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1 The Classifying Map

1. Let V be a vector space over C. We denote by Gk(V ) the Grasmann
manifold of k-dimensional subspaces of V and by

P(V ) = G1(V )

the projective space of V . Two vector bundles over the Grasmann Gk(V )
are the tautological bundle

T → Gk(V ), Tλ = λ ⊂ V

and the co-tautological bundle

H → Gk(V ), Hλ = T ∗λ = V ∗/λ⊥

where V ∗ is the dual space to V and λ⊥ = {α ∈ V ∗ : α|λ = 0}. In case
k = 1 the bundle H → P(V ) is also called the hyperplane bundle. Each
functional α ∈ V ∗ determines a section sα of H via

sα(λ) = α|λ

Note the canonical isomorphism

GN−k(V )→ Gk(V
∗) : λ 7→ λ⊥

where N = dimC(V ). For any holomorphic bundle E → X we denote by
Γ(E) the vector space of holomorphic sections.
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Theorem 2. The map

V ∗ → Γ(H) : α 7→ sα

is an isomorphism.

Proof. It is clear that the map is injective; to show it is surjective we choose
s ∈ Γ(H); we must find α ∈ V ∗ with s = sα. W.l.o.g. take V = C

n×1 and
V ∗ = C

1×n; let P ⊂ Cn×k be the open subset of matrices of rank k so the
general linear group GLk(C) acts on P on the right. The projection

P → Gk(V ) : u 7→ u(Ck)

is a principal bundle with structure group GLk(C). Define S : P → V ∗ by

S(u) = s(λ) ◦ u, λ = u(Ck).

Then S is holomorphic and S(ua) = S(u)a for a ∈ GLk(C). We must show
that S(u) = αu for some α ∈ C1×k.

3. Let E → X be a holomorphic vector bundle of rank k and denote by Γ(E)
the vector space of holomorphic sections of E. A base point of E is a point
p ∈ X where the space {s(p) : s ∈ Γ(X)} is a proper subspace of the fiber
Ep; the bundle is called base point free iff it has no base points. To a base
point free bundle E → X we associate a map

X → Gk(Γ(E)∗) : p 7→ {s ∈ Γ(E) : s(p) = 0}⊥

called the classifying map of E.

Theorem 4. Let E → X a base point free holomorphic bundle and let
T → Gk(Γ(E)∗) be the tautological bundle. Then the pull back of T by the
classifying map is E.

Proof. For each p ∈ X we have a linear isomorphism

Ep → {s ∈ Γ(E) : s(p) = 0}⊥ : v 7→ ηv

where ηv(α) = α(s) for α ∈ {s ∈ Γ(E) : s(p) = 0}⊥ ⊂ Γ(E)∗ and s ∈ Γ(E)
with s(p) = v.

Remark 5. Thus vector bundles without base point correspond to maps to
the Grasmann. In particular, line bundles without base point correspond to
maps to projective space.
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2 The Euler number

6. Let E → X be a smooth vector bundle over a compact smooth manifoldX.
Assume that the rank (=fiber dimension) of E is the same as the dimension
n of X. For an isolated zero p ∈ X of a smooth section s of E define the
local degree degp(s) of s at p by

degp(s) = degree

(
Sp → S(Ep) : q 7→ s(q)

|s(q)|

)
where Sp is the boundary of a small disk D in X centered at p and S(Ep) is
the boundary of the unit disk of the fiber Ep in some trivialization of E over
D. Here the disk D is small in the sense that the only zero of s in its closure
is the point p. Because the degree of a map between spheres of the same
dimension is a homotopy invariant, the local degree of a smooth section s at
an isolated zero is independent of the choice of the disk D ⊂ X and of the
choice of the local trivialization of E|D used in the definition.

Definition 7. By the standard transversality argument (see Milnor, Topol-
ogy from the differentiable viewpoint) the number

deg(E) =
∑
s(p)=0

degp(s)

is independent of the choice of the smooth section with isolated zeros used
to defined it. This number is called the degree or Euler number of the
bundle E → X. When X is orientable, the cohomology class e(E) ∈ Hn(X)
defined by

〈e(E), [X]〉 = deg(E)

is called the Euler class of the bundle E → X; here [X] ∈ Hn(X) is the
fundamental class.

Theorem 8. The Euler number of the cotangent bundle T ∗X → X (and
hance also of the tangent bundle TX → X) is the Euler characteristic χ(X).

Proof. Let f : X → R be a Morse function. Then the section df of T ∗X has
isolated zeros. At a critical point p the Morse lemma tells us that there are
coordinates x1, . . . , xn such that

f(q) = −x(q)
2 − · · · − xk(q)2 + xk+1(q)2 + · · ·+ xn(q)2
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so
df(q)

|df(q)|
= −x1 dx− · · · − xk dxk + xk+1 dxk+1 + · · ·+ xn dxn.

Hence degp(df) = (−1)k. The result now follows by Morse theory.

