1D-1P, D, = D. Then per D;D5 = 1
and D]BSDQ = A -

REMARK 4.9. Let F be an ordered field, and let A, Be F,*. Suppose
A s B. Then the matrix X of Lemma 4.6 is also in F,+. Hence it follows
by Remark 4.2, and the proof of Theorem 4.8 that the matrices D;, D,
in (2) of Theorem 4.8 may be chosen in F,*.

COROLLARY 4.10. Let A, BeF,. Then the following are equivalent.

(i) ThereexistadeF, d # O such that A S dB.

(i) There exist nonsingular diagonal matvices D\, Dy such that A* =
D, B*D,.

CoROLLARY 4.11. Let A€ ¥, be a fully indecomposable matrix. Let
BeV¥,. The following ave equivalent.

(1) AsB.

(2) There exist diagonal matrices D,, Dy € F,, with per D1Dy = 1 such
that A = DBD,.

Proof. Use Lemma 3.16(ii) and Theorem 4.8. W

THEOREM 4.12. Let A € F,. Then the following are equivalent.

(1) A s fully indecomposable.

(2) For all BeF,, if A S B then there exist diagonal matrices Dy, Dy
with per DDy = 1 such that D1BD, = A.

Proof. (1) — (2). Use Corollary 4.11.
(2) > (1). Let A ¢ .7;.

Case (i). A = A®. By Lemma 3.19, there exists BeF, such that
0
B s Aand B < A® = A. Hence, foralldiagonal matrices Dy, Dy, D1BD, # A.
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0
CASE (ll) A # As. Then A < A% and 4 i A%, Hence there are no
diagonal matrices Dy, Dy such that D14°D; = 4. W

Uniqueness in (4.11) is discussed in the following lemma.

LemMa 4.13. Let A €V, be fully indecomposable. Let Be ¥, and let
Dy, Dy, Dy', Dy’ be diagonal matrices such that A = D\BDy = Dy'BDy’,
and per DDy = per D{'Dy’ = 1. Then there is a nonzero c € F such that
D, = ¢Dy and Dy’ = ¢71D,.

Proof. By Remark 2.9(ii) and Lemma 3.16(ii), Be &;. Hence by
Lemma 3.14, there is a Pe % such that PBe A N¥;. Let G, =
PD,~D,’P-1and G, = Dy'Dy~t. Then PB = G,PBG,. Since PBe 4, it
follows that G; = Gy~1. Since PB € %, it follows by Corollary 4.4 that,
for some nonzero ce F, G; = ¢I. Hence D;71D," = P~1JP = cI, whence
D," = ¢D;. Finally, Dy'D;! = ¢71I, whence Dy’ = ¢71D,. W

As an application in this section we shall generalize a result due to
Parter and Youngs [9].

DEFINITIONS 4.14. Let a — 4 be an endomorphism of the multiplica-
tive group F\{0}, and let 0 = 0.

(i) We denote by U the set of all a€F such that there exists be F
for which a = bb.

(i) If Ae¥F,, then B = At is the transpose of 4 in F,,: b,; = ay;,
1 <4, i< n

(i) If 4eF,, then G = A is the matrix given by g;; = 4;; for
1<i,j<n

ReEMARKS 4.15. (1) Ifa,be ¥, then abe 9.
(i) Ifaec A a+#0thenale A
(i) (A)t = (4Y). We write A* for (4)".
(iv) If G = A, then Gt = (A%
(v) If A ¢ B then 4t ¢ Bt.
wi) X, YeF, XAYt = V14X
REMARK 4.16. There are many natural examples of mappings ¢ — a
satisfying Definition 4.14. Let m be any integer. Then the mapping
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given by @ = a™ (a # 0) is an example for every field F. Another example
is the usual conjugacy for the complex field.

REMARK 4.17. Let BeF,, and B = B.
(ii) B €%, since b,; # 0 implies b;,;b;;, # 0.
LemMa 4.18. Lot Ac®. If A ¢ At then a;; # O implies a;; + 0.

