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ABSTRACT
We detemline all possible relations between the height (Weyr) characteristic
and the level characteristic of an M-matrix. Under the assumption that the
two characteristics have the same number of elements, we detemline the pos-
sible relations between the two characteristics for a wider class of matrices,

which also contains the class of strictly triangular matrices over an arbitrary
field. Given two sequences which satisfy the above condition, we construct

a loopless acyclic graph G with the following properly: Every matrix whose
graph is G has its height characteristic equal to the first sequence and its level

characteristic equal to the second. We give several counterexamples to p088ible
extensions of our results, and we raise some open problems..

1. Introduction
l

In this paper we determine all possible relations between the height (Weyr)
characteristic and the level characteristic of an M -matrix. Indeed, under the
assumption that the two characteristics have the same number of elements, we
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determine the possible relations between the two characteristics for a wider class
of tnatrices, which also contains the class of strictly triangular matrices over an

arbitrary field. In the introduction to t15\ it is observed that there is a relation between the

twO characteristics for an M -matrix, and in that paper and in several subse-
quent ones the case of equality was explored, e.g \13\, t12\, \1\, \8\, \9\. The

question of characterizing all possible relations was thus raised implicitly in the

1950's, and the problem was stated explicitly in t16\. In this paper we solve

this problem. Given two sequences" and A of positive integers with the same

number of elements, we show that there exists a matrix in the class considered
'With level characteristic A and height characteristic" if and only if " majorizes A

'When reordered in non-increasing order. This characterization was conjectured

by Berman and van den Driessche \private communication, 1987\.
We noW describe our paper in more detail. Section 2 is devoted to definitions

and notation. In particular we here define the level characteristic and the height

characteristic of A. We also give our definition of majorization which is related
to the definition found in many places, e.g. t11, p.7\, but is not identical with it,

since we wish to be consistent with our definition in \8\.
In Section 3 we study the relation between the height and level characteristics

for strictly lower triangular matrices under the assumption that the character-
istics have the same number of elements. Given two sequences" and A which
satisfy the above condition, we construct a loopless acyclic graph G with the

following property: Every matrix whose graph is G has its height characteristic
equal to " and its level characteristic equal to A. This result is then extended

in Section 4 to the class of matrices all of whose singular vertices are simple
(i.e. matrices which may be partitioned into a block triangular form, so that the

singular diagonal blocks have 0 as a simple eigenvalue). This class, of course, con-

tains the class of M -matrices. We thus obtain the results mentioned above. The

paper is concluded with some partial results on the two characteristics for the

class of matrices with all singular vertices simple, where we omit the assumption

that the characteristics have the same number of elements.
In Sections 3 and 4 we give several examples which illustrate our theorems

and we state counterexamples to possible extensions of our results. We also

raise some open problems. For example, given sequences A and ", it would be

interesting to characterize all graphs G such that for all matrices A whose graph

is G, the level characteristic of A equals A and the height characteristic equals

". This paper continues the series of joint papers t6\, t7\, \4\, t5\, \8\, and t9\

,"\,.

~
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on the graph theoretic spectral theory of matrices. Other recent papers closely
related to this series are [2] and [3]. These papers emphasize the relation between
the combinatorial structure of a matrix and the structure of the generalized
eigenspace of an eigenvalue of the matrix. Of particular interest in most of these
papers is the case where the matrix is an M -matrix and the eigenvalue is O.

2. Notation and Definitions

In this paper we assume that A is an n x n matrix over an arbitrary field. The
index of A, that is the size of the largest Jordan block associated with 0 as an
eigenvalue of A, is assumed to be p.

Notation 2.1: For a positive integer 11 we denote by (n) the set {I,..., n}.

Notation 2.2: For a square matrix B we denote by n(B) the nullity of B (the
dimension of the nullspace of B), and by r(B) the rank of B.

Notation 2.3: Let a ~ (n). We denote by A[a] the principal submatrix of A
whose rows and columns are indexed by a in the natural order.

