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ABSTRACT

It is shown that a matrix satisfying a certain spectral condition which has an
infinite sequence of accretive powers is unitarily similar to the direct sum of a
normal matrix and a nilpotent matrix. If the sequence of exponents is forcing or
semiforcing then the spectral condition is automatically satisfied, If. further, the
index of 0 as an eigenvalue of A is at most 1 or the first term of the sequence of
exponents is 1, then the matrix is positive semidefinite or positive definite,
There are applications to matrices with a sequence of powers that are

M -matrices.

§ 1. Introduction

Let A be a (complex n x n) matrix, The matrix A is called accretive if
Re(A) = (A + A *)/2 is a positive semidefinite (Hermitian) matrix (Re(A) ~ 0)
and A is called strictly accretive if Re(A ) is a positive definite matrix (Re(A) >

0). In 1975, C. R. Johnson [6] showed that if A, A 2, A 3,... are strictly accretive
then A is positive definite. A proof valid for bounded linear operators on a
complex Hilbert space was given by DePrima and Richard in [2]. In fact they
showed that if A, A 2, A 3, . . . are accretive then A is positive semidefinite. In 1976
Shiu [9] improved the result of [2]. Basing his results on some theorems in
Nagy-Foias [10, Chapter 4, Section 4], he proved the following theorem:

Let rk =2k-l, k = 1,2, If

(1.1) A'k is accretive for k = 1,2,. . .

then A ~O.
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In this paper we generalize the above results in the finite dimensional case. We
employ the concept of a (semi)forcing sequence of positive integers (rl' r2'...)
defined in our paper [5]. We show that if (1.1) holds for a semiforcing sequence
and either the index of 0 as an eigenvalue of A is at most 1 or rl = 1, then it

follows that A ~ O. Further, if either the sequence is semiforcing, (1.1) holds and
A P is strictly accretive for some postive p, or the sequence is semiforcing and

(1.2) Ark is strictly accretive for k = 1.2,...

then A >0.
We use the above theorems to improve a recent result in [3]. There it is shown

that a matrix all of whose positive powers are irreducible M -matrices is
positively diagonally similar to a symmetric matrix. Here we derive the same
conclusion from a weaker hypothesis, and then apply this result to show that all
powers of the given matrix are irreducible M -matrices.

We now describe our results in more detail. In Section 2. which is purely
number theoretical, we define the concept of a forcing [semiforcing] sequence
(for a set of complex numbers). namely an increasing sequence of positive
integers with the property that a complex number c (in the set) is forced to be
nonnegative if for every p in the sequence c r has nonnegative [positive] real

part, see Definition 2.1. We recall sufficient conditions for a sequence to be
(semi)forcing proved in [5] (Theorems 2.5 and 2.8). Some examples of
(semi)forcing sequences are given.

In Section 3 we prove our main results on matrices with accretive powers. Our
first (and key) theorem (Theorem 3.1) asserts that a matrix which satisfies a
certain spectral condition and which has an infinite sequence of accretive powers
is unitarily similar to a direct sum of a normal matrix and a nilpotent matrix. We
essentially derive this result from a computation with 2 x 2 matrices. Our key

theorem has many corollaries which follow quite easily. By use of the standard
inequality that the minimal eigenvalue of the real part of a given matrix is less
than or equal to the real part of every eigenvalue of the matrix. we obtain
applications to the case when the sequence of exponents is forcing or semiforc-
ing. In particular. if a matrix has an infinite sequence of accretive powers where
the exponents form a forcing sequence then A is unitarily similar to the direct
sum of a positive definite matrix and a nilpotent matrix (Theorem 3.12). Under
some additional hypotheses we may conclude that the matrix is positive
semidefinite (Corollary 3.9) or positive definite (Corollary 3.10). Further. if a
matrix has an infinite sequence of strictly accretive powers where the exponents
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form a semiforcing sequence then A is positive definite (Theorem 3.19). These
results contain the theorems of [2], [6] and [9] quoted above as special cases.

In Section 4 we consider (complex) matrices A such that A rk is an M -matrix,

k = 1,2,..., where (,\,'2,..') is an infinite semiforcing sequence and AP is an
irreducible Z-matrix for some positive integer p (see Hypothesis 4.2). By means
of one of the corollaries in Section 3 we show that such a matrix is positively
diagonally similar to a positive definite matrix (Theorem 4.9). In Section 5 we

show more: A matrix satisfying the above conditions is indeed an MMA -matrix,
viz. a matrix all of whose positive powers are irreducible M -matrices (Theorem
5.12). Thus we obtain an alternative proof and a generalization of Theorem 9.6

of [3], see Corollary 5.17.
We now make some observations concerning the relation of our paper and [3].