Proof. Let Ae¥, A ¢ At and a;; # 0. Then there exists a cycle

y = (¢y,...,%,) with i) =i, i3 = § such that I7,(4) # 0. Hence also
I1,(4% # 0. But II(AY) = @;,;,d;;,""* d14,_,, whence a;; # 0. Thus
a; 0. A

THEOREM 4.19. Let A €F,,. Then the following are equivalent.

(1) There exists a Be T, such that B = Bt and A ¢ B.

2) AcAtanda a6 Uforalli,j,1 <i,j<n.

(3) There exists a diagonal matrix D € N, such that D(A%)*D-1 = Ae,

Proof. Let G = A°.

(1) > (2). Suppose that (1) holds. Then 4 ¢ B ¢ B* ¢ A%, by Remark
4.15(v). Let 1 <4, 7 < »n. Then aya; = b;;b;; = b;;;;€ U.

2) — (3). Suppose that (2) holds. Then G ¢ A ¢ At ¢ (A% ¢ G* by
Remark 4.15(iii). Since G €%, also G*€ %, and, by Theorem 4.1, there
exists a diagonal D e F, such that DGID1 = G. let 1 <4,{ <%, and
let 8 = (44,.. ., 7,) be anonzero path fromé, = 7toi, = j. Thengy,, ., # 0,
k=1,...,» — 1, and so, by Lemma 4.18, Sipyrin * 0,k=1,...,» — 1.
It follows that

HB(_G) — _@ g_’zﬁ L. g_ir—lir . (4.19)
ITG(Y) By 8isiy  Biyip
But if 1</, m<n and g8, # 0, then g, # 0 and g,,(8,,)"! =
LimEmi(@miEm) t € U by Remark 4.15(i) and (ii). Hence, by Remark 4.2
we may suppose that De %,.

(3) — (1). Let DGtD— = G, where De A,. We may suppose that
D = DD, where DeF, is a diagonal matrix. Let B = D-1GD. Then
Be®%, and 4 ¢ G ¢ B. Further

Bt = DG'D-1 = D1DG*DD = D-1GD = B. A
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CorOLLARY 4.20. Let A€F,. The following are equivalent.

(1)  There exists a nonsingular diagonal matrix D e ¥, such that B =
D-1AD and Bt = B.

2) A ¢ At and a;; # 0 implies a,a; € U\{0}.

(8) There exists a nonsingular De W, such that B = D'AD and

Bt = B.
Proofs. (1) — (2). Suppose that D € F,, is diagonal, B = D~14D and
Bt = B. Then, by Remark 4.17 Bc % whence A €%. Since A ¢ B, we
deduce by Theorem 4.19 that A ¢ A*and a;;a;,€ A, for 1 <4,7 < ». But,
by Lemma 4.18, a,; # 0 implies a;a;, # 0, whence a;; # 0 implies
a;;a;; € W\{0}.

{(2) — (3). Suppose that (2) holds. Then a,4,,€ %, for¢,j =1,..., n.
Further, since a;; # 0 implies a,;a;; # 0, we have A € . Hence (3) follows
from the corresponding part of Theorem 4.19.

(3) — (1). Trivial. W

If F is the real field, and @ = a for all a € F, Corollary 4.20 becomes the
Parter and Youngs Theorem [9, Theorem 1]. If F is the complex field,
and @ is the usual conjugate of a, Corollary 4.20 becomes the Nowosad
Theorem [7, Theorem 1]. If A €%, Theorem 4.19 becomes another
Nowosad Theorem (7, Theorem 3]. The following corollary is an easy
consequence of Theorem 4.19, with @ = 1 foralla # 0,a€ F. (In this case
A=F)

CoROLLARY 4.21. Let A€ F,. Then the following are equivalent:
(1) There exists a symmetric (0, 1) matrix B such that A ¢ B.
(2) For all cycles vy,

(a) edther IT(A) = 1 or II(A) = 0, and

(b) IT,(4) = IT,(A").

