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NOTICE TO THE READERSHIP

Due to the present serious financial situation of the MAA, all possible steps to reduce
expenditures have been considered. As a result, the format of a MONTHLY page is being changed,
beginning with this issue. By using somewhat less space between lines and decreasing the size of
margins, it has proved possible to print the same amount of material on 96 pages as on 128. The
resulting savings in paper and printing costs are substantial. It is hoped that our readers will show
understanding for this step.

ALEX ROSENBERG, Editor

ARRANGE YOUR OWN SABBATICAL EXCHANGE: USE SEIS

Do you feel the need for a change of scene for a year or a semester, but are not eligible for a sabbatical leave?
Why not investigate the possibility of arranging a “no-cost sabbatical” by exchanging positions with a faculty
member with similar interests on another campus? The stimulation of a sabbatical exchange can benefit both you
and your institution and cost little or nothing. See the details of the MAA Sabbatical Exchange Information
Service on pages 781-782 of this issue.

THE QUOTA METHOD OF APPORTIONMENT

M. L. BALINSKI AND H. P. YOUNG

Abstract: The problem of apportionment is explained together with an account of the methods used by the
United States Congress beginning with the first decennial apportionment of 1792. Fairness and historical
precedent dictate that several properties must be satisfied by any method which may be deemed acceptable. It is
shown that the method presently used violates one of these and that a new procedure, the quota method, is the
unique method satisfying the essential properties.

1. Introduction. Article I, Section 2 of the Constitution of the United States provides, “Rep-
resentatives and direct taxes shall be apportioned among the several states which may be included
within this Union, according to their respective Numbers...,” a phrase which was later supplanted
in 1868 by the Fourteenth Amendment, Section 2 with, “Representatives shall be apportioned among
the several states according to their respective numbers, counting the whole number of persons in
each State, excluding Indians not taxed,” and (again Article I, Section 2) “The Number of
Representatives shall not exceed one for every thirty thousand, but each State shall have at Least
one Representative.”

The precise interpretation of the unchanging Constitutional provision “according to their
respective numbers’ has been the subject of both political and theoretical debate since the founding
of the Republic. The first Presidential veto was exercised by George Washington to quash an “act
for an apportionment of Representatives...according to the first enumeration.” In so doing he
followed the advice (and used the words) of his Secretary of State, Thomas Jefferson, while
disregarding that of his Secretary of the Treasury, Alexander Hamilton. Debates, reports, methods
and bills have succeeded themselves decennially ever since, following each census.

The clear intent of the Constitution is well captured by Daniel Webster’s definition: “To
apportion is to distribute by right measure, to set off in just parts, to assign in due and proper
proportion.” ([19], p. 107). If fractional numbers of representatives were allowed to be allocated to
the various states, then the problem would have a completely natural solution —namely, the number
of representatives accorded to a state would be strictly proportional to its population. But since “‘a
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fraction is the broken part of some integral number’ ([19], p. 113) and such representation is not
allowed, ““that which cannot be done perfectly must be done in a manner as near perfection as can
be.” ([19], p. 108.) And the question is: How?

Consider, for example, the five-state country with populations as given in Table 1 (from [13], p.
103). The “‘exact proportional solutions” (or exact quotas) are given for a house of 25, 26, and 27
seats.

For a house of 25 seats the as-near-perfection-as-can-be integer solution is evidently 9,7,5,3,1
seats for A,B,C,D,E respectively. But, in a house of 26 or 27 seats which state or two states should
receive the extra seat or seats?

25 Seats 26 Seats 27 Seats
State Population Exact quota Exact quota Exact quota
A 9061 8.713 9.061 9.410
B 7179 6.903 7.179 7.455
C 5259 5.057 5.259 5.461
D 3319 3.191 3.319 3.447
E 1182 1.137 1.182 1.227
26000 25 26 27
TABLE 1.

2. Formulation. Let p = (p,, - - -, ps) be the populations of s states, where each p; >0,and h =0
the number of seats in the house. The problem is to find, for each house size h = 0, an apportionment
for h: an s-tuple of non-negative integers (a;,---,as) whose sum is h. A solution of the
apportionment problem is therefore a function f which to every p and h associates a unique
apportionment for h, a; = f; (p, h) = 0 where .a; = h.If f is a solution and h a house size then f* will
represent the function-f restricted to the domain (p, h') where 0= h' < h. f* is called a solution up to
h, and f is called an extension of f".