The results of that paper are not used in Sections 2, 3 and 4 of the current paper.
However, Section 5 rests on the techniques and results developed in Sections 4
and 5 of [3], but the results of the other sections of [3] are not assumed here. In

[3], Sections 4 and 5 contain preliminary results necessary for the development
of a theory of MMA -matrices and related classes of matrices to be found in
Section 6 of that paper. Thus, in the case of MMA -matrices, one could use our
symmetrization results in the current paper (e.g. Corollary 5.17) to obtain an
alternative development of the theory found in Section 6 of [3]. Since, in this
approach, only symmetric matrices need be considered, this development would
be somewhat simpler and perhaps aesthetically more appealing than the proofs
in [3]. In particular, one may replace the proof of the crucial inequality in

Lemma 6.8 of [3] by a standard inequality for Hermitian matrices, see our proof

of Lemma 5.7.
Throughout this paper the term "positive (semi)definite matrix" will mean

"positive (semi)definite Hermitian matrix".
Our definitions are numbered 2.1, 2.4, 4.1, 4.8, 5.11. See also the beginnings of

various sections for notations and informal definitions.

§2. Forcing sequences

We shall use the notation ('\, '2'.'.) for an infinite sequence of integers and the
notation ('1"..' 'I) for a sequence of integers which is finite if t is a positive
integer and infinite if t = 00. Further, "sequence of positive integers" will always

mean "strictly increasing sequence of positive integers".

DEFINITION 2.1. Let T be a subset of the set C of all complex numbers, and

let R = (,\, '2,..., 'I) be a (finite or infinite) sequence of positive integers.

~._"~ "C,;-~.,:" ,
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(i) The sequence R is called aT-forcing sequence if for any number c E T,

(2.2) Re(c'k)~O, k = 1,2,...,t,

implies that c ~ O.
(ii) The sequence R is called a T -semiforcing sequence if for any (nonzero)

number c E T,

(2,3) Re(c'k»O, k = 1,2,...,t,

implies that c > 0,
(iii) If T = C then aT-forcing [T -semiforcing] sequence will simply be called

a forcing [semiforcing] sequence.

NOTATION 2.4. (i) We denote by R~ the set of all nonnegative numbers.
(ii) Let T ~ C, Tg R~. We denote

v(T) = inf{larg(c)l: c E T\R~},

where arg(c) is chosen in the half open interval (-"1T,11"].

The following sufficient conditions that a sequence is (semi)forcing are special
cases of Theorems 3.4, 3.10, 3,11 and 3,14 in [5].

THEOREM 2.5. Let R = (rl, r2, , . .) be a sequence of positive integers with rl = 1,

(i) Assume that for every m, m = 3,4".., either

(2.6) rm-1 ~ 3rm-2,

or

(2.7) ¥ rm-1 ~ rm ~ (4k + 3)rm-2

for some positive integer k (which depends on m). Then R is a semiforcing

sequence.
(ii) Furthermore, let T ~ C, Tg R~, be such that v(T) > 0, and suppose that t is

the (smallest) positive integer such that r,v(T) ~ '1T/2. Then the sequence
(rl, r2,.,., r,+I) is T -semiforcing.

(iii) Furthermore, if (2.6) is satis.fied for m = 3,4,..., t + 1 then the sequence
(rl,r2,...,r,) is T-semiforcing.
. THEOREM 2.8. Let R = (rl ,r2,. . ,) be a sequence of positive integers with rl = 1.

(i) Assume that for every m, m = 3,4,..., either

(2.9) rm-1 < 3rm-2,

~"""",...,.""'~~ )~"c;~,,~
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or

4k + 1(2.10) -~rm-1 < rm < (4k + 3)rm-2

for some positive integer k (which depends on m). Then R is a forcing sequence.
(ii) Furthermore, let T ~ C, Tg R~, be such that v(T) > 0, and suppose that t is

the (smallest) positive integer such that r,v(T» 11"/2. Then the sequence
(r.,r2,...,r,+I) is T-forcing.

(iii) Furthermore, if (2.9) is satisfied for m = 3,4,..., t + 1 then the sequence

(rl,r2,...,r,) is T-forcing.

We remark that in Theorems 2.5 and 2.8 the value of k in (2.7) and (2.10) can
only be 1 or 2, except in the case of m = t + 1 in Part (ii) of these theorems. For a

detailed discussion see Observation (3.19) in [5].

EXAMPLE 2.11. The sequence (1,3,4,8,...) where rk =2k-l, k =3,4,..., is
semiforcing by Theorem 2.5, but is not forcing since Re(irk) ~ 0 for k = 1,2,... .

