UNIVERSITY OF WISCONSIN-MADISON
CENTER FOR THE MATHEMATICAU SCIENCES

AN 1, BALANCING OF A WEIGHTED DIRECTED GRAPH

Hans Schneider” and Michael H. Schneider**
Technical Summary Report #88-29
BApril 1988
ABSTRACT
let G = (X,U,g) be a directed graph with a real-valued arc-weight

function, gyr W €U For ACX, G is balanced at A if the maximum weight
on arcs directed out of A equals the maximem weight on arcs directed into A.
A graph is balanced if it is balanced at everv A C X. We show that for
strongly-connected graphs there exist unigue (up to an additive constant) vertex

weights 7 X « X such that (X,U,f) is balanced where fu =7, + 9y - ny

xl
for u = (x,y) € U. We apply a variant of Karp's minimum cycle-mean algorithm

to show that vertex weichts which balance every strcng component of G can be

computed efficiently.

AMS (MOS) Subject Classifications: 05C50, 15a12, 65F30

Key Works: Balancing, weighted directed graph, matrix scaling, maximum mean
cycle, contraction, reweighting, algorithm.

*
Department of Mathematics, University of Wisconsin-Madison, Madison,

Wisconsin 53706.
*d

Department of Mathematical Sciences, Johns Hopkins University, Baltimore,
Maryland 21218.

- :
Supported in part by the National Science Foundation under Grants DMS 85-

21521 and ECSE 87-18971.
¥

Supported in part by the National Science Foundation under GRants ECS 85-
04195 and ECSE 87-18971.

AN I, BALANCING OF A WEIGHTED DIRECTED GRAPH
Hans Schneider and Michael H. Schneider

1 Introduction

A problem that occurs frequently in economics, urban planning, image re-
construction, and statistics is to adjust the entries of a large matrix so that
they satisfy prior linear restrictions on the entries. YWe have shown in [10]
and [9] that important instances of these problems can be posed as

Problem 1 Given a weighted, directed graph, (X,U,g), find arc weights,
fu,u € U that are “close” to the original weights and satisfy a given set of
restrictions on the entries.

For example, in [9] we studied the problem of finding vertex weights =,
for which Wrguwy‘l, v = (z,y), is a circulation in the underlying graph,
(X,U). We will refer to adjustments of this form as Scaling the data. In
[9] we discussed the relationship between this scaling problem and general
equilibrium modeling and analyzed a simple-iterative algorithm for finding
the «’s.

The circulation conditions are linear restrictions requiring that at every
vertex, z, the [y norm of the vector of weights on arcs directed out of z
equals the /; norm of the vector of weights on arcs directed into z. A related
problem of scaling the data so that these vectors have equal l; norms occurs
in pre-conditioning of square matrices to reduce round-off error in comput-
ing eigenvalues [8]. The generalization to requiring equality of arbitrary I,
norms for 1 < p < oo can be reduced to the /; balancing problem. The case
of requiring equality in the /, norm produces a different problem whicl,
apparently, cannot be solved efficiently using the techniques described in
[10] and [9].

In this paper we are interested in showing that the arc weights of G can
be adjusted so that every strong component is- balanced using a definition
based on the I/, norm and on a stronger notion of circulation. The term
balanced appears in many contexts in graph theory, optimization, and matrix
theory. Our definition of balanced is related to matrix balancing as described
in [2,10]

In the case of Ij-balancing, it is easy to see that balancing every vertex
of G implies that G is also balanced at cutsets. That is, if the arc-weights
of G form a circulation, then for any subset of the vertices A, the sum of

the weights on arcs directed out of A equals the sum of the weights on arcs
directed into A. The corresponding statement is not true with respect to
the I, norm. This stronger circulation condition based on cutsets is the
appropriate definition in the i case. That is, we define a graph to be I -
balanced if for every subset of the vertices A the maximum weight on arcs
directed out of 4 equals the maximum weight on arcs directed into A. We
call graphs with this property balanced and delete the 1, prefix.

We describe an algorithm for {inding additive adjustments to the origi-
nal arc-weights so that the resulting craph is balanced. Specifically, given
arbitrary arcs weights, g, ,2 € U, we want to find vertex weights n;,z € X,
such that the weight function f, = 7z4-gu—7y, v = (z,y) € U, is balanced.
(We show in Section (3) that this probiem has an equivalent multiplicative
form.) We show that if a graph is balanced, then every arc of G' must be
contained in a strong component. Thus, we consider the problem of find-
ing vertex weights 7,2 € X, for wkich every strong component of ihe
reweighted graph (X, U, f) is balanced. We show that the function f, is
uniquely determined on every strong component.

The principal subroutine used in our algorithm is a variant of Karp’s 7]
algorithm for finding maximum-mean cycles in a weighted, directed grapii
(see also [5,6]). Given an arbitrary graph G, our zlgorithm constructs a
sequence of graphs

G=H°— H'- H?® -~ ... - H*

where H'*! is constructed from M by contracting a maximum-mean cycle
and deleting any resulting loops. The final term of this sequence is the
acyclic graph formed by contracting every streng component of G to a
point and deleting any resulting loops. At each iteration of the algorithm,
we generate a set of vertex weights o for H* corresponding to a maximum-
mean cycle of H*'. At the conclusion of the algorithm, the sum of the
weights o' computed at each iteration is the desired set of vertex weights
which balances every strong component of G.

We show that the number of times the maximum-cycle mean subroutine
is used is bounded by 2n, where n is the number of vertices in G. Since the
running time for the minimum cycle-mean algorithm is O(nm), where m is
the number of arcs in G, the running time for our algorithm is O(n%m).

