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ABSTRACT

We determine all poesible relations between the height (Weyr) characteristic
and the level characteristic of an M-matrix. Under the assumption that the
two characteristics have the same number of elements, we determine the pos-
sible relations between the two characteristics for a wider class of matrices,
which also contains the class of strictly triangular matrices over an arbitrary
field. Given two sequences which satisfy the above condition, we construct
a loopless acyclic graph G with the following property: Every matrix whose
graph is G has its height characteristic equal to the first sequence and its level
characteristic equal to the second. We give several counterexamples to possible
extensions of our results, and we raise some open problems.

1. Introduction

In this paper we determine all possible relations between the height (Weyr)
characteristic and the level characteristic of an M-matrix. Indeed, under the
assumption that the two characteristics have the same number of elements, we
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det ermine the possible relations between the two characteristics for a wider class
of matrices, which also contains the class of strictly triangular matrices over an
arbitrary field.

In the introduction to [15] it 18 observed that there 18 @ relation between the
two characteristics for an M-matrix, and in that paper and in geveral subse-
quent ones the case of equality Was explored, €8 (13}, (12}, {1l (8}, (9], The
question of characterizing all possible relations wasé thus raised implicitly in the
1950%s, and the problem wad stated explicitly in [16]. In this paper We golve
this problem. Given two gequences 1 and X of positive integers with the same
pumber of elements, We ghow that there exists 2 matrix in the class considered
with level characteristic ) and height characteristic n if and only if 7 majorizes A
when reordered in B n-increasing order. This characterization was conjectured
by Berman and van den Driessche [private communication, 1987].

We now describe our paper in more detail. Section 9 is devoted t0 definitions
and notation. In particular we here define the level characteristic and the height
characteristic of A. We also give our definition of majorization which 8 related
to the definition found in many places, & (11, p.7], but is not :dentical with it,
since we wish t0 be consistent with our Jefinition in 18l

In Section 3 We study the relation between the height and level characteristics
for strictly lower triangular matrices under the aggumption that the character-
istics have the same pumber of elements. Given two gequences 1 and A which
satisfy the above condition, we construct 2 loopless acyclic graph G with the
following property: Every matrix whose graph i8 G has it height characteristic
equal to 7 and its level characteristic equal to A. This result is then extended
in Section 4 t0 the class of matrices all of whose singular yertices are simple
(ie- matrices which may be partitioned into a block triangular form, go that the
gingular diagonal blocks have 0 as a simple eigenvalue). This class, of course, con-
tains the class of M-matrices- We thus obtain the results mentioned above. The
paper 18 concluded with some partial results on the two characteristics for the
class of matrices with all gingular vertices gimple, where we omit the assumption
that the characteristics have the same pumber of elements.

In Sections 3 and 4 we give geveral examples which illustrate our theorems
and we state counterexamples to possible extensions of our results. We also
raise some open problems. For example, given gequences ) and 7, it would be
interesting t0 characterize all graphs G such that for all matrices A whose graph
is G, the level characteristic of A equals A and the height characteristic equals

n.
This paper continues the series of joint Papers e}, {7} 41, (8); (8}, and 9}
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on the graph theoretic spectral theory of matrices. Other recent papers closely
related to this series are [2] and [3]. These papers emphasize the relation between
the combinatorial structure of a matrix and the structure of the generalized
eigenspace of an eigenvalue of the matrix. Of particular interest in most of these
papers is the case where the matrix is an M-matrix and the eigenvalue is 0.

2. Notation and Definitions

In this paper we assume that A is an n X n matrix over an arbitrary field. The
index of A, that is the size of the largest Jordan block associated with 0 as an
eigenvalue of A, is assumed to be p.

Notation 2.1: For a positive integer 7 we denote by (n) the set {1,...,n}.

Notation 2.2: For a square matrix B we denote by n(B) the nullity of B (the
dimension of the nullspace of B), and by r(B) the rank of B.