THEOREM 4.22. Let A€ F,. Then the following are equivalent.

(1) There exists a BEF,, suchthat B = — Bt and A ¢ B.

(2) Ac—Atand ayae — U, foralli,7,1 <4,7 < .

(8) There exists a diagonal matrix D e W, such that D(AYD™! =
- Ae,

Proof. 1f — 1eF has a square root 7 in F, let F* = F. Otherwise,
adjoin a square root Z of — 1 to F, and let ' = F{7). Let 4" = ¢4.
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(2) — (3). Let A4 satisfy (2). Then A’ satisfies Theorem 4.19(2). Hence
there exists a diagonal D such that D(4't)¢D~! = (A’)¢. Equation (4.19) again
shows that D may be chosen in 9, (contained in F,) and D(A%)cD = Ae.

(3) = (1). Trivial.

(1) > (2). Suppose (1) holds. Put-B’ = iB. Then B’ = B't and
A’ ¢ B’. Hence by Definition 4.14, A’ ¢ A’t and a;a;;€ A. Thus (2)
follows.

COROLLARY 4.22. Let A € ¥,. Then the following are equivalent.

(1) There exists a nonstngular matrix D e ¥, such that B = D71AD
and — Bt = B.

2) A — Atand a;; # 0 implies a;a;, € — A\{0}.

(8) There exists a nonsingular D e N, such that B = D-1AD and
— Bt = B.

When F is the real field and @ = a, foralla e F, Corollary 4.22 becomes
Parter and Youngs’ Theorem 4 [9]. If F is the complex field and a is
the complex conjugate of a, then a special case of Corollary 4.22 is the
lemma on tridiagonal matrices proved by Gibson [5].

SECTION §

THEOREM 5.1. Let A € &1. The following are equivalent.

(1) Foralloe Sy, either II (A) = 1 or II,(A) = 0.

(2) There exist diagonal matrices Dy, Dy with per(D,Dy) = 1 such that
DyADg 1s a (0, 1) matrix.

Proof. (2) — (1). Let B = D;AD, be a (0, 1) matrix. Then for all
0 € S, either I1 (B) = 1 or I1,(B) = 0. But 4 s B by Corollary 4.11,
whence (1) holds.

(1) - (2). Define BeF, by

by =1, if a;#0,
b; =0, if a,;=0.
Then B s A. Hence (2) holds by Corollary 4.11. |
CoROLLARY 5.2. Let A€ . The following are equivalent.

(1) There exists anonzero d € ¥ such that, for all 0 € Sy, either I1,(4) =
ar or I1,(A) = 0.
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(2) There exist nonsingular diagonal matrices Dy, Dy such that D1AD,
s a (0, 1) matrix.

Proof. (2) —(1). Put d = per(D.D,). Then (d1D;)(dA)D,ec Z,
whence by Theorem 5.1, I1,(dA) is either 1 or 0, where G € S,,.
(1) - (2). Apply Theorem 5.1 to d—*4A. W

If F is the real field, then Corollary 5.2 and Remark 4.9 yield a result
due to Sinkhorn and Knopp [11].

CoroLLARY 5.3. If A is a monmegative fully indecomposable matrix
whose positive diagonal products ave equal, then theve exist diagonal matrices
Dy and Dy with positive main diagonals such that D1AD, is a (0, 1)-matrix.

ReEMARK 5.4. By Lemma 4.13 the diagonal matrices D,, D, in
Theorem 4.8, Corollary 4.11, Theorem 5.1, and Corollaries 5.2 and 5.3 are
unique up to multiplication by a scalar.

DEerFINITION 5.5. Let J € F, be the matrix all of whose entries are 1.

LEMMA 5.6. Let B be a fully indecomposable (0, 1) matrix. If G is a
0
matrix such that G < B and rank G = 1 then G = J.