A specific apportionment method may give several different solutions, for “ties” may occur
when using it, for example when two or more states have identical populations. For this reason it is
useful to define an apportionment method M as a non-empty set of solutions. Notice that, in
particular, a solution up to a given house size h may have several different extensions in M.

The ““ideal” or “strictly proportional” number of representatives “due” state j, called the exact
quota of state j, is g; (p, h) = p;h/Zip;. Given p and h, if q; = q: (p, h) is integer for all i, then a; = g; is
the perfect solution. Otherwise, each state i should receive at least as many seats as its lower quota
|g: ] (the largest integer less than or equal to ;) and certainly no more than its upper quota [g;] (the
smallest integer greater than or equal to g¢:), since these result from “rounding” the exact quota g;
down or up. In general an apportionment method is said to satisfy lower quota if, for each of its
solutions f, f: (p, h) = | q: (p, h)], to satisfy upper quota if f; (p, h) = [q: (p, h)], and to satisfy quota if it
satisfies both lower and upper quota.

3. United States Apportionment History 1792-1901: Satisfying Quota. The first apportionment of
seats in Congress among the thirteen original states was declared in the Constitution itself.
Following the census of 1790, Congress passed the first act of apportionment in 1792 alloting a total
of 120 seats to the 15 states then in the Union. George Washington questioned the fairness of the
proposed apportionment, and turned to his Secretary of State, Thomas Jefferson, for advice.
Jefferson also found it wanting and pointed out that, “No invasions of the Constitution are
fundamentally so dangerous as the tricks played on their own numbers, apportionment,” ([15], p.
470). Washington vetoed the bill, after having “maturely” considered it, saying: “First ... there is no
one proportion or division which, applied to the respective numbers of the States, will yield the
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number and allotment proposed by the bill. Second ... the bill has allotted to eight of the states more
than one [Representative] for thirty thousand.” ([18], pp. 16-17.) Jefferson’s reasoning about the
problem was as follows: “it will be said that, though, for taxes, there may always be found a divisor
which will apportion them among the States according to numbers exactly, ..., yet, for representa-
tives, there can be no.such common ratio, or divisor which ... will divide them exactly without a
remainder or fraction. I answer, then, that taxes must be divided exactly, and representatives as
nearly as the nearest ratio will admit; and the fractions must be neglected ...” ([15], p. 463). More
precisely, Jefferson was proposing the following method. Given a.“ratio” or “divisor” A, each state i
should receive a; = |p:/A | seats. If h seats are to be apportioned, then ideally A = Z;p;/h, but as we
must also have Zia; = h, it is necessary to adjust A, and choose the A “nearest” to the ideal that will
achieve this result. Allowing for the possibility of ties, the Jefferson method may therefore be stated
as follows: given p and h, choose the largest A (at most Z;p;/h) such that h' =Z; |p:/A | = h. Let
E'={i:p:/\ is integer}, (clearly |E'| = 1), and let E be an (h' — h)-cardinality subset of E'. Then
fi(p,h) = |p:i/A] for iZ E and f; (p, h) = p:/A — 1 for i € E. Thus if ' — h >0 there exists more than
one apportionment for h, hence more than one solution. The unique Jefferson apportionment for
house size 26 in the example of Table 1 is found to be f(p,26)=(10,7,5,3,1), (obtained with
X =906.1). This method is known in the United States literature as the method of greatest divisors,
and in the European literature as the method of d’Hondt (a nineteenth-century Belgian mathematl-
cian), but has not heretofore been ascribed to Jefferson.

Hamilton, also consulted by Washington, argued that the bill should be signed: “It is inferred
from the provisions of the Act—that the following process has been pursued. (I) The aggregate
numbers of the United States are divided by 30,000, which gives the total number of representatives,
or 120. (I) This number is apportioned ...by the following rule: as the aggregate numbers of the
United States are to the total number of representatives found as above, so are the particular
numbers of each state to the number of representatives of such state. But (III) as this process leaves
a residue of eight out of the 120 members unapportioned, these are distributed among those states
which upon that second process have the largest fractions or remainders ... And hence results a
strong argument for its constitutionality.” ([12], pp. 228-229.)