Notation 2.3: Let a C (n). We denote by A[a| the principal submatrix of 4
whose rows and columns are indexed by « in the natural order.

Definition 2.4: For i € (p) let n;(A) = n(A*) — n(4*~?) (where n(A°) = 0). The
sequence (n3(A),...,np(A)) is called the height characteristic of A, and is
denoted by n(A). Normally we write n; for n;(A) where no confusion should
result.

We remark that the height characteristic of A is often referred to as the Weyr
characteristic of 4, e.g. [13].

We continue with some graph theoretic definitions. All the graphs we deal
with are simple directed graphs.

Definition 2.5: The graph G(A) of A is defined to be the graph with vertex set
(n), and such that there is an arc from s to j if a;; # 0.

Definition 2.6: Let G and H be two graphs with the same vertex set. We say
that G is a subgraph of H, and we denote it by G C H, if every arc of G is an
arc of H.

Notation 2.7: Let G be a graph. We denote the transitive closure of G by G.

Definition 2.8: A graph is said to be acyclic if it contains no simple cycle other
than loops. An acyclic graph is said to be loopless if it has no loops.
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Definition 2.9: Let + be 2 yertex in an acyclic graph G- We define the level
of + 38 the maximal length (number of vertices) of 2 simple chain in G that
terminates at 1. We call the set of all vertices of level 7 the j-th level of G, and
we denote the cardinality of the j-th Jevel of G by 2(G)- Let G have ¢ Jevels.
The sequence (MG - A(G)) 18 called the level characteristic of G, and 8

Jenoted by A(G)-

We now assume that A is partitioned in a lower triangular r X T block form
( Ais)1 with square diagonal blocks. Note that the concepts defined in Defi-
pitions (2.10) - (2.14) below depend on the chosen partitioning for A, and that
this is not explicitly noted there.

Definition 2.10: The reduced graph R(A) of A is defined to be the graph with
vertex seb (r), and guch that there is an arc from i to j if Aij # 0. Note that

since A 18 @ Jower triangular block matnx, R(A) 18 acyclic.

Definition 2.11: @) A vertex ¢ in R(A) i said to be singular if A;; is singular.
The set of all singular vertices of R(A) s denoted by S-
(#) A gingular vertex ; is said to be gimple if 018 3 simple eigenvalue of Aii-

Definition 2.12: The singular graph 5 (A) of A is defined to be the graph with
vertex set S, and such that there is an arc from § to J fi=17Jor if there i8 a
chain from i to J in R(A)- Note that S (A)isa transitive acyclic graph.

Definition 2.13: The level characteristic A(A) of 4 is defined to be the se-
quence A{(S (A))- )

Remark 2.14: After performing an jdentical permutation on the rows and the
columns of A we may assume that A is in Frobenius pormal form, namely a
(lower) triangular block form, where the diagonal blocks are square irreducible
matrices. As iz well known, the Frobenius pormal form is unique only up to cer-
tain permutations of the blocks and permutations within the blocks; seé [13] and
the references there for further information. However, the possible partition’mg
associated with the Frobenius normal forms of a given matrix A determine the

same level characteristic for A.

Definition 2.15: A Z-matriz 18 3 square matrix of the form A=al -~ P, where
o i8 a real number and Pis 3 (entrywise) ponnegative matrix. Such a Z-matriz
is an M _matriz if o i8 greater than or equal to the spectral radius of P.
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Convention 2.16: If A is an M-matriz or a triangular matrix, then we shall
always assume that the partitioning of A which defines the reduced graph is the
Frobenius normal form of A.

Observe that if A is a triangular matrix then G(A) = R(A).

Notation 2.17: Let A be a (finite) sequence of positive integers. We denote by b
the sequence A reordered in a non-increasing order.