Definition 2.4: For i E (p) let 1Ii(A) = n(Ai) - n(Ai-l) (where n(AO) = 0). The

sequence (1Il(A),..., ,/p(A)) is called the height characteristic of A, and is
denoted by 1I(A). Normally we write 1Ii for 1Ii(A) where no confusion should

result.

We remark that the height characteristic of A is often referred to as the Weyr

characteristic of A, e.g. [13].
We continue with some graph theoretic definitions. All the graphs we deal

with are simple directed graphs.

Definition 2.5: The graph G(A) of A is defined to be the graph with vertex set

(n), and such that there is an arc from i to J' if ~,' ~ O.

Definition 2.6: Let G and H be two graphs with the same vertex set. We say
that G is a subgraph of H, and we denote it by G c H, if every arc of G is an

arc of H.

Notation 2.7: Let G be a graph. We denote the transitive closure of G by G.

Definition 2.8: A graph is said to be acyclic if it contains no simple cycle other
than loops. An acyclic graph is said to be loopless if it has no loops.

'I I,~ I
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Definition 2.9: Let i be a vertex in an acyclic graph G. We define the level
of i as the maximal length (number of vertices) of a simple chain in G that
tertninates at i. We call the set of all vertices of level j the j-th level of G, and

we denote the cardinality of the j-th level of G by A;(G). Let G have q levels.
The sequence (Al(G),..., A4(G)) is called the level characteristic of G, and is

deJ1oted by ).(G).We noW assume that A is partitioned in a lower triangular r X r block form
(fti;)l , with square diagonal blocks. Note that the concepts defined in Defi-
nitions (2.10) - (2.14) below depend on the chosen partitioning for A, and that

tbis is not explicitly noted there.
Definition 2.10: The reduced graph R(A) of A is defined to be the graph with
'f{ertex set (r), and such that there is an arc from i to j if Ai; :F o. Note that

since A is a lower triangular block matrix, R(A) is acyclic.

Definition 2.11: (i) A vertex i in R(A) js said to be singular if Ai, is singular.

The set of all singular vertices of R(A) is denoted by S.
(ii) A singular vertex i is said to be simple if 0 is a simple eigenvalue of Ai,.

Definition 2.12: The sin~lar graph S(A) of A js defined to be the graph with
vertex set S, and such that there js an arC from i to j if i = j or if there is a

chain from i to j in R(A). Note that S(A) is a transitive acyclic graph.

Definition 2.13: The level characteristic A(A) of A is defined to be the se-

quence A(S(A)).Remark 2.14: After performing an identical permutation on the roWS and the
columns of A we may assume that A js in Frobenius Donna1 lorIn, namely a

(lower) triangular block form, where the diagonal blocks are square irreducible
matrices. As is well known, the Frobenius normal form is unique only up to cer-
tain permutations of the blocks and permutations within the blocks; see \131 and

the references there for further information. However, the possible partitioning
associated with the Frobenius normal forms of a given matrix A determine the

Sa.IUe level characteristic for A.
Definition 2.15: A Z-matriz is a square matrix of the form A = aI - P, where

a is a real number and P is a (entrywise) nonnegative matr"x. Such a Z-matrU
is an M -matri~ if a is greater than or equal to the spectral radius of P.

.nno
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Convention 2.16: H A is an M -matrix or a triangular matrix, then we shall
always assume that the partitioning of A which defines the reduced graph is the
Frobenius normal form of A.

Observe that if A is a triangular matrix then G(A) = R(A).

Notation 2.17: Let ). be a (finite) sequence of positive integers. We denote by ..i.

the sequence). reordered in a non-increasing order.

DeBnition 2.18: Let IJ. = (p,1,..., 1J.t) be a non-increasing sequence of positive

integers. Consider the diagram formed by t columns of stars, such that the j-th
column (from the left) has P,i stars. The sequence p,' dual to p, is defined as the
sequence of row lengths of the diagram (read upwards).

We remark that a dual sequence is often called a eonjugate sequenee. Also,
many equivalent definitions may be given for dual sequences, e.g. [9] and [11].