2 Notation and Definitions

We want to clarify some basic graph definitions used throughout the paper.
Let (X,U) be a (directed) graph with vertex set X and arc set U. We allow
(X,U) to have loops and parallel arcs. We will use the notation w = (z,¥)
to refer to an arc u € U with initial vertex z and final vertex y. (There
may be more than one such arc u.) A walk of length k is a sequence of arcs
(possibly empty) v = (uy,uz,us,...,uk) in which the terminal endpoint of
¢; is the initial endpoint of 7;4;. That is, a walk is directed and may contain
repeated arcs (or vertices). A cycleis an walk v = (uy,uz,...,ux) with no
repeated vertices in which the initial endpoint of u; is the final endpoint of
ux. The number of arcs in a walk (or cycle) p is denoted by |u|, and the
set of all cycles of (X,U) is denoted by @.

We follow the convention that the maximization over an empty set is
defined to be —20. Let S be a non-empty set and let ay, be an arbitrary
extended real-valued function on S (i.e., the values of co and —oo are
permitted). The equation

mina, = —o0
s€S

means that the value —oo is attained at some s € §. For any finite real ,
o0+r =00 and —co+r = —oo. The operation of —oo + oo is defined to be
oo. This is a notational convenience, since it only appears in minimization
expressions, and when it cccurs there is always a term with value strictly
less than oco. Operations involving co and —oo occur when we consider
maximum weight paths of a fixed length ending at a vertex z.

A weighted graph G = (X,U,g) is a graph (X,U) together with a real-
valued function g defined on U; g, is called the weight of u. For a walk v
in (X,U,g), the weight of v, g,, is defined by

gv = Zgu-

ugy
For a cycle p in G, the cycle mean of u is defined by
1
cycle mean of p = — Zgu.
| |u.€#
A cycle p € ® is a2 mazimum-mean cycle if

1
izguZ—,Zgu, fora.nyp'E@.
Il & W'

Also,

. f1
AG) Tgfl] ;e_;gu
is called the mazimum-cycle mean for G. We will usually delete the depen-
dence on G. Note, A(G) = —oo if and oniy if G is acyclic (has no directed
cycle).

In our notation, the vertex set X is a pariition of some underlying set A’;
that is, a vertex =z € X is identified with a subset of &', This notation allows
us to describe our mair algoritlun in which sets of vertices are successively
contracted. We will refer to a partition X’ as coarser than a partition X
(of the underlying set .¥') if every element of X’ is a union of elements of
X . Similarly, we refer to X as a finer partition than X'.

For a non-empty set A C X, the subgraph of G induced by A is the
graph with vertex set A and with all arcs of U with both endpoints in 4.
For the graph (X,U), the strong component of = € X is tlie union of all
y € X for which there is a walk (possibly empty) from z to y and y to z.
Note, the strong components of G determins a partition of X', which we
denote by X*. We define the cendensed graph of G, Condense(G), to be
the acyclic graph formed by contracting the strong components of G and
deleting all loops. (See Section (4.1} for the precise definition.) A graph G
is strongly-connected if there is a walk batween every pair of vertices, namely,
if G has exactly one strong component.

Our definition of balanced depends critically on the notion of a cutset of
a graph.

Definition 1 A subset C C X is compatible with the partition X if for
every z € X either

1. CNz =z, or
2. Cnz=0.

It is easy to see that C is compatible with X if and only if C is a union of
elements of X .

Definition 2 For C that is compatible with X, the cutset of G determined
by C, w{C;G}, is defined as

w{C;G} = {&¥(C;G),w™ (C;G)},

where

wt(CiG) = {u=(2,9)€VU|zCC, andyC X -C},
wT(C;G) = {u=(z,9) €U |zCX¥-C,andyC C}.

If there is no possibility of confusion, we will delete the dependence on G,

Definition 2 A weighted graph G = (X,U,g) is balanced at (a compatible
set) C iff

max g, =

max_ gy.
u€wt(C) u€w(C)

Definition 4 4 graph G = (X, U,g) is balanced iff it is balanced at every
compatible set C.

3 Problem Statement

We first show that if a graph G is balanced, then every arc lies in a strong
component of G and, therefore, G is the union of the subgraphs induced
by the strong-components. Equivalently, every connected component of G
is strongly connected.

Lemma 1 A weighted directed graph G = (X, U,q) is balanced if and only
if

(i) For v = (z,y) € U, z and y are contained in the same strong com-
ponent of G,

11) Every subgraph induced by a sirong component is balanced.
y p Y D

Proof: (=) Let G =(X,U,g) be balanced, and let u = (z,y) € U be an
arc for which 2z and y are in different strong components. Define C C &
to be the the union of all vertices z for which there exists a walk from = to
z, and consider w(C). It follows that w* (C) # 0, but that w= (C) = 0.
The balance condition at C requires that

max max ,
u=(z,y)Ewt (C)gu u=(r,y)ew—(C) Tu

which cannot be satisfied since the maximum over an empty set is defined
to be —oo.

Part (ii) follows directly from Part (i), since if C is contained in a strong
component of G then w{C;G} and w{C; H} coincide, where I is the
subgraph induced by the strong comporent.

(<) The converse is obvious.

Lemma (1) implies that it is not possible to balance arbitrary graphs.
Therefore, we describe an efficient algorithm for the following problem:

Problem 2 Given a weighted graph (X,U,g), find vertex weights 74,z €
X, such that the subgraph induced by every strong component of (X, U, f)
ts balanced, where

.fu:ﬂ'z +gu_7‘-y7 foru:(x’y)e U.

We call vertex weights 7,z € X that solve Problem (2) balancing weights
for (X,U,g) and refer to the resulting arc-weight function f,,u € U as
balanced on strong components.

By taking logarithms, it is easy to see that the following problem is
equivalent to Problem (2):

Problem 3 Given a weighted graph (X,U,¢) with g, > 0, find verter
weights ©; > 0,z € X, for which every strong component of (X,U, f) is
balanced, where

fu= n,gun'y'l, for every u = (z,y) € U.

The additive form of Problem (2) is more naturai for describing the
algorithm.