Definition 2.18: Let p = (p1,...,4) be a non-increasing sequence of positive
integers. Consider the diagram formed by t columns of stars, such that the j-th
column (from the left) has u; stars. The sequence u* dual to u is defined as the
sequence of row lengths of the diagram (read upwards).

We remark that a dual sequence is often called a conjugate sequence. Also,
many equivalent definitions may be given for dual sequences, e.g. [9] and [11].

Definition 2.19: Let a = (a1,...,a:¢) and f = (B4,..., P:) be sequences of non-
negative integers. We say that f majorizes a, and denote it by a < B, if
ait-tax<Pr1+--+Pxforevery ke (t—1),and a+---+a= 1+ -+ b

We remark that our definition is related to the definition of majorization as
found in many places, e.g [11, p.7], but is not identical with it, since there S
is said to majorise a if B reordered in a non-increasing order majorizes (in our
sense) a reordered in a non-increasing order. Thus, the two definitions coincide
if the sequences a and f are non-increasing.

8. The Existence of Triangular Matrices With Prescribed Character-
istics

In this section we discuss strictly triangular matrices over an arbitrary field. We

start with an easy proposition.

PROPOSITION 3.1: (i) Let A be an m x m matrix such that G C G(4) € G,
where G is a graph that consists of a chain of length m. Then n(4) = (1,...,1).
(i) Let n = (n1,...,Mp) be a non-tncreasing sequence of positive integers, and let
G be a graph that consists of n1 pasrwise disjosnt chasns, where the sequence of

lengths of the chasns, ordered in a non-increasing order, 1s n* . Then for every
square matriz A with G C G(A) C G we have n(A) = 1.
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Proof: . (i) Let k € {m — 1). Observe that the k-th sub-diagonal of AF is
nonzero, and that the entries above it are all sero. Therefore, r(A*) =m -k
Also, A™ = 0. The result follows.

(i) Let n* = (n},...,n¢), where t =5, . Let A be a square matrix such that
G C G(A) C G. Then A is a direct sum of ¢ matrices of sizes nj,...,n;, each
of which satisfies the conditions of part (i) of the proposition. Our claim follows

from (i). 0
The following lemma is immediate and well-known.

LEMMA 3.2: Let A be a square matrix over an arbitrary field, let 1 be a vertex
in G(A), and let k be a positive integer. If there is no chain in G(A) of length
k + 1 that starts at 3, then the :-th row of AF is a gero row.

THEOREM 3.3: Let A = (A1,...,A,) be a sequence of positive integers, and
let n = (n1,..-,mp) be a non-increasing sequence of positive integers. If XA=<n
then there exists a loopless acyclic graph G such that for every matrix A over an
arbitrary field with G(A) = G we have A\(A) = A and n(A) = n. Furthermore,
the graph G may be chosen to be transitive.

Proof: Since A < 7, it follows that n* < X*, see [11, p.174]. By the Gale-Ryser
Theorem (e.g. [11, p.176]), there exists a (0 — 1) p X 11 matrix E, where the
sequence of the row sums of E, read from the bottom, is A, and where the
sequence of the column sums of E, read from the left, is n*. Since n consists of p
positive elements, it follows that the first element of n* is p, so the first column
of E consists of 1’s. Let n = A; + ...+ Ap. Then E has exactly n nonzero
elements. We replace these nonzero elements in E by the numbers 1,...,n (in
any order), to obtain a new matrix F. We now construct a loopless acyclic graph
G with vertex set (n) as follows. For every nonzero column of F let (iy,... y3t)
be the nonzero elements of F in that column, read from the bottom. Then let
G contain the chain (iy,...,%;). Also, for every 5 € {2,...,p} let there be an arc
from f; ; to every nonzero element in the (i — 1)-th row of F. The latter assures
that all the vertices in the i-th row of F' are of level Ap41—,¢ € (p). Therefore,
we have A(G) = A. Now let A be a matrix over an arbitrary field with G(4) = G.
Clearly, A(A) = A. We claim that n(4) = . Observe that after performing a
permutation similarity on A, A may be partitioned as

Ay O
A=
[421 Azz] ’
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where A;; and Aj; are square. Furthermore, A22 = A[a] where « is the set of
the p elements in the first column of F, and A;, is a direct sum of matrices A[S;]
where f; is the set of the nonzero elements in a nonzero column 5 of F, 7> 1.