DeBnition 2.19: Let a = (a1'...' at) and f:J = (f:J1'...' /:Jt) be sequences of non-

negative integers. We say that f:J majorizes a, and denote it by a ~ f:J, if
a1 +. . . + ak ~ f:J1 +, . ,+ f:Jk for every k E (t -1), and a +. . . + a = f:J1 +. . . + f:Jt.

We remark that our definition is related to the definition of majorization as

found in many places, e.g [11, p.7], but is not identical with it, since there f:J

is said to majorize a if f:J reordered in a non-increasing order majorizes (in our

sense) a reordered in a non-increasing order. Thus, the two definitions coincide

if the sequences a and f:J are non-increasing.

s. The Existenee of Triangular Matriees With Preseribed Charaeter-
isties

In this section we discuss strictly triangular matrices over an arbitrary field. We
start with an easy proposition.

PROPOSITION 3.1: (i) Let A be an m X m matrix sucb that G ~ G(A) ~ G,
where G is a graph that consists of a cbain oflengtb m. Tben ,,(A) = (1,...,1).
(ii) Let " = ("1,... ,'lp) be a non-increasing "equence 01 positive integer", and let

G be a graph that consisu 01"1 pairwise disJ'oint chainl, where the sequence 01
length,., 01 the chain", ordered in a non-increasing order, is". . Then lor every
square matrix A with G ~ G(A) ~ G we have ,,(A) = fl.

I

!
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Proof:. (i) Let k E (m - 1). Observe that the k-th sub-diagonal of Ak is
nonzero, and that the entries above it are all zero. Therefore, r(Ak) = m - k.
Also, Am = O. The result follows.

(ii) Let '1* = ('1i,. .. ,'1:), where t = '11 . Let A be a square matrix such that
G ~ G(A) ~ G. Then A is a direct sum of t matrices of sizes '1i,..., '1:, each
of which satisfies the conditions of part (i) of the proposition. Our claim follows
from (i). 0

The following lemma is immediate and well-known.

LEMMA 3.2: Let A be a square matrix over an arbitrary field, let i be a vertex
in G(A), and let k be a positive integer. H there is no clIain in G(A) of length
k + 1 that starts at i, then the i-th row of Ak is a .ero row.

THEOREM 3.3: Let A = (Al,...,Ap) be a sequence ofp~itive integers, and
let '1 = ('11,..., '1p) be a non-increasing sequence of p~itive integers. H X ~ '1

then there exists a loopleBB acyclic graph G such that for every matrix A over an
arbitrary field with G(A) = G we have A(A) = A and '1(A) =". Furthermore,
the graph G may be ch~en to be transitive.

Proof: Since X ~ '1, it follows that '1* ~ X*, see [11, p.174]. By the Gale-Ryser
Theorem (e.g. [11, p.176]), there exists a (0 - 1) p X "1 matrix E, where the
sequence of the row sums of E, read from the bottom, is A, and where the
sequence of the column sums of E, read from the left, is ,,*. Since '1 consists of p
positive elements, it follows that the first element of '1* is p, 80 the first column
of E consists of 1 'B. Let n = Al + . .. + Ap. Then E has exactly n nonzero
elements. We replace these nonzero elements in E by the numbers 1,..., n (in

any order), to obtain a new matrix F. We now construct aloopless acyclic graph
G with vertex set (n) as follows. For every nonzero column of F let (il"'" it)
be the nonzero elements of F in that column, read from the bottom. Then let
G contain the chain (il,. . . ,it). Also, for every i E {2, . . . ,p} let there be an arc
from fi,l to every nonzero element in the (i -l)-th row of F. The latter assures
that all the vertices in the i-th row of F are of level AP+l-i' i E (P). Therefore,
we have A(G) = A. Now let A be a matrix over an arbitrary field with G(A) = G.
Clearly, A(A) = A. We claim that '1(A) = '1. Observe that after performing a

permutation similarity on A, A may be partitioned as

A- [ All 0 ]- A21 A22 '

,. ! \ i
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where All and A22 are square. Furthermore, A22 = A[a] where a is the set of
the p elements in the first column of F, and All is a direct sum of matrices A[.8,.]
where .8,' is the set of the nonzero elements in a nonzero column " of F, " > 1.
Consider the matrix

A' = [ All 0
]0 A22

Observe that A(G(A')) = 'I, and that G(A') consists of 'II pairwise disjoint

chains, where the sequence of lengths of the chains, ordered in a non-increasing
order, is '1*. By Proposition 3.1, we have 'I(A') = 'I. We now claim that
'I(A) = 'I(A'). We shall prove it by showing that for every k E (p) we have
r(Ak) = r(A'k). Clearly,

(3.4) r(Ak) ~ r(A~l) + r(A~2) = r(A'Ir.).