4 'Technical Operations

Our balancing algorithm is composed of a sequence alternating two basic
operations—contraction and reweighting. We describe each of these.

4.1 The Operation of Contraction (and Marking)

The operation of contraction involves identifying vertices of G and deleting
loops of the resulting graph contained in a marked set of the vertices.

Definition 5 A weighted graph G = (X,U,g) together with a set M C X
that is compatible with X is called a weighted marked graph and denoted
by (X,U,g; M).

Let G = (X,U,g; M) be a weighted marked graph, and let X' be a
coarser partition of A" than X. For z € X, let A; be the element of
X' containing z. Let Af’ be compatible with X’ and contain Af. In the
operation of contraction we will refer to the set of deleted arcs defined as

V={u=(z,9) €U A, = 4, C M}

Definition 6 The contraction of G with respect to the pair (X', M), writ-
ten G/(X'; M"), is the weighted marked graph (X', U’,¢'; M'") satisfying the
following conditions:

i) there is a 1-1 and onto mapping ¢: U'— U=V such that d(AL,Ay) =
Y
(:z:,y), for u = (z,y) eU-V , and

(i1) gy = Go(w)-

Intuitively, in the contracted graph G/(X’; M') all vertices of X con-
tained in a vertex of X’ are identified; all loops at marked vertices of
the resulting graph are then deleted. Normally, we will identify an arc
in G/(X'; M') with its image under ¢(-) in G, so that the set of arcs in
the contracted graph can be viewed as a subset of the arcs of the origi-
nal graph. Thus we will use the notation: Let u = (Az,A,) be an arc
of G/(X'; M) corresponding to arc v = (z,y) of G. Alternatively, to
avoid double subscripts we may also write: Let u = (A4, B) be an arc of
G/(X'; M) corresponding to arc u = (z,y) of G (where A and B are the
vertices of G/(X’; M’) containing z and y, respectively).

Note that the condensed graph of G is defined as

Condense (G) = G/ (X*;.t)

where X'* is the partition of .Y determined by the strong components of G.
In our algorithm, we shall consider the important case in which the
partition is induced by a cycle p of G, that is, when one element of X’ is

-1

the union of the vertices of p and the others are the remaining elements of
X . The set of marked vertices, }{’, is the union of M and the vertices of .
In this case we denote the contracted graph by G/p. Thus, for a sequence
of graphs

G=H°— H'- H*— ... 5 HF,
where H*t! is constructed from H* by contraction, the vertex set of each

graph is a partition of the underlying set X and is a coarser than the
preceeding term.

4.2 The operation of reweighting

Each time a maximum-mean cycle is computed, a corresponding set of vertex
weights is computed and used to reweight the graph. This operation is called
reweighting G.

Definition 7 Let G = (X,U,g) be a weighted graph, and let 7,z € X be
a set of vertex weights for G. The graph G, = (X, U, f) where

fu=Tms+gs -1y, u=(z,y)€U,

is the reweighted graph of G (with respect to «).

5 Uniqueness

Before describing the algorithm for showing the existence of balancing weights,
we show that the weights are determined uniquely up to an additive constant
on every strong component.

Theorem 2 Let G = (X,U,g) be a strongly-connected weighted graph. If
7 and o are balancing weights for G, then mp — 0, = ¢ for some constant
¢, and, therefore, the arc-weight funciion f defined by

fu=mz+gu—my, foru=(z,y)€U
is the unique arc-weight function for which (X,U, f) is balanced.

Proof: Let x, and ¢., z € X, be vertex weights for which G, and G,
are balanced. For u = (z,y) € U, define

fu = Tmz+gu—7wy, and

hu = Or +gu —ay,

Note that

hu=T: +‘fu_7—y, u:(x,y)EU, (1)

where

Define Z C X by
Z = {z eX|r= maxr,}
reX

and define C C A" by
C= U z
z€Z

Suppose C # & and consider the cutset determined by C. The balance
conditions with respect to 2 and equation (1) imply

e T Ty = ma Tr + T

e ,y)ew(c){ fu— 1y} e B2 { e+ fu—Ty}y

where wt (C),w™ (C) # 0 since G is strongly-connected. But since 7, —
Ty >0, for v = (z,y) € «* (C), and 7 — 1, < 0, for (z,y) € w™ (C), this
contradicts the balance condition for f. This contradiction implies that
C = X, namely that 1, is constant on X, and, therefore, f, = hy, u € U.

It follows from Theorem (2) that for an arbitrary graph G, if 7;,z € X
are vertex weights which balance every strong component of G, then o,z €
X, also balance every strong component if and only if 7 — ¢ is constant on
strong components.

6 Computing Maximum-Mean cycles

For G = (X,U,g), let -
A = max w
ned {|;t|£g }

be the maximum cycle-mean of (X, U,g). We describe a variant of Karp’s
algorithm [7] for computing the maximum-mean cycle of G.

Although our treatment of the subproblem fo: computing a maximum-
mean cycle is closely related to [7], there are two differences which are im-
portant for this paper. First, our treatment shows that Karp’s algorithin can
be extended to arbitrary graphs, whereas the original version required that
G be strongly-connected. Second, we compute vertex weights o,z € X,
using the output from the maximum-cycle mean algorithm which are used
for sclving Problem (2). There is also a trivial diflerence that we compute
maximum-mean cycles rather that minimum-mean cycles. (Karp’s algo-
rithm also finds maximum-mean cycles, by multiplying the weights by —1.)
Since we use the constructions introduced in the proof in later results, we
have included a modification of Karp’s proof to show that our algorithm is
correct. Related modifications can be found in [3].