Proof. Let x and y be n X 1 column vectors with entries in F such
that G = yx*. Since B # 0, there exist 7,7, 1 <{ 7,7 <{ # such that b,; =
g:; = ¥x; = 1. By permutation of the rows and columns of B and G
and by normalization of the components of ¥ and y we may assume there
exists a £ and / such that

yi =1, for 11,
yv; # 1, for 7>1,

and
x, =1, for 1 <7<k,
%;# 1, for >k

Let m = min(&, /). Suppose that m < ».



330 G. M. ENGEL AND H. SCHNEIDER

CASEI Ifm = ktheng;; # 1, forl << <<m,m + 1 <7 < n Since

G<BandBe£’1tfollowsthatb“—Oforl <Kmym + 1< i< n
Hence B is not fully indecomposable, which is a contradlctlon. Hence
m = n.

Case 2. m =1[. By a similar argument as in Case 1 it follows that
m = n. Hence in either case G = J.

When A4 is a nonnegative real matrix, our next theorem is essentially
Sinkhorn and Knopp’s Theorem 1 [11].

THEOREM 5.7. Let Aec Sy and let deF, d # 0. Suppose that for all
GESy either I, (4) = 0 or II,(A) = d™. Then there exists a unique G
such that G 4 and rank G = 1.

Proof. By Corollary 5.2, there exist nonsingular diagonal matrices D,
and D, such that DyAD, is a (0, 1) matrlx Then J < DlAD2 and rank
J = 1. Define G = D;=1JDy,=1. Then G < A and rank G = 1. To prove
uniqueness let H € F,, be such that H 0< A and rank H = 1. Let K =

0
D HD,. Then rank K =1 and K < D;AD,. By Lemma 56 K = J
andthus H = G. B

An analogous theorem to Theorem 5.1 for the c-relation is:

THEOREM 5.8. Let A €€,. Then the following are equivalent.

(1) For all cycles y, etther IT(A) = 1 or I(4) = 0.

(2) There exists a nonsingular diagonal matrix D such that D7IAD is a
(0, 1) matrix.

Proof. (2) —(1). Let B = D1AD e %. Then for all cycles y, either
II(B) = 1orIl,(B) = 0. But by Corollary 4.4, A ¢ B. Hence (1) holds.

(1) — (2). Define B as in the proof of Theorem 5.1. Then B ¢ A. Hence
(2) holds by Corollary 4.4. W

REMARK 5.9. The matrix D in Theorem 5.8 is unique up to a scalar
factor (see Corollary 4.4).
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SECTION 6

In this section all matrices have entries in the complex field C or the
real field R.

DEFINITIONS 6.1. Let A, Be(,.

(i) AL Bifay b;arereal and a;; < by, 1,7 =1,...,n.

L

c
(ii) A < B if, for all cycles y, I1,(A), Il (B) are real and I1,(4) <
11.(B).

s
(iii) A < B if, for all o€ S, I1,(4),I1,(B) are real and I, (4) <
11,(B).

c $
ReMARKs 6.2. (i) Observe that <{ and < are not partial orders on

¢ c
C,. Tor example, 4 < B, B<{ A imply that 4 ¢ B, but not 4 = B.

c
(i) Further, A ¢ B does not imply 4 < B. The implication holds
if and only if IT,(A) is real, for each cycle y.

c
(iii} In view of Lemma 2.4, if 4 = 0 then 4 < B is equivalent to
w
Fiedler and Ptak’s A < B [4].
»

(iv) However, 4 ¢ B is not equivalent to Fiedler and Ptak's A = B

w

[4], since 4 = A implies that I7,(A) is real for all cycles . This difference
accounts for a difference in our Theorem 4.1 and Fiedler and Ptak’s
(3.12) [4].

LEmMA 6.3. Let A, Be(,.
¢ c s s
i) IfO<L AL Bthen0 <A <B.

S S [ [
() IfOKALBand 0 <ay=by i=1,... nthn0<A<B.