Partition Air. conformably with the partitioning of A. Then

[ A(Ir.) 0 ]k - 11
A - A(Ir.) A(k)

21 22

where A~~) = A~., i = 1,2. We have
II II

(3.5) r(Ak) ~ r(A~l) + r(A),

where A = [A~~)A~~)]. Observe that a contains exactly k elements of level
greater than or equal to p + 1 - k. So, there is no chain of length k + 1 that

starts at any of these elements, and by Lemma 3.2 the corresponding k rows of- --
A are zero rows. Therefore, we have r(A) ~ p - k. Since r(A) ~ r(A~2) = p - k,
it now follows that r(A) = r(A~2). By (3.4) and (3.5) we now obtain

r(Ak) = r(A~l) + r(A~2) = r(A'k),

which proves our claim.
To see that the required graph may be chosen to be transitive, observe that

we could apply the above proof to the transitive closure of G rather than to G.

0

We remark that in our report [10] we provide an example illustrating the proof
of Theorem 3.3. Also, let G be the graph constructed in the proof of Theorem
3.3. In [10] we sketch an alternative proof to the fact that every matrix A with
G(A) = G satisfies 'I(A) = 'I, which does not use Proposition 3.1 or Lemma 3.2,

and we provide there an example illustrating this alternative part of the proof
of Theorem 3.3.
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Remark 8.6: If there exists a loopless acyclic graph G such that for every matrix
A over an arbitrary field with G(A) = G we have A(A) = A and 'I(A) = 'I, then

A and '7 must have the same number of elements. For proof, observe that we
may choose all the nonzero elements of A to be negative, and hence A may be
chosen to be an M-matrix. As is well known (e.g. [14]), the height and the level
characteristics of an M -matrix consist of the same number of elements, which
proves our claim. Therefore, Theorem 3.3 does not hold if we allow A and '7

A A

to have different number of elements (and if we replace A ~ '7 by A ~ ('7,0) as

defined in Section 5).

In the proof of Theorem 3.3 we construct an acyclic graph G such that for
every matrix A over an arbitrary field with G(A) = G we have A(A) = A and

'7(A) = '7. Motivated by this we pose the following problem.

Problem 8.7: Let A = (AI,"" Ap) be a sequence of positive integers, and let
'I = ('71,"" 'Ip) be a non increasing sequence of positive integers, such that

.\ ~ '7.
(i) Characterize all acyclic graphs G such that for every matrix A with G(A) =

G we have A(A) = A and '7(A) = '7.
(ii) Characterize all acyclic graphs G such that for some matrix A with G(A) =

G we have .A(A) = A and '7(A) = '7.

Remark 8.8: Problems similar to Problems 3.7 .(i), (ii) can be stated specifically
for nonnegative matrices as well as M-matrices, where G(A) is replaced by S(A).

Remark 8.9: The case where A = '7 for M -matrices was discussed in great detail

in [8] and [9], where 36 equivalent conditions are given.

4. Matrices With All Singular Vertices Simple

In this section we apply the result of the ~revious section in order to study
the relations between the height characteristic and the level characteristic of a
matrix A with all singular vertices simple. It follows from the Index Theorem
proven in [2] as well as in [5], that the index p of A is less than or equal to the
number q of levels in the singular graph of A. We start this section by proving a
necessary and sufficient condition for given sequences A and '7 to be the level and

the height characteristics of a matrix satisfying certain conditions. In particular,
our results apply to M -matrices, and hence solve a long standing problem, which

was posed explicitly in [16] (see Remark 4.2).
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THEOREM 4. 1 : Let A = (A1' . . . , Aq) be a sequence ol positive integers, and
let" = ("1,...' "p) be a Don-increasing sequence olpositive integers. Tben the

following are equivalent.
(i) p = q, and .). ~ fl.
(ii) p = q, and there exists a loopless transitive acyclic graph G such that lor
every matrix A over an arbitrary field with G(A) = G we have .\(A) = A and