1_ (A O
A"[o Azg]

Observe that A(G(A')) = 5, and that G(A’) consists of n; pairwise disjoint
chains, where the sequence of lengths of the chains, ordered in a non-increasing
order, is n* . By Proposition 3.1, we have n(A4’) = n. We now claim that
n(A) = n(A’). We shall prove it by showing that for every k € (p) we have
r(A¥) = r(A"). Clearly,

Consider the matrix

(3-4) r(4%) 2 r(A}) +r(45,) = r(4™).

Partition A* conformably with the partitioning of A. Then
A* = [A%E; ?k)]
Az Ax

where A( V= AR, = 1,2. We have

(3.5) r(4%) < r(A%)) + r(4),

where 4 = [Agi) Ag;)]. Observe that a contains exactly k elements of level
greater than or equal to p + 1 — k. So, there is no chain of length k& + 1 that
starts at any of these elements, and by Lemma 3.2 the corresponding k rows of
A are zero rows. Therefore, we have r(A4) < p— k. Since r(A) > r(4L,) = p—k,
it now follows that r(A4) = r(A%,;). By (3.4) and (3.5) we now obtain

r(4*) = r(4}) + r(45;) = r(4™),

which proves our claim.
To see that the required graph may be chosen to be transitive, observe that
we could apply the above proof to the transitive closure of G rather than to G.
O

We remark that in our report [10] we provide an example illustrating the proof
of Theorem 3.3. Also, let G be the graph constructed in the proof of Theorem
3.3. In [10] we sketch an alternative proof to the fact that every matrix A with
G(A) = G satisfies 5(A) = n, which does not use Proposition 3.1 or Lemma 3.2,
and we provide there an example illustrating this alternative part of the proof
of Theorem 3.3.
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Remark 3.6: If there exists a loopless acyclic graph G such that for every matrix
A over an arbitrary field with G(A) = G we have A(4) = X and n(4) = #, then
A and n must have the same number of elements. For proof, observe that we
may choose all the nonzero elements of A to be negative, and hence A may be
chosen to be an M-matrix. As is well known (e.g. [14]), the height and the level
characteristics of an M-matrix consist of the same number of elements, which
proves our claim. Therefore, Theorem 3.3 does not hold if we allow A and »
to have different number of elements (and if we replace A<npby i< (n,0) as
defined in Section 5).

In the proof of Theorem 3.3 we construct an acyclic graph G such that for
every matrix A over an arbitrary field with G(4) = G we have A(4) = A and
n(A) = n. Motivated by this we pose the following problem.

Problem 3.7: Let A = (A1,...,Ap) be a sequence of positive integers, and let
= (71,.--,Mp) be a non increasing sequence of positive integers, such that
=

(i) Characterise all acyclic graphs G such that for every matrix 4 with G(4) =
G we have A(A) = X and n(4) = 1.

(ii) Characterize all acyclic graphs G such that for some matrix A with G(4) =
G we have X(4) = A and n(4) = 1.

Remark 3.8: Problems similar to Problems 3.7.(i), (ii) can be stated specifically
for nonnegative matrices as well as M-matrices, where G(A) is replaced by S(4).

Remark 3.9: The case where A = 5 for M-matrices was discussed in great detail
in [8] and [9], where 36 equivalent conditions are given.