EXAMPLE 2.12. The sequence (1,3,10,31,94,...) where rk = 3'k-1 + 1, k =
3,4,..., is forcing (see Corollary 3.16 in [5]).

EXAMPLE 2.13. The sequence (l,p,p2,...) where p is a positive integer,
p > 1, is forcing if and only if p = 2 and is semiforcing if and only if p = 2 or
p = 3 (see Corollary 3.15 in [5]).

EXAMPLE 2.14. The sequence (p,p + l,p + 2,...) where p is a positive integer
is forcing (see Corollary 3.28 in [5]).

EXAMPLE 2.15. The sequence (2,3,5,8,13,...) where rk = rk-2 + rk-', k =

3,4,..., is not semiforcing (see the end of Section 3 in [5]).

§3. Sequences of accretive powers

If n is a positive integer, we put (n)={I,...,n}.
Let A E C and let A E c"". The index of A as an eigenvalue of A is defined to

be the order of the largest block in the Jordan canonical form of A associated
with A. In particular the index of A as an eigenvalue of A is 0 if and only if A is
not an eigenvalue of A. Now let A be nilpotent. Then the index (of nilpotency)
of A is defined to be the index of 0 as an eigenvalue of A. It is equal to the
smallest positive integer p such that A P = O.

Let A E C"" and let i,j E (n). We denote by A [i,j] the 2 x 2 principal

submatrix of A based on the indices i and j.

~l"~ f "
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We begin with our key theorem.

THEOREM 3.1. Let A Ecnn and let spec(A) be the multiset {AI,...,An}.

Suppose that

(3.2) IAil=IAjl implies that Ai=Aj, i,jE(n).

Let (rI, r:!,...) be a (strictly increasing) infinite sequence of positive integers. If

(3.3) Ark is accretive, k=I,2,...,

then A is unitarily similar to the direct sum H EB N, where H is a nonsingular
normal matrix and N is a nilpotent matrix of index less than or equal to rl.

PROOF. Without loss of generality we suppose that

IAII~...~IAhl>Ah+I=...=An =0.

By examination of the proof of a standard theorem due to Schur [7, p. 67], the
matrix A is unitarily similar to an upper triangular matrix B with bii = At,

i = 1,..., n. Furthermore, Re(B P) is unitarily similar to Re(A P) for every
positive integer p. Partition B as

B=[~ ~],
where H is an h x h block. We shall show that C = 0, that H is a diagonal

matrix and that N is a nilpotent matrix with index less than or equal to rl. This

will prove the result.
We first show that H is a diagonal matrix and that C = O. Suppose otherwise.

Then there exist i E (h) and j E (n) with i < j such that b = bij~ O. We choose i,j
satisfying the above conditions such that j - i is minimal. Then

(3.4) bik =0, i < k <j.

It follows from the triangularity of B and from (3.4) that for each positive integer

p we have

( BP ) .. = \P

.. 1\"

(BP ).. = AP
JJ I'

and

p-1

(BP)ij = 2: Ar-q-IbA1.
q=O
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Let Cp = BP[i,j] = B[i,j]P. In view of (3.2), we need consider only the following

two cases.

Case 1. Ai = Ai = A. In this case

:.'. Cp = [~P ph; :-1].

Thus

[ Re(AP) PbAP-J/2
]Re(Cp) = .

pbA P-I/2 Re(AP)

Let a = A / A . Then

[ Re(O"P) Pbap/2A ]Re( Cp) = A P .

~; p~i'/2A Re(aP)

Since I u I = 1 it now follows that for all p sufficiently large the above matrix

has a negative determinant. Since the sequence 'I, '2,... tends to infinity, we have

a contradiction to (3.3).

0-" Case 2. I Ai I > I Ai I. In this case
0,:;.'- :
":.'-T

I~~ C = [ Af 2.:::JAf-Q-IbA7
]"' P 0 \ ~

~ 1\/
:0:.'= I

:c: .' [ AP cAP (1- vP)]::: =",:C- 0 APvP ,

;:~C'~'
'.(:~j!; where A = Ai, V = Ai/Ai and c = b/A(I- v). For 0" = A/IAI we obtain

;-o~':'
i,~~:~J; [ Re ( A P ) cA P ( I - vP )/2 ]-'ocr' Re(C ) - c.."""";,,, P -

coo- cAP(I-vP)/2 Re(APvP)
"'" -

"":"'1 = IAIP [ Re(O"P) cO"P(I- vP)/2 ] .
cO"P(I- vP)/2 Re(O"PvP)

Since 10"1 = 1 and I v 1< 1 it now follows that for all p sufficiently large the

above matrix has a negative determinant. As in Case 1 this contradicts (3.3).

Hence, the matrix H is diagonal and C = O.