9. Assume that X is a Riemann surface and E = L → X is a holomorphic
line bundle over X. Let s be a meromorphic section of L not identically
zero. Then near a singularity (i.e. zero or pole) of s we may choose a local
trivialization of L and a holomorphic coordinate z = reiθ such that

s(q) = z(q)k = rkeikθ.

The integer k is thus the degree of the map q 7→ |s(q)|1s(q) from a small
circle about the singularity to the unit circle of the fiber, i.e. the notion
of degree defined above coincides with the notion of degree in the sense of
analysis. The formula

deg(L) =
∑
p

degp(s)

holds for meromorphic sections since we may modify s near each pole so
as to produce a smooth s with a zero of the same degree via the formula
s̃(q) = φ(r)eikθ where φ(r) = rk for r near the boundary of the domain of z,
φ(r) > 0 for r > 0, and φ(0) = 0.

Definition 10. The canonical bundle over a Riemann surface X is the
bundle K → X whose fiber Kp over a point p ∈ X is the vector space

Kp = LC(TpX,C)

of C-linear maps from the tangent space TpX to C. This bundle should be
distinguished from the cotangent bundle T ∗X → X whose fiber is the real
dual space

T ∗pX = LR(TpX,R).

For p ∈ X Each holomorphic coordinate z gives a nonzero local section dz of
K and on the overlap of the domains of two holomorphic coordinates z and
w we have

dw = φ′ dz

where where φ is the holomorphic function such that w(q) = φ(z(q)). A
meromorphic K is called a meromorphic differential.
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Theorem 11. Let ω be a meromorphic differential on a compact Riemann
surface X. Then ∑

p

degp(ω) = −χ(X)

Proof. The real valued form ξ = <(ω) is a section of the cotangent bundle.
Near a singularity ω = zk dz in a suitable holomorphic coordinate. Now
zk = rk(cos kθ+i sin kθ) and dz = dx+idy so ξ = rk cos(kθ) dx−rk sin(kθ) dy
and hence degp(ω) = −degp(ξ).

3 Divisors

12. Throughout this section X is a compact Riemann surface. A divisor is
a Z valued function on X with finite support. We represent a divisor as a
formal finite sum

D =
m∑
k=1

nkpk

where nk is the value of D at the point pk. A meromorphic section s of
a holomorphic line bundle L → X (in particular a meromorphic function)
determines a divisor

(s) =
∑
p∈X

degp(s)p

whose support is the set of all singularities (zeros and poles) of s. The degree
of the divisor D is the integer

deg(D) =
m∑
k=1

nk;

thus
deg((s)) = deg(L)

for a meromorphic section s of a holomorphic line bundle L → X. A prin-
cipal divisor is one of form (f) where f is a meromorphic function. two
divisors are called linearly equivalent iff they differ by a principal divisor.
The notation D ≥ 0 means that D takes only nonnegative values. A divisor
D is called positive or effective iff D ≥ 0. For any divisor D we define the
complex vector space

L(D) = {f ∈M∗(X) : (f) +D ≥ 0} ∪ {0}
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and
`(D) = dimC(L(D)).

HereM(X) is the function field of X, i.e. the field of meromorphic functions
on X and M∗(X) =M(X) \ {0} is the multiplicative group of this field.

Theorem 13. A divisor and a meromorphic section of a holomorphic line
bundle are essentially the same thing. More precisely

(i) Every holomorphic line L→ X admits a meromorphic section s.

(ii) A meromorphic section s is holomorphic if and only if its divisor (s) is
effective.

(iii) For every divisor D there is a holomorphic line bundle L → X and a
meromorphic section s of L with D = (s).

(iv) Assume that s and s′ are meromorphic sections of holomorphic line
bundles L and L′ respectively. Then (s) = (s′) if and only if there is an
isomorphism L→ L′ of holomorphic line bundles which carries s to s′.

(v) Two divisors are linearly equivalent if and only if the corresponding holo-
morphic line bundles are isomorphic.

(vi) Let D be the divisor of a meromorphic section s of a holomorphic line
bundle L→ X. Then the map

L(D)→ Γ(L) : f 7→ fs

is an isomorphism from the vector space L(D) onto the vector space
Γ(L) of holomorphic sections of L.

Proof. For the proof of (i) see Corollary 18 below.

Lemma 14. For any divisor D and any point p ∈ X we have `(D) ≤
`(D + p) ≤ `(D) + 1. Hence `(D) <∞.

Proof. Suppose that the coefficient of p in D+p is n. Let z be a holomorphic
coordinate centered at p and

f(z) =
∞∑

k=−n

akz
k
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be the Laurent expansion of f about p. Then the linear functional f 7→ an
has L(D) as its kernel so `(D+p) = `(D) if this functional is identically zero
and `(D + p) = `(D) + 1 otherwise. A holomorphic function is constant so
`(0) = 1. Hence `(D) <∞ by induction.

Theorem 15 (Riemann Roch). Let K be the divisor of a meromorphic
differential ω and D an arbitrary divisor. Then

`(D)− `(K −D) = deg(D)− g + 1.