4. Matrices With All Singular Vertices Simple

In this section we apply the result of the previous section in order to study
the relations between the height characteristic and the level characteristic of a
matrix A with all singular vertices simple. It follows from the Index Theorem
proven in [2]| as well as in [5], that the index p of A is less than or equal to the
number g of levels in the singular graph of A. We start this section by proving a
necessary and sufficient condition for given sequences A and 7 to be the level and
the height characteristics of a matrix satisfying certain conditions. In particular,
our results apply to M-matrices, and hence solve a long standing problem, which
was posed explicitly in [16] (see Remark 4.2).
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THEOREM 4.1: Let A = (A1,...,Aq) be a sequence of positive integers, and
let n = (n1,...,7mp) be a non-increasing sequence of positive integers. Then the
following are equivalent.

(i) p=g, and A <.

(i) p = ¢, and there exists a loopless transitive acyclic graph G such that for
every matrix A over an arbitrary field with G(A) = G we have A(A) = A and
n(A4) = n.

(iii) p = g, and there exists a loopless acyclic graph G such that for every matrix
A over an arbitrary field with G(A) = G we have A(4) = A and n(A) =n.

(iv) p = g, and there exists a strictly (lower) triangular matrix A such that
A(A) = A and n(A) =n.

(v) There exists a strictly (lower) triangular nonnegative matrix A such that
A(A) = A and n(A4) = 1.

(vi) There exists an M-matrix A such that A(4) = A and n(A) = n.

(vii) p = q, and there exists a matrix A with all singular vertices simple such
that A(A) = X and n(4) = 1.

Proof: (i) = (ii) follows from Theorem 3.3.

(ii) = (iii) = (iv) = (vii) is immediate.

(iii) = (v) is immediate.

(v) = (vi) follows by taking the negative of a matrix satisfying (v).

(vi) = (vii) is clear since M-matrices have all singular vertices simple.

(vil) = (i). Let X = (A1,...,p). By Theorem 3.5 in [3], (vii) implies A+
oo+ Ax <M1+ -+ K,k € (p). Since A has all singular vertices simple, it
followsthat:\1+---+:\p=r)1+---+np,a.ndhence:\jn. O

Remark 4.2: Using the notation of [16], the equivalence of Conditions (i) and
(vi) in Theorem 4.1 solves the S.(A) and S. (B) versions of Questions (8.8) and
(8.9) in [16]. This result was conjectured by Berman and van den Driessche
[private communication, 1987].

Remark 4.3: The implication (vii) = (i) in Theorem 4.1 does not hold if A
has a singular vertex which is not simple. Note that in such a case we have
A1+ -+ A <m+--+np, and hence we cannot have A < 1.

Remark 4.4: The following condition,

(a) p= g, and for every loopless transstive acyclic graph G such that A(G) = A
there ezists a matriz A with G(A) = G such that A(A) = ) and n(A) = n,
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immediately implies Condition (iv) in Theorem 4.1. However, Condition (a) is
not implied by the conditions in Theorem 4.1. In fact, even the weaker condition,
with G(A) replaced by R(A), is not implied by the conditions in Theorem 4.1
as demonstrated by the following example. Let A = n = (2,2), and let G be the
loopless transitive acyclic graph

1 2
v/
3 4.

Let A be a matrix with R(A) = G. If A(A) = A then all the vertices in R(A) are
singular. If, furthermore, n(A) = n then it follows that every vertex is 2 simple
singular vertex. Since A is direct sum (R(A} is not connected), it follows from
Theorem 4.10 below that n(A) is either (4,0) or (3,1), which is a contradiction.
Therefore, there exists no matrix A with R(A) = G such that A(A) = A and

n(4) = n.
We continue with three easy observations.

Observation 4.5: (i) Let A be a sequences of p positive integers. Then the only
sequence of p positive integers that majorizes X is X if and only if Az2=1.

(ii) Let » be a non-increasing sequences of p positive integers. Then the only
non-increasing sequence of p positive integers that is majorized by n is n if and
only if g <1, + 1.

(iii) Let n be a non-increasing sequences of p positive integers. Then every
sequence a with & = 5 satisfies a = 9 if and only if n, = ;.