We now show that N is nilpotent of index less than or equal to 'I. Since N is

strictly upper triangular it is clear that N is nilpotent. Suppose that Nf, F O. Then

,

i
I

r

c!-
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b = (N'I)ij~ 0 for some i,j E (n), i < j. Hence

Re(N'l [ i .J)= [~ b12
],J bl2 0 '

which is not positive semidefinite, contrary to (3.3). Hence the index of N is less
than or equal to r,. 0

The hypothesis that (rl,r2,...) is infinite cannot be omitted from Theorem 3.1
as demonstrated by the matrix in Example 3.15 below.

We have a number of corollaries which are immediate.

COROLLARY 3.5. Let A E cnn and suppose that the index of 0 as an eigen-
value of A is at most 1. If A satisfies the hypotheses of Theorem 3.1 then A is

normal.

PROOF. Since the matrix H EB N in the conclusion of Theorem 3.1 has the
same Jordan canonical form as A, the nilpotent matrix N is either absent or is of
index 1 and hence N = O. It follows that A is unitarily similar to a normal matrix
and thus A is normal. 0

COROLLARY 3.6. Let (rl, r2'...) be an infinite sequence with rl = 1. If A E cnn

satisfies the hypotheses of Theorem 3.1 then A is normal.

PROOF. In this case, the nilpotent matrix N in the conclusion of Theorem 3.1
is either absent or is a zero matrix and the result follows. 0

Condition (3.2) cannot be omitted from the hypotheses of Theorem 3.1 or

Corollaries 3.5 and 3.6 as is shown by the following example.

EXAMPLE 3.7. Let

A = [~ e ;i/3 ] .
I
I Then Re(A»O and Ahk = I, k = 1,2,... and hence (3.3) holds for r, = 1,

rk = 6( k - 1), k = 2,3, . . . . But A is not normal, and hence, being nonsingular, A

cannot be unitarily similar to the direct sum of a normal and a nilpotent matrix.

COROLLARY 3.8. Let A E cnn and let (rl' r2'...) be an infinite sequence of
positive integers such that (3.3) holds. If the eigenvalues of A are nonnegative then
the matrix A is unitarily similar to the direct sum of a positive definite matrix and a
nilpotent matrix of index less than or equal to rl.

PROOF. Since the eigenvalues of A are nonnegative, condition (3.2) is

"
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satisfied. Hence, since a nonsingular normal matrix with nonnegative eigen-
values is positive definite the result follows from Theorem 3.1. 0

COROLLARY 3.9. Let A E cnn and let (rl, r2,...) be an infinite sequence of

positive integers such that (3.3) holds. If the eigenvalues of A are nonnegative and
the index of 0 as an eigenvalue of A is at most 1, then A is positive semidefinite.

COROLLARY 3.10. Let A E cnn and let (r\, r2,...) be an infinite sequence of

positive integers such that (3.3) holds. If the eigenvalues of A are positive then A is
positive definite.

It is now easy to prove further results under the assumption that the sequence

(rl"'2,...) is forcing or semiforcing.
The following lemma is very well known, e.g. 5.2.7 in [7, p. 169].

LEMMA 3.11. Let A ECnnandletJ.. Espec(A). Then Re(J..) is greater than or
equal to the minimal eigenvalue of Re(A).

THEOREM 3.12. Let A E cnn and let T be a subset of C which contains

spec(A). Suppose that (r\, r2,...) is an increasing infinite T -forcing sequence. If
(3.3) holds then the matrix A is unitarily similar to the direct sum of a positve
definite matrix and a nilpotent matrix of index less than or equal to r\.

PROOF. Let J.. E spec(A). By Lemma 3.11 we see that (3.3) implies that

(3.13) Re(J..rk)~O, k = 1,2, Since (r" r2,...) is aT-forcing sequence, it follows that J.. ~ O. Thus the result

follows immediately from Corollary 3.8. 0

Theorem 3.12 has corollaries analogous to Corollaries 3.5 and 3.6. We state
the second of these explicitly as Corollary 3.14. This corollary generalizes the
results of [2] and [9] in the finite dimensional case since rk = rand rk = 2k-l,

k = 1,2,..., are forcing sequences.

COROLLARY 3.14. Let A E cnn and let T be a subset of C which contains

spec(A). Suppose that (rl,r2,...) is an infinite T-forcing sequence with r\ = 1. If
(3.3) holds then the matrix A is positive semidefinite.

Theorem 3.12 and Corollary 3.14 do not hold in general for finite T -forcing
sequences as demonstrated by the following example.

EXAMPLE 3.15. Let

A=[~ ~].