,,(A) = fl.
(iii) p = q, and there exists a loopless acyclic graph G such that lor every matrix
A over an arbitrary field with G(A) = G we have .\(A) = A and ,,(A) = fl.
(iv) p = q, and there exists a strictly (lower) triangular matrix A such that

A(A) = A and ,,(A) = fl.
(v) There exists a strictly (lower) triangular nonnegative matrix A such that

A(A) = A and ,,(A) = fl.
(vi) There exists an M -matrix A such that A(A) = .\ and ,,(A) = fl.
(vii) p = q, and there exists a matrix A with all singular vertices simple such

that A(A) = A and ,,(A) = fl.

Proof: (i) => (ii) follows from Theorem 3.3.

(ii) => (ill) => (iv) => (vii) is immediate.

(ill) => (v) is immediate.
(v) => (vi) follows by taking the negative of a matrix satisfying (v).
(vi) => (vii) is clear since M -matrices have all singular vertices simple.

~ ~ A A

(vii) => (i). Let A = (A1'...' Ap). By Theorem 3.5 in [3], (vii) implies .\1 +
.. . + .).k ~ "1 + . .. + "k, k E (p). Since A has all singular vertices simple, it

A A A

follows that A1 + . . . + Ap = '11 + . . . + "p, and hence A ~ '1. 0

Remark 4.2: Using the notation of [16], the equivalence of Conditions (i) and
I (vi) in Theorem 4.1 solves the S.(A) and S.(B) versions of Questions (8.8) and

(8.9) in [16]. This result was conjectured by Berman and van den Driessche

[private communication, 1987].

Remark 4.3: The implication (vii) => (i) in Theorem 4.1 does not hold if A
has a singular vertex which is not simple. Note that in such a case we have

A1 + .. . + Aq < '11 + . . . + "p, and hence we cannot have .). ~ '1.

Remark 4.4: The following condition,
(a) p = q, and for et1ery loopless transitit1e acyclic graph G such that .\(G) = A

there exists a matrix A with G(A) = G such that .\(A) = A and ,,(A) = '1,
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immediately implies Condition (iv) in Theorem 4.1. However, Condition (a) is
not implied by the conditions in Theorem 4.1. In fact, even the weaker condition,
with G(A) replaced by R(A), is not implied by the conditions in Theorem 4.1
as demonstrated by the following example. Let A = " = (2,2), and let G be the

loopless transitive acyclic graph
1 2
r /
3 4.

Let A be a matrix with R(A) = G. H A(A) = A then all the vertices in R(A) are
singular. H, furthermore, ,,(A) = " then it follows that every vertex is a simple

singular vertex. Since A is direct sum (R(A) is not connected), it follows from
Theorem 4.10 below that ,,(A) is either (4,0) or (3,1), which is a contradiction.
Therefore, there exists no matrix A with R(A) = G such that A(A) = A and
,,(A) = ".

We continue with three easy observations.

Observation 4.5: (i) Let A be a sequences of p positive integers. Then the only
sequence of p positive integers that majorizes ~ is ~ if and only if ~2 = 1.

(ii) Let" be a non-increasing sequences of p positive integers. Then the only
non-increasing sequence of p positive integers that is majorized by " is " if and
only if"l ~ "p + 1.

(ill) Let" be a non-increasing sequences of p positive integers. Then every
sequence Q with & = " satisfies Q = " if and only if "p = "1.

In view of Observation 4.5, the following corollaries follow immediately from
Theorem 4.1.

COROLLARY 4. 6 : Let A = (A 1, . . . , Ap) be a sequence of positive integers.

Then the following are equivalent.
(i) All M-matrices A with A(A) = A have the same height characteristic.
(ii) All M -matrices A with ~(A) = ~ satisfy ,,(A) = ~.
(ill) ~2 = 1.