For each z € X, let Fi(z),k = 0,1,2,...,n be the maximum weight
over the set of walks of length & that terminate at z. The Fi(v)’s can be
computed in time O(nm) using the recurrence

Fo(z) = 0, z€X
Frp(z) = max {F(y)+ 9.}, k£=0,1,2,...,n—1.
u=(y,z)€w™(z) '
Define
0 _ R
2 = odidn {Fi(z)}, forzeX. (2)

Note that if G has no positive cycle, then 72 is the maximum of the
weights of all walks ending at z. In this case, we call a walk v that ends at

z and that has weight 70 a mazimal weight walk ending at z.

The first two parts of Lemma (3) are contained in [4]. Note that we do
not assume that G has a cycle in this Lemma.

Lemma 3 Let G = (X,U,g) be a weighted graph and suppose that all.cycle
weights of G are nonpositive. Let 70 be given by (2) for z € X, and let

fu =7l + g7y, foru=(z,y)€U.
Then the following are true:

(i) fu<0, foralueU;
(i) If G has a cycle pu of weight 0 and u is any arc of ji, then fu =0;

10

Figure 1: fy =70+ g, — 75 <0

(iti) Let p be a cycle of weight 0 and let z and y be vertices of ;1. Let 7
be a marimal weight walk ending at = and let v be an ezxtension of 7
along p ending at y. Then v is a mazimal weight walk ending ct y

(see Fig. (2).

Proof: (i) Since 72 and 7J are the weights of maximal weight walks ending
at z and y respectively, and since 72 + gy, u = (z,7) is the weight of a walk
ending at y, we immediately deduce (i) (see, Fig. (1).

(ii) Let z be a cycle of weight 0. Since the weight of any cycle is
unaffected by replacing g, by f., we have

qu=0-

u€p

It follows that f, = 0 for u lyizg on u, since, by part (i), f, <0.

(iii) Let v be composed of 1 and the walk p from z to y along the cycle
p. Let u = (z',y') be an arc of . Then from (ii) we have

_ .0 Q
Gu = 71'y: — Tpty

and, therefore,
Therefore,

and (iii) is proved (see, Fig. (2)) §

11

Figure 2: Extension of maximal walk in cycle of weight 0.

N
Figure 3: Fo(z) =g, + gu-

Theorem 4 For every weighted graph G = (X,U,g) the mazimum cycle-
mean A is given by:

Azmax{ min {M}} (3)
reX (0<k<n—-1 n—k
Proof: First, note that G contains nc cycle if and ounly if F,(z) = —oc

for every z € X . Therefore, since Fy(z) = 0, for every z € X, the theorem
is true if G is acyclic. (Recall, —o0 — (—o0) if defined to be oc.)

Now suppose that the maximum cycle-mean A is 0. Let z € X, and
let v be a walk of lengthk n and weight F,(z) ending at z. Then v must
contain some cycle ; let 7 be the walk ending at = formmed by deleting u
from v (see, Fig. (3)). Since the length of 7 is less than n, there is some 7,
0 <j<n-1,such that

Fa(z) = 99+ 9u < 99 £ Fj(2).

12

It follows that

F, <0, .
0<;Cn<m {Fa(z) = Fr(2)} <0, foreveryze X (4)

Now let p be a cycle of weight 0 and let z be any vertex of p. Let 7,
0 € j <£n-1, be the length of the maximal weight walk n ending at z.
Let v be the extension of this walk along p such that v has length =n, and
suppose that v ends at y (bee Fig. (2)). Then, from Part (iii) of Lemma (3),
it follows that F,,(y) = 7y, and, therefore, by Part (ii)

(.

ociin {Fa(y) - Fily)} 2 0. (3)
The result follows from (4) and (5).

We now turn to the case of general finite A. Consider the graph with
arc weights g, — A. Then for all &, 0<k<n—1,andforal 2 € X

(Fn(zi : fk(ﬂ)

is decreased by A. But the maximum cycle-mean is now 0, and, therefore,
the result follows from the second part of the proof. J

As a corollary to Lemma (3), we have the following important result (see
Theorem 7.5 of [4]).

Corollary 5 Let G = (X,U,g) be a weighted graph with mazimum cycle-
mean A (possibly, —o0).
(i) Then

A= inf X kA u y
o)

(i) In the case A > —o0, define

Tz = 0<k<a~\ {Fi(z) = kA}. (6)

Then
A= X Tr u— T . 7
X {7e+ gu = 7y} (7)

If p is any marimum-mean cycle for G, then

Tz + gy — Ty = A, foru=(z,y)€ p. (8)

13

Proof: (i) First, suppose that G is acyclic (i.e., A = —oc0). For z € X,
let c; be the length (number of arcs) of the longest walk in G ending at z.
Let M be any positive number and set ¢, = Ma, . Since oy 2 a; + 1, for
u = (z,y) € U, we have

Oz + gy — 0y < =M + gu.

Since A is arbitrary, (i) follows in the acyciic case.

(ii) Now suppose that G has a cycle. Note that replacing the arc weights
by oz + gu — 0y, u = (z,y) € U, does not change the weight of any cycle.
Therefore, one of the altered weights must always be as large as A. It follows
that

A< inf max {o;+g,—0 .
T ooesn {“=(rlvy)€U{ i y}}

Let m, be defined by (6). Since the =’s are the weights of maximum-
weight walks with respect to the arc weights g, — A, it follows that

7z 4+ (gu—A) <7y, forany u=(z,y)€U,

or, equivalently,
Tz + gu— Ty < A, forany u=(z,y) € U.

If u is any arc on a maximum-mean cycle z, then by Part (ii) of Lemma (3)
e+ gu — 7y = A, forany u = (z,y) € g,

and the result follows. j

The weights 7,z € X defined by (G) are called optimal weights for G
and are essential for computing balancing weights for G.