-"~~"~c~
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Let T = {1}. Clearly every sequence is T -forcing. In particular we may choose
the sequence (1). Observe that A is accretive, so (3.3) is satisfied. However the

conclusion sof Theorem 3.12 or Corollary 3.14 do not hold.

We also remark that the condition that the sequence (rl, r2"") is T -forcing
cannot be omitted from Theorem 3.12 and Corollary 3.14. In fact, for every
sequence (r1, r2"") which is not T -forcing one can find a matrix A whose
spectrum is contained in T such that A satisfies (3.3) but not the conclusion of
Theorem 3.12. For proof note that by Definition 2.1 there exists a complex

number A E T which is not nonnegative and which satisfies

Re(A;k)~O, k = 1,2, The matrix AI E cnn furnishes an example.

We now impose conditions which permit us to conclude that A is positive

definite.

COROLLARY 3.16. Let A E cnn be a nonsingular matrix and let T be a subset of

C that contains spec(A). Suppose that (r1' r2'.'.) is an in.finite T -forcing sequence.

If (3.3) holds then the matrix A is positive definite.

COROLLARY 3.17. Let A E cnn and let T be a subset of C that contains
spec(A). Suppose that (rl, r2"".) is an infinite T -forcing sequence. If (3.3) holds
and there exists a positive integer p such that A P is strictly accretive then A is

positive definite.
PROOF. Let A E spec(A). If A P is strictly accretive then it follows from

Lemma 3.11 that Re(A P) > 0 and hence A is nonsingular. The result now follows
from Corollary 3.16. 0

Since (1,2,3,...) is a forcing sequence, Corollary 3.17 generalizes Johnson's

result in [6].
Theorem 3.12 and Corollaries 3.16 and 3.17 do not hold if "forcing" is

replaced by "semiforcing". Consider the following example.

EXAMPLE 3.18. Let rk = 3k-l, k = 1,2,... . This sequence is semiforcing by
Lemma 2.12. Consider the I x I matrix

A = [e"i/6].

Then Re(A '1) > 0, and Re(A'k) ~ 0, k = 2,3,. .. . Thus A satisfies the hypotheses
of Theorem 3.12 and its corollaries (with T = C) but the conclusions of these

results are obviously false for A.

8;:""'1 !
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However we have the following result for semiforcing sequences.

THEOREM 3.19. Let A E C"" and let Tbe a subset of C that contains spec(A).

Suppose that (rl' r2,...) is an infinite T -semiforcing sequence. Suppose that

(3.20) A rk is strictly accretive, k = 1,2,. . . .

Then A is positive definite.

PROOF. Let A E spec(A). Then it follows from Lemma 3.11 and (3.20) that

(3.21) Re(Ark»O, k=I,2, Since (rl, r2,...) is a semiforcing sequence, it follows from (3.21) that A > O. The

result now follows from Corollary 3.10. 0

Theorem 3.19 does not hold in general for finite T -semiforcing sequences as

demonstrated by Example 3.15.

Note that the condition that the sequence (rl, r2,...) is T -semiforcing cannot be

omitted from Theorem 3.19; see a similar remark about Theorem 3.12 after

Example 3.15.

For specific semiforcing sequences stronger results may hold. Let (rl, r2,...) be
the semifrocing sequence (1,3,4,8, 16,. . .) considered in Section 2. If c is a

complex number such that Re( c rk) ~ 0 for k = 1,2,. .. then either c is nonnega-
tive or c is pure imaginary. Hence for this sequence (3.3) implies that A is

unitarily similar to the direct sum of a positive definite matrix, a skew-Hermitian

matrix and a nilpotent matrix of index less than or equal to rl. Further, if (3.3)
holds and either A or A 3 is strictly accretive then A is positive definite. For

proof observe that in this case it follows from Lemma 3.11 that A cannot have

pure imaginary eigenvalues.
Since one can easily find a normal matrix A satisfying (3.2) which is not

accretive, it follows that the natural converses of Theorem 3.1 and Corollaries

3.5 and 3.6 do not hold. On the other hand, converses of all subsequent theorems

and corollaries in this section are true and trivial.

Let A E R"" and suppose that A has real eigenvalues. Then A is orthogonally

similar to a real upper triangular matrix. Hence, repeating the proof of Theorem

3.1 in this case, we see that for such matrices we may replace "unitarily similar"

by "orthogonally similar", "normal matrix" by "real symmetric matrix", "posi-
tive (semi)definite matrix" by "positive (semi)definite real matrix" in Theorem

3.1 and Corollaries 3.5 and 3.6. Consequently, the same replacements may be

made in Theorems 3.11 and 3.17 and Corollaries 3.14 and 3.15 for real A

(without any assumptions on the location of spec(A ».