In view of Observation 4.5, the following corollaries follow immediately from
Theorem 4.1.

COROLLARY 4.6: Let A = (Ay,...,Ap) be a sequence of positive integers.
Then the following are equivalent.

(i) Al M-matrices A with A(A) = A have the same height characteristic.

(i) All M-matrices A with A(A) = X satisfy n(A) = A.

(iii) Az = 1.

COROLLARY 4.7: Let n = (n1,...,np) be a non-increasing sequence of posi-
tive integers. Then the following are equivalent.

(i) Al M-matrices A with n(A) = n have the same reordered level characteristic
A(A).

(ii) Al M-matrices A with n{A) = n satisfy A(A) = 9.

(ifi) 71 < mp + 1. |

R
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COROLLARY 4.8: Let n = (n1,...,7np) be a non-increasing sequence of posi-
tive integers. Then the following are equivalent.

(i) All M-matrices A with n{A) = n have the same level characteristic.

(ii) AU M-matrices A with n(A) = n satisfy A(A) = 1.

(ii) 7p = m.

Let A and 5 be sequences of p positive integers such that A < n. Let G be a
transitive graph such that A(G) = A. By the remark that follows Proposition
(7.5) in [8], if there exists an M-matrix A with R(A) = G such that A(A) = A and
n(A) = n, then there exists an M-matrix A with G(A) = G such that A(4) = A
and n(A) = n. However, if G is not transitive then the above implication is false
in general, as demonstrated by the following example.

Example 4.9: Let A = (2,1,2), and let G be the graph

o ‘' o + o0 o0 I o0 : O
0 0 0o o 0 0
-1 0 1 -1 0 0
A=
) -1 -1 1 0 0
0 0 -1 0 0 0
L o0 ! o : 0 -1 : 0 : 0]

satisfies R(A) = G, and we have A(4) = X and n(4) = 5. However, it is easy
to verify that every matrix A with G(A) = G satisfies n(4) = (3,1,1), and so
n(A) # n.

So far in this section, we have discussed the case of matrices A with all singular
vertices simple, for which we have p = g¢. We conclude the paper with a brief




116 D. HERSHKOWITZ AND H. SCHNEIDER Isr. J. Math.

discussion of the case p < q. We remark that the partitioning of A is not
necessarily the Frobenius normal form.

Let A = (A1,...,Aq) and n = (n1,...,7p), where p < q. We use the notation
(n,0) for the sequence a = (ay,...,a,), where a; = n; for 1+ < p and o; =
for p < ¢+ < g. The following theorem follows from Theorem (3.5) in [3] and the
remark that follows there.

THEOREM 4.10: Let A have all singular vertices simple. Then A(A) <
(n(4),0).

Motivated by Theorem (4.10), we ask the following.

Question 4.11: Let A = (Ay,...,,) be a sequence of positive integers, and let
n = (n1,...,np) be a non-increasing sequence of positive integers. Assume fur-
ther that p < g and that A < (1,0). Does there exist a matrix A with A(A) =2
and n(A) = n?

A special case of Theorem 4.10 is the following.

THEOREM 4.12: Let G be a loopless acyclic graph with A(G) = A = (A;,...,A
Then for every matrix A with G(A) = G we have X < (n(A),0).

Here too, one might ask a question similar to Question 4.11. That is, given
a sequence A = (Ay,...,A,) of positive integers, and a non-increasing sequence
n = (n1,...,np) of positive integers, such that p < ¢ and X< (n,0). Does

there exist a loopless acyclic graph G with A(G) = A and a matrix A with
G(A) = G such that n(A) = n? However, the answer to this question is negative,
as demonstrated by choosing A = (1,1) and n = (2). Clearly, X< (n,0).
However, for every loopless acyclic graph G with A(G) = A and every matrix A

with G(A) = G, we have n(4) = (1, 1).
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