Once the Fi(z)’s are computed, A and the vertex weights =, can be
computed in time O(n?). Further, if z is any vertex at which the maximum
in (3) is attained, then any cycle contained in a maximal weight walk of
length n ending at z is a maximum-mean cycle. Let v = (ug,uy,...,Un-1)
where u; = (z;,zi41) be a walk of length n ending at z. Then v has
maximal weight if and only if

FH-I(IH-I) = .F,'(.’IJ,') + Gu,» for: = 0,1,2,...,n-1. (9)

14

Starting with vertex z, = z, we can scan w™ (z) and find a up = (2n-1,Zn)
satisfying (9) with ¢ = n — 1. We then scan w™ (z,-1) to find arc un-1
satisfying (9) with i = n—2. We continue in this fashion until we encounter
a repeated vertex, at which point we have found a maximum-mean cycle.
Since no vertex is scanned twice, each arc of G is examined at most once.
Therefore, the number of operations needed to find a2 maximum-mean cycle
given the weights Fi(z) is bounded by O(m).

7 Some Technical Lemmas

The next three lemmas are needed to prove that the balancing algorithm
described in Section (8) is correct.

Lemma 6 Let G = (X,U,qg; M) be a weighted marked graph. Let X' be
a partition of X that is coarser than X and firer than X* (the partition
determined by the strong components of G), and let M C M’ C X. Then
the strong components of G and G/(X'; M") coincide.

Proof: (1) Let (u1,us2,...,ux) be a walk between two vertices z and y
contained in the same component of G. If we delete from this walk every
arc whose endpoints are contained in the same vertex of X', then we are
left with a walk from A; to 4, in G/(X’; M’). Therefore, the components
of G are contained in the components of G/(X'; M').

(2) Conversely, let A and B be vertices of G/(X’; M') belonging to
the same component. Then there is a walk (vy,v2,...,v) in G/(X'; M)
from A to B. Let v; = (z;,y;) be the corresponding arcs in G (under
the mapping ¢). Let =z and y be any vertices of G contained in 4 and B,
respectively. Define yo = z and z44; = y. Then y; and z;41,¢=0,1,...k,
are contained in the same vertex of G/(X’; 3/’) and, therefore, are contained
in the same component of G (since X’ is finer than X*). Therefore there
exists a walk in G from y; to z;+; (which could be empty) and also a walk
from z to y (see Fig. (4)). It follows that the components of G/(X'; A’)
are contained in the components of G. |

Lemma 7 Let G = (X,U,g; M) be a weighted marked graph and let G' =
(XU, ¢"s M"Y = G/(X"; M) be the contraction of G with respect to (X', M").

15

Figure 4: Strong coxﬁponents of G and G/(X'; A1") coincide.

If C is compatible with X', then w {C;G} = w {C;G'}. That is,

u = (z,y) € wt (C;G) > u= (A A4) €wt (C;G"), and
u=(z,9) Ew (C;G) — u= (A, 4,) Ew™ (C;G).

Proof: (1) Let u = (z,y) be an arc of w* (C;G). Then z C C and
y € X —C. Since C is compatible with X', either A, NC = A, or
A;C =9. But z C A; and zNC =z imply that 4,NC # @. Therefore,
A NC = Az. Similarly, y C X — C implies A, N C # 4,, and, therefore,
AyNC = 0. It follows that (A, A,) € U’ and (A, 4y) € wt (C;G")

(2) Conversely, let u = (Az,Ay) € U’ be an arc of w¥ (C;G’). Then the
corresponding arc u = (z,y) of U clearly satisfies z CC and y C X - C
and, therefore, is in wt (C;G). :

Similarly, we can show that v = (z,y) € w™ (C;G) if and only if v =
(Asy 4y) € 0™ (C5GY). } , |

The following lemma is crucial for the inductive proof of the correctness
of the algorithm. It states that if the operations of reweighting and con-
tracting are applied twice in succession, then the resulting weighted marked
graph can be generated directly by reweighting and contracting the original
graph.

Lemma 8 Let G = (X, U,g;BI') be a weighted marked graph; let G' =
G/ (X"; M), and let G" = G,/ (X";M"). Then G" = Gpn/(X"; M"),
where :

Ty =Tz + 7y, forze€X,

and A is the element of X' containing z.

16

Proof: Let G' = (X',U',¢';Al") and G” = (X", U”,G"; M"). First,
we observe that X” is coarser than X’ and that X’ is coarser than X.
Therefore, X” is coarser than X. Also, A" is compatible with X” and
contains M. Therefore, contraction of G with respect to (X", M") is well-
defined.

Let V and V' be the sets of deleted arcs when G is contracted to G’
and G’ is contracted to G”, respectively. Also, let ¢: U’ — U — V and
¢’:U” — U’ — V' be the 1-1 and onto mappings satisfying the conditions
in the definition of contraction. Let ¥ = ¢ o ¢'. We claim that 9 is the
mapping required to show that G” = G~/ (X”; M"). Clearly, ¥ is a 1-1
mapping from U” to U. Further, ¢'(U") = U' - V' and ¢(U)=U -V.
Therefore,

YU = ¢U' -V,
= o(U") -6V,
= U-V-¢V",
= U-(VuVv’,

since ¢(V') and V' are identified. Thus, to show that ¥ maps onto U — V"
it suffices to show that V" = VU V’, where V” is the set of deleted arcs in
the contraction G_»/(X"; M"). For z € X ,let A, and A, be the elements
of X’ and X", respectively, containing z.

Q) V' CVuV.)
Suppose u = (z,y) € V”. Then A, = 4, C M". If A, # Ay, then
u€V' . If Ay = 4,,then ue V if 4, C M'; otherwise u € V.

Q) vuv cv”,

Let = (z,y) € V; then A; = A, and, therefore, A = /iy. Also, A C
M’, which implies that A, N A" # @, since M C M’ C M". Therefore,
the compatibility of A" with X” implies that A; C M”. It follows that
ueV”.

Let u= (A, A,), and let A C M” be the element of X” containing A,
and Ay. Then A; = A, = A, and, therefore, u € V".