Proof. We prove this in five steps. Let φ(D) = `(D)− `(K −D)− deg(D).
Our aim is to prove that φ(D) = 1− g.

Step 1. If D ≥ 0 then `(D) ≥ deg(D) + 1− g. For this step we recall the

Extension Theorem. Let f be meromorphic function defined in a neigh-
borhood of p with a single pole at p. Then there is a harmonic function u
defined on X \ {p} such that <(f) − u is continuous (and hence harmonic)
near p.

Let D =
∑m

k=1 nkpk and for each k let zk be a holomorphic coordinate
centered at pk. For k = 1, 2, . . . ,m and j = 1, 2, . . . , nk apply the Extension
Theorem to get real valued functions uk,j and vk,j harmonic on X \{pk} with
<(zjk) − uk,j and =(zjk) − vk,j harmonic near pk. Let H be the real vector
space spanned by the functions uk,j, vk,j, and the constant functions. Thus
dimR(H) = 2deg(D) + 1. If f ∈ L(D) then <(f) ∈ H and the kernel of
the linear map L(D) → H : f 7→ <(f) is the one dimensional space of real
multiples of i. A function u ∈ H is the real part of of an element of L(D)
if and only if ∗du is exact, i.e. if and only if the integral of ∗du vanishes on
any homology class in

X ′ := X \ {p1, . . . , pm}.

Now H1(X ′) is generated by the 2g generators of H1(X) together with a small
circle surrounding pk for each k = 1, . . . ,m. The integral of ∗du around one
of these small circles vanishes by the definition of H so the image of L(D)
in H is the null space of a system of 2g real equations. The Riemann Roch
theorem tells us that these 2g equations need not be independent, but in any
event we have

dimR(L) ≥ dimR(H)− 2g = 2(`(D) ≥ deg(D) + 1− g).
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Step 2. We have `(D) ≥ deg(D) + 1 − g for any divisor D, effective or
not. Let D = D+ − D− where D+ =

∑
nk≥0 nkpk and D− =

∑
nk<0 |nk|pk.

Then L(D) is the subspace of L(D+) consisting of those f ∈ L(D+) which
vanish to order |nk| − 1 at each pk for which nk < 0. Such an f satisfies
deg(D−) linear conditions so `(D+) ≤ `(D) + deg(D−). By Step 1 we have
deg(D+) + 1− g ≤ `(D+) so deg(D+) + 1− g ≤ `(D) + deg(D−) and hence
deg(D) + 1− g = deg(D+)− deg(D−) + 1− g ≤ `(D) as claimed.

Step 3. Let ε = `(D + p)− `(D) and ε′ = `(K −D − p)− `(K −D). Then
ε+ ε′ ∈ {0, 1}. (In fact the theorem implies that ε+ ε′ = 1.) By Lemma 14
it is enough to show that the hypothesis ε = ε′ = 1 leads to contradiction.
From ε = ε′ = 1 we conclude that there exist functions f1 ∈ L(D+p)\L(D)
and f2 ∈ L(K −D) \ L(K −D − p) so

(f1) +D = −p+
∑
q 6=p

rqq, (f2) +K −D =
∑
q 6=p

sqq

where rr, sq ≥ 0. Now (f1f2ω) = (f1)+(f2)+K = (f1)+D+(f2)+K−D =
−p+

∑
q 6=p(rq + sq)q which says that (f1f2ω) has a simple pole at p and that

p is the only pole. This contradicts the Residue Theorem (the sum of the
residues is zero).

Step 4. 1−g ≤ φ(D). First note that Step 3 says that φ(D) is an decreasing
function of D as follows: φ(D+p) = `(D+p)− `(K−D−p)−deg(D+p) =
`(D) + ε− (`(K −D)− ε′)− deg(D)− 1 = φ(D) + ε+ ε′− 1 ≤ φ(D). Hence
we may assume that deg(K − D) < 0. But in this case `(K − D) = 0 so
φ(D) = `(D)− deg(D) ≥ g − 1 by Step 1.

Step 5. φ(D) = 1− g. By Step 4 (applied to both D and K −D) we have

2− 2g ≤ φ(D) + φ(K −D) = −deg(K) = 2− 2g

by Theorem 11. Since 1 − g ≤ φ(D) and 1 − g ≤ φ(K − D) by Step 4 we
have φ(D) = φ(K −D) = 1− g as required.

Theorem 16 (Serre Duality).

4 Sheaves

17. Let M∗ be the sheaf of germs of nowhere zero meromorphic functions,
O∗ the subsheaf of germs of holomorphic functions, and D the quotient sheaf.
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Then we have an exact sequence

1→ O∗ →M∗ → D → 0.

The group operation inM∗ is multiplication but we write the group operation
in D additively. The global sections of D are precisely the divisors on X, the
elements of H1(O∗) holomorphic correspond to line bundles on X, and that
the boundary map in the exact sequence

C
∗ = H0(O∗)→ H0(M∗)→ H0(D)→ H1(O∗)→ H1(M∗)→ H1(D) = 0

Corollary 18. A holomorphic line bundle admits a meromorphic section.
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