Proof. The proof is essentially the same as the proof of Lemma 2.23
with equality replaced by inequality in appropriate places. [l

4 4
LeMMA64. Lt AeN. IfO<B<Aand B S Athen B ¢ A.
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Proof. Since B e A", it follows from Lemma 4.6 that YB ¢ A where
Y = diag(a;1/b11,- - -, Gpn/bps). Since 0 < b,; < ay; it follows from Remark
4.7 thatb;;, = a;. HenceY =Tand BcA. R

DerFINiTION 6.5. Let A€ C,. Then [A| is the matrix B defined by

b= lay|,i,7=1,...,n

LEMMA 6.6, If |B| << A then |Bs| < A-.

Proof. 1f bj; # 0 then, by Remark 2.18(ii), there exists a permutation
o € S(yy such that o(?) = § and J1,(B) # 0. Thus I1,(4) # 0 and hence
“fj #0. A

s
THEOREM 6.7. Let A = 0, and let B € C,. Then the following are equiv-
alent.

(1)
2) Bl < A and |per B| = per A.

s
Proof. (1) - (2). Since 4 = 0, IT,(cB) = IT,(A) = 0, for allaeS(n,

We have I1,(|B|) = I1,(A4), for all 6 € S(,,. Thus |B| s 4 and so |B| <
Further, 4 s cB, whence per A = per ¢B = ¢" per Band soper 4 = |per B[.
@) = (1). Foralloe S, IT,(B)| = II,(B|) < I1,(4). Hence

|per B| =

S IL(B)| < 3 IL(B)| < 3 1104) = per 4 = [per B}

0€S(n) 0ES(n) 6eS(n)

It follows that there is a d € C, |d| = 1, such that dII,(B) = I1,(4), for
all 6€ S(,). Let ¢ = d. Then IT(A) = II,(cB), for all 0 € S,, and so
AsScBande|=1. W

COROLLARY 6.8. Let 0 < B <L A. Then the following are equivalent.
(1) BsA.

s
(2) B < A4 and per B = per A.
Proof. Obvious from Theorem 6.7. i

As an analogue to Remark 2.21(iv) we have the following lemma.
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LemMA 6.9. Let A 2= 0. Then the following are equivalent.
(1) Ae?.
(2) For all BeR,, 0 < B <A and per B = per A imply B = A.

Proof. (1) —(2). Let0<<{ B <{ 4. If 4 = 0, the result is obvious, so
let A # 0. Since per B = per 4, we have B § A, by Corollary 6.8. Let
1, { be integers, 1 < 7,7 < n, with 4;; > 0. By Remark 2.21, there is a
o € Sy With ¢(¢) = 7 such that I1,(4) > 0. But since, I1,(B) = I1,{4), it
follows that bys(r) = @xery, # = 1,..., n. In particular b;; = a;;. Hence
B = 4.

(2) > (1). Suppose 4¢ . Let B= A% Then 0B < 4 and
per B = per 4. Thus (2) is false. W

An analogue to Lemma 3.18 is

Lemma 6.10. Let A = 0. Then the following are equivalent.
(1) 4Ae ;.
(2) For all BeR,, B> A and per B = per A imply that B = A.

Proof. (1) > (2). Let Ae ¥, B> A4 and per B = per A. Since
PAe¥,, we have PBe%,, for all Pe#. Hence Be ., < &. Thus,
by Lemma 6.9, B = A.

(2) — (1). Suppose 4 ¢ &y. Then by Lemma 3.17 there exist ¢, 7,
1 < ¢, < n such that [ J,.; dxey = 0 for all o € S, such that o(i) = j.
Define B by b;; = a;; + 1 and b,; = a;; otherwise. Then B > A4 and
perB=perd. N

¢
THEOREM 6.11. Let A > 0 and let Be (,,.
(i) (1) There exists a diagonal X € C,, such that XB ¢ A and
implies

X

=1

¢
(2) |B| < A, and |per B| = per A.