338 D. HERSHKOWITZ AND H. SCHNEIDER Isr. J. Math.
I

§4. Applications to sequences of M -matrix powers

DEFINITION 4.1. Let A E Rnn.
(i) Then A is called a Z-matrix if aij ~O, i~j, i,j = 1,...,n.

I (ii) Further, A is called an M -matrix if A is a Z-matrix and all eigenvalues of

A have nonnegative real part.

In this section we mainly discuss matrices satisfying the following hypothesis.

HYPOTHESIS 4.2. The matrix A belongs to cnn. Assume that there exist a
subset T of C, a sequence R = (r\, r2,...) and a positive integer p satisfying the

following conditions:

(4.3) R is an infinite increasing T -semiforcing sequence,

(4.4) spec(A) ~ T,

(4.5) ArkisanM-matrix, k=I,2,...,

and

(4.6) A P is an irreducible Z-matrix.

LEMMA 4.7. Let the matrix A satisfy Hypothesis 4.2. Then all eigenvalues of
A are nonnegative. Further, if v is the minimal real eigenvalue of A then it is
simple and the associated right and left eigenvectors may be chosen (entrywise)

positive.

PROOF. Let A E spec(A), where A ~ O. Since every nonzero eigenvalue of an
M -matrix has a positive real part (e.g. [1, p. 150]), it follows from (4.5) that
Re(A rk) > 0, k = 1,2,... . It now follows from (4.3) and (4.4) that A > O. Hence all

eigenvalues of A are nonnegative.
Now let v be the minimal eigenvalue of A. Observe that the minimal

eigenvalue of A P is vp. Since (4.6) holds, vP is a simple eigenvalue and the
associated right and left eigenvectors x and y T respectively may be chosen

positive. Therefore v is a simple eigenvalue of A and by standard arguments
using the Jordan canonical form we deduce that x and y T are the associated

eigenvectors of A. 0

DEFINITION 4.8. (i) Let D E cnn. Then D is called a positive diagonal matrix

if D is a diagonal matrix and all diagonal entries of D are positive.
(ii) Let A, B E cnn. Then A and B are called positively diagonally similar if

there exists a positive diagonal matrix D in cnn such that B = D-'AD.

""""r~""""."",..,"""""""-",,
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I (iii) Let A, B E cnn. Then A and B are called cogredient if there exists a
permutation matrix P in cnn such that B = pT AP.

Evidently positive diagonal similarity is an equivalence relation on cnn.
We now partially generalize Theorem 9.6 of [3] in the case that the matrix A

has a sequence of M -matrix powers. As observed in the introduction, our proof
is independent of the proof in [3].

THEOREM 4.9. Let the matrix A satisfy Hypothesis 4.2. Then A is positively

diagonally similar to a positive semidefinite matrix.

PROOF. By Lemma 4.7 we may let X and Y be positive diagonal matrices
such that Xe and e T Yare the right and left eigenvectors of A associated with

the nonnegative (minimal) eigenvalue v, where e = [1,1,...,1 ]T. Let D =
(Xy-I)1/2, let B = D-. AD and let u = (Xy)l/:!e. Observe that u and u T are the

right and left eigenvectors of B associated with v. Thus

(4.10) Re(Brk)u=vr"U~O, k=1,2, Clearly, Re(Brk) is a Z-matrix. Since u is positive, it follows from (4.10) by a

very well known result (e.g. [8, Theorem 4]) that Re(Brk) is an M-matrix and
thus positive semidefinite. By Lemma 4.7 all eigenvalues of B are nonnegative.

Furthermore, the minimal eigenvalue of B is simple and hence the index of 0 as
an eigenvalue of B is at most 1. By Corollary 3.9 the matrix B is positive

semidefinite. 0

We now prove some results that are needed in Section 5 for a generalization of

Theorem 6.12 of [3] in the case that the matrix A has a sequence of M -matrix

powers.
Let A be a Hermitian matrix. As is well known, e.g. [4, p. 156], A may be

written in the form

(4.11) A = AlE, +... + AqEq,

where A.,...,Aq are the distinct (real) eigenvalues of A and E"...,Eq are

mutually orthogonal idempotent Hermitian matrices whose sum is the identity
matrix. The form (4.11) is called the spectral decomposition of A. If A further
satisfies Hypothesis 4.2 then in view of Lemma 4.7 we may assume that

(4.12) O~AI<...<Aq.

LEMMA 4.13. Let A be a Hermitian matrix that satisfies Hypothesis 4.2 and let
the spectral decomposition of A be given by (4.11) where (4.12) holds. Then

l~c~"',.,..~,~."",,=.,~-"¥ ,_.
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E I > O. Furthermore, if n > 1 then q > 1 and Eq is cogredient to a direct sum of m
singular irreducible (symmetric idempotent) M - matrices, where m < n.