COROLLARY 4.7: Let" = ("1'...' "p) be a non-increasing sequence ofposi-
tive integers. Then the following are equivalent.
(i) All M -matrices A with ,,(A) = " have the same reordered level characteristic

~(A).
(ii) All M -matrices A with ,,(A) = " satisfy ~(A) = ".
(ill) "1 ~ "p + 1.
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COROLLARY 4.8: Let" = ("1,...' rIp) be a non-increasing sequence ofposi-

tive integers. Then the fonowing are equivalent.
(i) An M -matrices A with ,,(A) = " have the same level characteristic.
(ii) An M -matrices A with ,,(A) = " satisfy '>'(A) = Fl.

(ill) rIp = "1.

Let.>. and" be sequences of p positive integers such that .). ~ Fl. Let G be a
transitive graph such that '>'( G) =.>.. By the remark that follows Proposition
(7.5) in [8], if there exists an M-matrix A with R(A) = G such that '>'(A) = .>. and

,,(A) = '7, then there exists an M-matrix A with G(A) = G such that '>'(A) = .>.

and" (A) = ". However, if G is not transitive then the above implication is false

in general, as demonstrated by the following example.

Example 4.9: Let.>. = (2,1,2), and let G be the graph

1 2
, /

3
/ ,

4 5

satisfying '>'(G) = .>.. Now let" = (2,2,1). Clearly, .). ~ ". The M-matrix

0 : 0 : 0 0 : 0 : 0
... ... ... ... ... ... ... ... ... ...
0: 0 : 00: 0: 0
... ... ... ... ... ... ... ... ... ...
~1 : 0 : 1 -1 : 0 : 0

A=
0 : -1 : -1 1 : 0 : 0
... ... ... ... ... ... ... ... ... ...
0 : 0 : -1 0 : 0 : 0
... ... ... ... ... ... ... ... ... ...
0 : 0 : 0 -1 : 0 : 0

satisfies R(A) = G, and we have '>'(A) = .>. and ,,(A) =". However, it is easy
to verify that every matrix A with G(A) = G satisfies ,,(A) = (3,1,1), and so

,,(A) :F ".
So far in this section, we have discussed the case of matrices A with all singular

vertices simple, for which we have p = q. We conclude the paper with a brief
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discussion of the case p < q. We remark that the partitioning of A is not
necessarily the Frobenius normal form.

Let A = (Al,..., Aq) and 'I = ('11,..., 'Iv)' where p ~ q. We use the notation
('1,0) for the sequence a = (al'...' aq), where a.. = 'I.. for i ~ p and a.. = 0
for p < i ~ q. The following theorem follows from Theorem (3.5) in [3] and the
remark that follows there.

THEOREM 4.10: Let A have all singular vertices simple. Then ~(A) ~ J

('I(A),O).

Motivated by Theorem (4.10), we ask the following.

Question 4.11: Let A = (Al'...' Aq) be a sequence of positive integers, and let
'I = ('11,..., 'Iv) be a non-increasing sequence of positive integers. Assume fur-
ther that p ~ q and that ~ ~ ('1,0). Does there exist a matrix A with A(A) = A
and 'I(A) = 'I?

A special case of Theorem 4.10 is the following.

THEOREM 4.12: Let G be a loopless acyclic graph with A( G) = A = (Al' . . . ,A
Then for every matrix A with G(A) = G we have ,\ ~ ('I(A),O).

Here too, one might ask a question similar to Question 4.11. That is, given
a sequence A = (Al'...' Aq) of positive integers, and a non-increasing sequence

'I = ('11,..., 'Iv) of p~sitive integers, such that p ~ q and ..). ~ ('1,0). Does

there exist a loopless acyclic graph G with A ( G) = A and a matrix A with
G(A) = G such that'l(A) = 'I? However, the answer to this question is negative,
as demonstrated by choosing A = (1,1) and 'I = (2). Clearly, ~ ~ ('1,0).
However, for every loopless acyclic graph G with A (G) = A and every matrix A
with G(A) = G, we have 'I(A) = (1,1).
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