Finally, to see that the weights are correct, let u = (4, B) be an arc of
G”, and assume that

¢'(4,B) (4,B), and
$(A4,B) = (z,y)

17

Then

"o ’ /
u = 7rA+gu—7rB’

K] . 4
= 7rA+7rI+gu_7Ty_7rBa
. " "
= T+ Gu— Ty

This completes the proof of the lemma. J

8 The Balancing Algorithm
We are now ready to state our balancing algorithm.

The Balancing Algorithm
Input: A weighted marked graph G = (X, U,g; M), with M = 0.

Output: (i) Vertex weights 7,z € X, such that every subgraph induced
by a strong component of the reweighted graph G, is balanced,
(ii) The acyclic graph H = Condense(G).
(Recall, the weight of v = (z,y) in Gr is 7z + gy — 7y.)

[=]

: (Initialization) Let G* = (X, U, ¢%; M%), and H* = (X', U*,h'; M*). Set
i=0,7,=0,G°=H%=G. (Note, M° =0.)

et

: (Termination) If H* is acyclic, set # = 7*, H = H* and STOP.

o

: (Compute Optimal Cycle) Find a maximum-mean cycle p* and optimal
weights o' for H'. Set X‘*! equal to the partition induced by #’,
and set M'*t! equal to the union of the vertices of uf and M’ (see
Section (4.1)).

[

: (Reweight and Contract H*) Form # = H:; (the reweighting of H* with
respect to the vertex weights ¢*) and contract to form H*+! = Hlu.
That is, for arc v = (A, B) € U**! corresponding to arc u = (4,B) €
U* (see Fig. (5)),

it = ol + by - o)

18

B

Dy
I
F ™y

Figure 5: Arc weight in the Contracted Graph

4: (Reweight G) Let G'*! = (X,U,g"t'; M'™1) be the weighted, marked
graph defined by

il = xl4oy, 2eX,z2CAeX’
o7 = mltg-mt, u=(ey) el

5: (Increment) Set 7 =7+ 1 and return to Step (1).

Notice that we do not make any assumptions about the connectivity of
the input graph. Vertex weights = for which every strong component of G,
is balanced could also be computed by first finding the strongly connected
components of G and then balancing each component separately. We prefer,
however, to present the algorithm in the more general context of arbitrary
graph. See, for example, [1] for a discussion of algorithms for computing the
strong components of a graph.

The next three lemmas establish imiportant properties of the balancing
algorithm which are need to verify that the algorithm is correct. First,
we define a descent function for the algorithm. For an arbitrary graph

G = (X,U), define O(G) by
O(G) = | X| + the number of vertices of X containing a loop.
Lemma 9 The following are true:

(i) At each iteration of the balancing algorithm,
o (H*) <o (I).

(i) The algorithm terminates with H = Condense(G) after, at most, 2n
contraction-reweighting operations.

19

Proof: (i) The new vertex of X*+! formed by 1 is always loopless, and
new loops are never created at the remaining vertices of X**!. Therefore,
a contraction-reweighting in the balancing algorithm cannot increase the
number of vertices with a loop. If |X**!| = | X*|, then 1’ must be a loop and
the corresponding vertex of X'+! must be loopless. Therefore, a contlraction-
reweighting operation either reduces the number of vertices containing 2 loop
or contracts two vertices.

(ii) Termination of the balancing algorithm in at most 2n iterations follows
immediately from Part (i), and, therefore, the algorithm must terminate
with an acyclic graph H. It follows by induction using Lemma (6) that
the components of H coincide with the components of G. But since H is
acyclic these must be the vertices of H . §

Lemma 10 Suppose the balancing clyorithm terminates after k contraction-
rewzighting operations; let A\' be the mean weight of the mazimum-mean
cycle p* computed at the ith iteration. Then

1. RSV < XY, forw e UMY, and
2. 00> 2> 22> ... >)k,

Proof: Claim (1) foilows directly from Corollary (5); claim (2) is an im-
mediate consequence of claim (1) and the definition of A'. g

In the next lemma, we describe the relationship between the graphs G*
and H', which are defined in the balancing algorithm. We will use these
properties to prove that the graph G, is balanced at strong components.

Lemma 11 The following are true:
(i) At iteration i of the balancing algorithm,
H' = (Gn)/ (X5007).

(i) Let v = (A, B) € U* be an arc of H' corresponding to arc u = (z,y) €
U of G. For g**! defined in Step (4) of the balancing algorithm

gt = oy+hi-op, uwel (10)

20

(ii) Let w € U — U*, the sel of arcs deleted up to and including the ith
contraction-reweighting operation. Then

gk=gl, fork>i weU-U-

Proof: (i) Using the definitions of X'+, At! and o' in Step (2) of the
balancing algorithm, it follows that

H™* = (H) [(X7 M),

Since H° = G° = G, the result follows by induction from Lemma (8).

1

(ii) The result is clearly true for i = 0, since 7} = ¢2. Using the definitions

of ¢*+1 and #**+1in Step (4), induction, and the definition of R', it follows
that for 2 > 0

gttt = witt4g, -t
T+ 0% + gy — T — 0B,
= oy +4. -0},
oy + ot 4 R ol — ok,
= Ui-}-hi—a’i;.

(iii) If arc u = (z,y) isin U - U*, then z and y are in the same element of
the partition X*; thatis, z,y C A € X**+1 for some vertex A of H!. Using
the definition of #**1 in Step (4), if ¥ = i+ 1 then

k k . k
9y = T T Gu = Ty,
71';+0"4+gu—-7r;—0"4,
= gu-

The result now follows by induction. J

Note that in Lemma (11) Part (i) we are claiming more than g¢'*! =
hi+1 since u is only required to be in U*, whereas hi*! is defined only for
u € Uitl, We are claiming that g'*! agrees with the arc weights in the
reweighting of JI* by o' prior to the contraction step in which the arcs in
Ut — U are deleted.