PROOF. As is well known the idempotent EI = xy*, where x and y* are the

right and left eigenvectors of A associated with A. I under the normalization
y*x = 1. By Lemma 4.7 we have

(4.14) EI > O.

Suppose that q = 1. Then A is a scalar matrix and it follows from (4.6) that
n = 1. Thus we have shown that n > 1 implies that q > 1.

Suppose that n > 1. It follows easily from (4.12) that

(4.15) lim (A I A.q Y" = Eq.
k-+x

Hence, by (4.5), Eq is an M -matrix. Since A is Hermitian, Eq is symmetric and
idempotent and therefore cogredient to a direct sum of m irreducible symmetric
idempotent M-matrices. Since q > 1, we have EIEq = 0, and it follows from

(4.14) that each direct summand in Eq is singular. Since Eq.;lf 0, it obviously
follows that m < n. 0

§5. Further applications to sequences of M -matrix powers

Henceforth we shall use the results of Sections 4 and 5 of [3], but not the

results of other sections of that paper.
Let C E C'"'" and let V E cnn, where the rows and columns of V are

partitioned into subsets of cardinality nl,..., nm with nl + ... + nm = n. In

Definition ~.l of [3] we introduced the inflation matrix Cxx V. Thus if

C(nl'.." n",) consists of the set of matrices V E cnn partitioned as

VII VI~ ... Vim

. . . . . .
(5.1) V= . . ... .

. . . .. .
V,n I Vm~ ... Vmm

where Vii is ni x ni, i = 1,..., m, then

CII VII CI2VI2 ... ClmVlm

. . . . . .
(5.2) CxxV=" .., . .

. . .. . .
Cml Vml Cm2Vm2 .,. CmmVmm

Ccc,
"C'¥@ KCc'- ,
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The operation of inflation generalizes the Hadamard and Kronecker products.
Given a partition (nJ,..., nm) of n, we introduce in Definition 4.3 of [3] a certain

~i;~ subclass OU (nt,..., nm) of partitioned n x n matrices of rank 1 with no zero
"""-"'.;

f~~fl'~~ entries. !hus V E cnn belongs to OU(nl"." nm) if and only if there exist
':: Uj, Vi E C I such that Uj, Vi have no zero components and

c'.".

(Vi)TUi=l, i=l,...,m,

Vij = Ui(Vj)T, i,j = 1,...,m.

Here we need consider only positive V. The set of positive V belonging to some
class OU(nl,...,nm) is here denoted by OUmn. If VE OUmn, then CxxV has
interesting properties, see Section 4 of [3]. We require three additional simple
lemmas.

Let V E OUmn' As in [3] we write

(5.3) G(V)= 1" -(1m xxV).

Then G (V) is the direct sum of m irreducible idempotents of nullity 1, see
Section 4 of [3]. Further, since V> 0, G( V) is an M -matrix, see Section 5 of [3].

LEMMA 5,4. Let A E cnn, C E cmm. Let V be a symmetric matrix in OUmn and
let A be a real number. If

(5.5) A = Cxx V + AG( V),

where G(V) is given by (5.3), then A is a Hermitian matrix [real symmetric
..
';~.:;;~ matrix] if and only if C is a Hermitian matrix [real symmetric matrix].

",0I PROOF, We give the proof in the Hermitian case. Suppose A is Hermitian.
,:;i" By (5.3) the matrix G(V) is real symmetric, Thus CxxV is Hermitian and since
,; V has no 0 elements it follows from (5.2) that C is Hermitian, The converse is
,:...", equally easy, 0

",:t;;;
'E~f; LEMMA 5.6. Let A E cnn, C E cmm, V E OUmn and A E C. Suppose that (5.5)

:' ,":"
.::,,;~,. holds. Then
...,~;,~~,
;;~;I (i) spec( C) ~ spec(A ).
,c:...f";; (ii) If A is a Z-matrix then C is a Z-matrix.'""
:!;2?;;ij, (iii) If A is an M -matrix then C is an M -matrix.

","".,'

,~:,~?~,~ (iv) If A is irreducible then C is irreducible.
~::;,,;;~,~~ PROOF. (i) This is contained in Corollary 4.22 of [3]..,.

c,.
,..,

--_'8

c,,"'
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(ii) Since V> 0 and in view of (5.2), if C has a positive off-diagonal element
then the corresponding block of A is positive.

(iii) Follows immediately from (i) and (ii).
(iv) In view of (5.2), if C has a zero off-diagonal element then the correspond-

ing block of A is zero. 0

Under additional hypotheses we may obtain stronger results. Proofs are
provided for the implications not covered by the corresponding parts of Lemma

5.6.