({i) IfAeA, then (2) implies (1).
¢
Proof. (i) Let (1) hold. Since 4 > 0, IT(XB) = I1,(4) = 0, for all
cycles y. Hence IT,(|B|) = II,(4), for all cycles y. Thus |B| ¢ 4, and so

¢
|B] < A. Further, since 4 ¢ XB, it follows that per 4 = per XB =
per X per B. Thus per A = |per B|.
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s s

(i) Let 4 €4, and assume (2). By Lemma 6.3(i), 4 > |B| > 0.
Hence, by Theorem 6.7, there exists ce C, cf = 1, such that ¢B s 4.
Hence |B| s 4, whence, by Lemma 6.4, |B| ¢ 4. Thus |b;| = a; > 0,
i=1,...,n Let X = c1diag(ay:/011,. .., nn/bs,). Then |X| = I, and
by Lemma 4.6, XBc A. '

LemMMA 6.12. Let A€ #1,A > 0. Le¢ BeC,. If |B|< A and [per B| =
per A, then there exist diagonal matrices Dy, Dy such that A = D{BD, and
[D1] = |De] = 1. '

Proof. By Theorem 6.7, there is a de C, |d| = 1 such that dB s 4.
By Lemma 3.16(ii), dB € &,. Then, by Theorem 4.8, there exist diagonal
matrices D,"”, Dy’ such that A = dD,””"BD," and per D,"D,’ = 1. Put
D" =aD,”". Then A = D{BD;" and per D,'D,’ = 1. By Lemma 6.9,
|B| = A. Hence A = |Dy’|A|Dy’|. Since we also have 4 = IAI, it
follows by Lemma 4.13 that |D,’| = ¢I and |D,| = ¢7'I, where c€C,
¢c# 1. Let Dy =c¢'D), Dy =cDy,’. Then A = D;BD, and |D,| =
Do) =1. W

THEOREM 6.13. Let A == 0, then the following are equivalent.

1) des.

(2) For all B, |B| < A, |per B| = per A imply there exist diagonal
matrices Dy, Dy such that A = D\BDy and |Di| = |Dy| =1. 1

Proof. (1) > (2). Let Ae¥. If A = 0 the result is trivial, so let
A # 0. Thus per 4 # 0. By Corollary 2.27, there is a P € & such that
PAe A NE and by Remark 3.5(vi), there is a Q€ Z such that F =
QPAQT = F,, ®--- P F,,, where F,;€%,,i=1,...,r. Since Fe A,
we have F ,e /' N€, = &, i=1,...,r. Let G =QPBQT. Since
|G| < F, it follows that G = Gy, @+ - @ G,,, where G;; has the same
order of F,;; and |G;| < Fy;, ¢ = 1,...,7. Thus |per G;;| < per F, i =
L,...,r.. But J[i_,|perG;| = |per G| = per F = [ []_, per F;;, and
per ' = per 4 # 0. It follows that 'per Gi,-| =perF, i=1...,7
Hence by Lemma 6.12 there exist diagonal matrices X;, Y;, i =1,...,7,
such that F;; = X,G;;Y,, and |X,| = |Y,|=1,i=1,...,7. Let

X=X;® DX,

Y=Y1®"'@Yr'
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Then F = XGY and {X| = |Y| = 1. Let D; = (QP)"XQP and D, =
QTY(Q. Then A = DBD; and D,, D, are diagonal matrices, such that
IDs] = Do] = I.

(2) - (1). Let B = A*. Then0 <{ B <{ 4 and per B = per 4. Hence,
by assumption, 4 = D,A°D,, whence A .

COROLLARY 6.14. Let A > 0. If |B| < 4, |per B| = per A then there
exist diagonal matrices Dy, Dy such that A5 = D\B*Dy and |D,| = |Dy| = I.

Proof. 1f |B| < A then |B*| < 4A° by Lemma 6.6. Since 4*€ ¥, the
result follows by Theorem 6.13.
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