We are now ready to prove the main theorem of the paper.

21

Theorem 12 Let G be a arbitrary weighted graph and let = be the weights
fromm tie balancing algorithm. Then every strong component of G is bal-
anced.

Proof: Let A be the subgraph of G induced by a strong component X.
Let C be a subset of X} that is compatible with X', and let w {C;H} be
the corresponding cutset of H determined by C. We must show that
max e+ gu— Ty} =
u=(z,y)€wt (C;H){ ‘ Y
max {7+ gu —my} (11)
u=(:r,y)€w'(C;H)

We can assume that) C C C X, since otherwise this equality is vacuously
satisfied.
Consider the sequence of partitions,

X=X X' oo X5 = X7,

generated by the balancing algorithm. There is a j, 0 < j§ < k, for which
C is not compatible with X7, since C is compatible with X but is not
compatible with .X*. Let 7 be the smailest such index.

Because X7 is formed fromm X7~! by identifying the vertices of pi~1,
the cycle p7~* must intersect both w* (C; H7~1) and w™ (C; HI™1). Also
Corollary (5) implies that in the reweighting of H7~! by ¢7~!, the maximum
weight occurs at each arc of x7~! and equals A~'. That is,

a’f{l N cr{;l =M1, foru=(4,B)eu.
Therefore, the reweighted graph of H7~! must be balanced at C. That is,
(o o) =

{0:7"1—1 + h;’;‘l - 0_);‘3—1} :

max
u={A,B)ewt(C;Hi—1)

max
u=(A,B)ew~(C;HI~1)

and both maxima must be attained at some arc of plt. .
It follows from Lemma (7) that w{C;G} and w{C;H’"'} coincide.
Combined with Lemma (11) part (ii), it follows that for i = j

max Po= max ‘ 12
v€wt(C;G) Tu u€w~(C;G) Tu (12)

The arcs of u~! are contained in the set of arcs deleted by the (j — 1)st
contraction operation. Therefore, Lerama (11) Part (iii) implies that

gk =g, foruepi~'.
Further, since w {C;G} and w {C; H?~'} coincide, Lemina (10) implies that
g < N7

for any u in the cutset w {C;G}. Therefore (12) holds for i = k.

Since the cycle #7~! must lie entirely in the subgraph A, both maxima
in (12) must occur at an arc of w* (C; H) and w™ (C; H), respectively, when
i = k. Now we can apply the definition of ¢¥ = 7% + g, — ﬁf,u =(z,y) €U
and T, = 7% to obtain (11). This proves the theorem. §

The proof of Theorem (12) actually shows a slightly stronger result.
Consider the output of thie balancing algorithm— Condense (G), the acyclic
graph formed by contracting the strong components of G,. By Lemna (10)
every arc of Condense (G,) has weight no greater than the minimum of
the A*’s computed by the algorithm. Therefore, G, is balanced at every
compatible set C' which in not a union of strong components. Equivalently,
if some strong component is separated by the cutset determined by C, then
the balance conditions for the components imply that G, is also balanced
at C. ’

The acyclic graph G, can, in the following sense, also be balanced. For
an arbitrary graph G = (X,U), a vertex z is an boundary vertez of G if
either w* (z) or w™ (z) is empty (i.e., if either there are no arcs directed
into z or there are no arcs directed out of z). Otherwise a vertex is an
interior vertex. Let JG denote the union of the boundary vertices of G. It
is easy to see tlhat the graph formed by contracting the boundary is strongly-
connected.

Consider H = Condense(G,) the acyclic graph generated by the bal-
ancing algorithm. Let X’ be the partition of X where one element is 0 H
and the others are the remaining elements of X*. Then the balancing al-
gorithm can be applied to the strongly-connected graph H/(X’;9H). Let
the resulting weights (defined on the vertices of X’) be 7’ and define

or=7ny+7y, wherezC A€ X', andzeX.

Then the original graph G reweighted by & is balanced at strong compo-
nents and further /I is also balanced.

23

To conclude, we want to combine our results from Theorems (2) and (12)
for the case of strongly-connected graphs.

Corollary 13 Let G = (X,U.g) be a strongly-cennected, weighted graph.
Then there ezisis vertez-weights 7;,z € X, unique up to an additive con-
stant, such that the reweighted graph G, is balanced. Thus there exists a
unique balanced greph obtainable from G by reweighting.

Finally, we mention the niultiplicative interpretation of Corollary (13)
(see Problem (3) in Section (3)). Let A be an n X n matrix. We can
associate a graph (X,U,y) to A by:

X = {1,2,3,...,n},
U = {(45)]a; #0}, and
9i; = @

Let I be any subset of {1,2,3,...,n} and let I’ be the complement of I.

A matrix A is irreducible if and only if its associated graph is strongly-
connected. Thus, by Corollary (13), if A > 0 is irreducible, there exists a
diagonal matrix D with positive diagonal elements, unique up to a multi-
plicative constant, such that B = DAD™! satisfies

max {b;; |i€I,jeI'} =max{b;|ieI',je T}

for every I C {1,2,3,...,n}.

This result is analogous in the /o, -norm to Theorem (2) of [2], and thus
provides another canonical {form for diagonal similarity in the case of irre-
ducible nonnegative matrices. For some definitions and a different canonical
form for diagonal similarity without the restrictions of nonnegativity and
irreducibility see [3].

24

9 Numerical Example

Consider the weighted directed graph G given by:

The Graph H° =G

At iteration {; a maximum-mean cycle ' with mean A’ is computed for
H* using the weights F;(z) and the formula described in Theorem (4). The
corresponding optimal weights are computed using line {6) in Corollary (5).
In the example, we will not present the calculations needed to find y' and
Ai. Rather, we observe that it follows from line {6) that the optimal weights
corresponding to a maximum-mean cycle can be computed by first shifting
every arc weight of H' by A' and then computing the weights of maximal
weight walks ending at each vertex. We call the graph formed from H*® by
shifting arc weights by A® the auziliary graph for H*.