LEMMA 5.7. Let C be a Hermitian matrix in C"". Let V be a symmetric matrix
in DUm", where m < n, and let A be a real number such that A > v, where v is the

maximal eigenvalue of C. If (5.5) holds then
(i) spec(A) = spec(C) U {A}.

(ii) A is a Z-matrix if and only if C is a Z-matrix.
(iii) A is an M -matrix if and only if C is an M -matrix.
(iv) A is irreducible if and only if C is irreducible.

PROOF. (i) This is again contained in Corollary 4.22 of [3].
(ii) Let C be a Z-matrix. Since C is Hermitian, it follows from the Cauchy

interlacing inequalities, e.g. [7, p. 119], that

(5.8) Cii~V, i=l,...,m.

Since v < A, we have

(5.9) Cii<A, i=l,...,m.

Thus, if A and 1= 1" are partitioned in the same way as V, it follows that

(5.10) Aii = CiiVii + A(I- V)ii = ALi -(A - Cii)Vii, i = 1,...,m.

Since Vii> 0 it follows from (5.9) that Aii is a Z-matrix, i = 1,.. ., m. Further,

since C is a Z-matrix, we have Cij ~ 0, i-l j. Hence, since Vij > 0, it follows from

A;j=CijVij, i-lj, i,j=l,...,m,

that Aij ~ 0, i-l j, i,j = 1,..., m. Thus A is a Z-matrix.

(iii) Follows immediately from (i) and (ii).
(iv) If m = 1 then A = Aii and the irreducibility of A follows from (5.9) and

(5.10).
Now let m > 1 and let C be irreducible. Since Cij-lO implies that CijVij-lO,

i -I j, i, j = 1,. . ., m, the irreducibility of A follows from the irreducibility of C. 0
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The following definition may be found in Definition 1.1 of [3].

DEFINITION 5.11. Let A E C"". Then A is called an MMA -matrix if A' is an
irreducible M -matrix for t = 1,2,. . . .

THEOREM 5.12. Let the matrix A satisfy Hypothesis 4.2. Then A is an
MMA -matrix.

PROOF. By Theorem 4.9 we may assume, without loss of generality, that A is
a positive semidefinite matrix, since the class of M -matrices is invariant under
positive diagonal similarity. We prove our theorem by induction on n. If n ~ 1

then the result is an immediate consequence of (4.3), (4.4) and Definition 2.1.
Assume that the result holds if n < s, where s > 1, and let n = s. Let the spectral
decomposition of A be given by (4.11) where (4.12) holds. Let B = A - AqEq. By

Lemma 4.13 above and by Lemma 5.5 of [3] there exists a positive matrix
U E OUm" such that Eq = G(U), where m is the number of irreducible direct

summands in Eq and where G(U) is given by (5.3). Further, by Lemma 4.13
above we have m < n. Since EqB = 0 = BEq, it follows from Lemma 4.23 in [3]
that there is a matrix C E OUm", such that B = CxxU.

We shall now show that C satisfies Hypothesis 4.2 (with n replaced by m).
Since G(U)B = 0 = BG(U), it follows from (4.12) in [3] that

(5.13) A' = (C'xxU)+A'G(U), t=1,2, By Lemma 5.6(i) and (4.4) we now have

(5.14) spec( C) k spec(A) k 1":

By Lemma 5.6(iii), (4.5) and (5.13) imply that

(5.15) C'tisanM-matrix, k=1,2, By Parts (ii) and (iv) of Lemma 5.6, (4.6) and (5.13) imply that

(5.16) CP is an irreducible Z-matrix.

Therefore, by (4.3) and (5.14}-(5.16), the matrix C satisfies Hypothesis 4.2. By
the inductive assumption C is an MMA -matrix and, by Lemma 5.4, the matrix C
is symmetric. It follows that C' is a symmetric irreducible M -matrix, q = 1,2,. . . .

Hence, by (5.13) and by Lemma 5.7(iii) with C, A and A replaced respectively by
C', A I and A', t = 1,2,..., it follows that A is an MMA-matrix. 0

Of course, an MMA -matrix satisfies Hypothesis 4.2, and a matrix positively
diagonally similar to an MMA -matrix is an MMA -matrix. Thus we may

~~--P"""'f?#"""~~""'""""'C"""'i" .
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combine Theorems 4.9 and 5.12 to obtain the following corollary which
generalizes Theorem 9.6 of [3].

COROLLARY 5.17. Let A E C"". Then the following are equivalent.
(i) A satis.ties Hypothesis 4.2.
(ii) A is positively diagonally similar to a symmetric MMA -matrix.

(iii) A is an MMA -matrix.
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