First Iteration

A maximum-mean cycle for H? with corresponding cycle mean A° is given
by:

o u% 4967554,
e A0=4.

Shifting the arc weights by A% = 4 produces:

25

[=1 7

The Auxiliary Graph for H°

The weights of maximal weight walks with a specified terminal vertex
are shown in the boxes adjaceat to the vertices. Thus the vector of optimal

weights o° is:
e ¢°=(0,4,0,6,4,3,1,0),
and the set of marked vertices is
o M!={4,5,6,7}.
The new graph H! is formed by computing Hgo (the reweighting of

H° with respect to ¢®) and contracting the cycle u® to-a point. Since the
reweighting is applied to H?, the weights ¢ are also shown on the graphk

of HC. :

The Graph H%

26

The new graph H! is:

|
(o]

The graph H*

Note, that only loops at marked vertices are deleted in the contraction

operation.
The vector of weights 7% is

o 71 =(0,2,0,6,4,3,1,0),

and G' the reweighting of G with respect to ! is

The graph G! = G

Second Iteration

A maximum-mean cycle for H! with corresponding cycle mean Al is:

e ul: 22,

27

The auxiliary graph with arc weights of H! shifted by 3 is:

[0 o -3
L <

The Auxiliary Graph for H!

where the weights of maximal weight walks are shown in the boxes ad-
Jjacent to the vertices.
The corresponding vector of weights o? is

e ol = (0,1,0,1,0),
and the set of marked vertices i3
o M?=1{24,5,6,7}.

The graph H? is computed by reweighting H! with respect to ¢! and
contracting u! to a point. -

The Graph H:x

The new graph H? is

The graph H?

The vector of weights #2 is -

» x%=(0,4,0,6,4,3,1,0) + (0,1,0,1,1,1,1,0) = (0,5,0,7,5,4,2,0),

and G? the reweighting of G with respect to n? is

The gl'aph G2 = G,z .

Third Iteration

A maximum-mean cycle for H? with corresponding cycle mean A% is
e p2: {4,5,6,7} — 8 — {4,5,6,7},
e A2=2.

29

The auxiliary graph with arc weights of H? shifted by 2 together with the
weights of maximal paths is

T Vet
0 o O

(7 >

= &

The Auxiliary Graph for H?

“The corresponding vector of weights o2 is
e ¢2=(0,1,0,1,0),

and the set of marked vertices is
o M3={2,4,5,6,7,8}.

The graph H? is computed by reweighting H? with respect to ¢? and
contracting p? to a point.

The Graph K2

The new graph H3 is

30

The graph H3

The vector of weights =3 is
e 1[’3 = (07570’775,472,0)+ (0711011’1’111,0) = (076107876151370)7

and G2 the reweighting of G with respect to #3 is

The graph G° = G_s.

Fourth Iteration

A maximum-mean cycle for H3 with corresponding cycle mean A? is
o ud: {4,5,6,7} — 8 — {4,5,6,7},
e AM3=1.

31

The auxiliary graph with arc weights of H® shifted by 1 together with the
weights of maximal weight path is

| The Auxiliary Graph for A3

" The corresponding vector of weights o2 is
e ¢%=(0,1,0,0),
and the set of marked vertices is
o M%=1{2,3,4,56,7,8}.

The graph H* is computed by reweighting A3 with respect to ¢ and
contracting u* to a point.

The Graph H3

The new graph H*? is

32

The graph H*

The vector of weights r* is
» x4=(0,6,0,8,6,5,3,0) + (9,1,0,0,0,0,0,0) = (0,7,0,8,6,5,3,0),

and G* the reweighting of G with respect to n* is

The graph G* =G 4.

Since H* is acyclic, the algorithm terminates, and = = x*. Note that
the strong components of the resuiting graph G, = G* are balanced.
References

[1] Alfred V. Aho, John E. Hopcroit, and Jeffrey D. Ullman. The De-
sign and Analysis of Computer Algorithms. Addison-Weslev Publishing
Company, 1974.

33

(2]

[4]

(5]

[6]

[7]

(8]

[9]

(10]

B. Curtis Eaves, Alan J. Hoffman, Uri G. Rothblum, and Hans Schnei-
de:. Line-sum-symmetric scalings of square nonnegative matrices.
Mathematical Programming Studies, 25:124-141, 1985.

Gernot M. Engel and Hans Schneider. Algorithms for testing the di-
agonal similarity of matrices and related problems. SIAM Journal of
Algebraic end Discrete Methods, 3(4):429-438, 1982.

Gernot M. Engel and Hans Schineider. Diagonal similarity and equiv-
alence for matrices over groups with 0. Czechoslovak Mathematical
Journal, 25:389-403, 1975.

M.v. Golitschek. Optimal cycles in doubly weighted graphs and approx-
imation of bivariate functions by univariate ones. Numerische Mathe-
matik, 39:65-84, 1582.

M.v. Golitschek and Hans Schneider. Aprplications of shortest path
algorithms to matrix scalings. Numerische Mathematik, 44:111-126,
1984.

Richard M. Karp. A characterization of the miniimum cycle mean in a
digraph. Discrete Mathematics, 23:309-311, 1978.

E.E. Osborne. On pre-conditoning of matrices. Journal of the Assoct-
etion of Computing Mackinery, 7:338-345, 1960.

Hans Schneider and Michael H. Schneider. A simple iterative algo-
rithm for balancing matrices. Technical Report, Princeton University,
Department of Civil Engineering, 1987.

Michael H. Schneider and Stavros Zenios. A comparative study of al-
gorithm for matriz balancing. Technical Report 86-10-4, University of
Pennsylvania, Department of Decision Sciences, The Wharton School,
January 1987.

34