The Hamilton method is, therefore: First, give to each state i its lower quota | g |; then order the
states by their fractional remainders d; = ¢; — |¢;| =0 in a priority list d;, =d;,= - - - = d;.. Second,
give one additional seat to each of the first h —= |g;| = = d; states on the list. If there are ties, say if
d;, = d,.,, then there exist distinct arrangements of the priority list each of which leads to a solution
of the given problem. It should immediately be stated that this method is generally known as the
Vinton method of 1850, although first proposed, it appears, by Hamilton. The (unique) Hamilton
apportionment for the example of Table 1 at house 26 is therefore f(p,26) =(9,7,5,4,1). It is clear
that the Hamilton method satisfies quota. In fact it is easy to see that any Hamilton solution {a;}
solves: min,, =|a; — q; |, min,, = (a; — ¢;)*, and min,, max; |a; — q: |, where Z;a; = h and the a; are
nonnegative integers.

While it is true that the bill vetoed by Washington gave an apportionment that agreed with
Hamilton’s method for that particular situation, the bill did not specify what (if any) method was
used to arrive at this apportionment. Jefferson considered this a serious weakness of the bill: “The
bill does not say that it has given the residuary representatives to the greatest fractions ; though in
fact it has done so. It seems to have avoided establishing that into a rule, lest it might not suit on
another occasion. Perhaps it may be found the next time more convenient to distribute them among
the smaller states ; at another time among the larger states ; at other times according to any other
crochet which ingenuity may invent and the combinations of the day give strength to
carry ... whereas the other construction [Jefferson’s] reduces the apportionment always to an
arithmetical operation, about which no two men can ever possibly differ.” ([15], p. 469.)

The apportionment scheme actually used for the censuses of 1790 through 1830 was a diluted
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form of Jefferson’s proposal: a A was chosen (without first specifying a house size) and the a:’s
determined by a; = |p:/A |. The house was then given by h = Z; a;. Since the choice of A was decided
by political maneuvering, this was not, however, an apportionment method in the sense used here.

On 5 April 1832 Daniel Webster entered the lists of apportionment on the floor of the Senate.
“Representation founded on numbers must have some limit, and being, from its nature, a thing not
capable of indefinite subdivision, it cannot be made precisely equal...the Constitution, therefore,
must be understood ...as requiring of Congress to make the apportionment of Representatives
among the several states according to their respective numbers, as near as may be...the nearest
approach to relative equality of representation among the states ... the number nearest to the exact
proportion of that state.”” ([19], pp. 107-109.) Webster then proposed: * ...let the rule be, that the
population of each state shall be divided by a common divisor, and, in addition to the number of
members resulting from such division, a member shall be allowed to each state whose fraction
exceeds a moiety of the divisor.” ([19], p. 120.) Webster’s construction was not used until 1842, and
was then applied to obtain the apportionment based upon the 1840 census. As in the case of the
previous scheme used (based on Jefferson) the size of the House was not first determined, rather it
came as part of the over-all calculation. However, Webster’s construction can be turned into a
method giving solutions for house sizes determined in advance.

The Webster method is: Choose the largest A >0 such that h' =3, |p;//A +3] = h. Let E'=
{i; pi/A +1= integer}, (clearly |E'|Z 1), and let E be any (h'— h)-cardinality subset of E'. Then
fi(p,h) = |pi/A +3] for i€ E and f; (p, h) = pi/A +3—1=pi/]x —1fori EE.If h' — h >0, then there
exists more than one apportionment for h, hence more than one solution. The (unique) Webster
apportionment in the example of Table 1 is therefore f(p,26)=(9,8,5,3,1) (obtained with
A =957.2). This method is known as the method of major fractions but, again, has not heretofore
been credited to Webster even though Webster used the term *“‘major fractions.”

The apportionment act of 23 May 1850 (9 Stat., L. 428), sponsored by Samuel F. Vinton of Ohio,
fixed upon the Hamilton method and directed the Secretary of the Interior to thereafter determine
the apportionment following each census, once given by Congress the number of seats to be
allocated. This law, although in force through the census of 1900, did not still discussion in the
House. On 25 October 1881 C.W. Seaton, Chief Clerk of the Census Office, Department of the
Interior, wrote to the Chairman of the Committee on the Census that he had completed various
apportionments according to the populations ascertained by the census of 1880 and *“... made upon
assumptions as to the total number of Representatives ranging from 275 to 350 ... While making these
calculations I met with the so-called ‘Alabama paradox’ where Alabama was allotted 8 Representa-
tives out of a total of 299, receiving but 7 where the total became 300.” ([1], p. 18.) Note that the
Hamilton method applied to the example of Table 1 gives f(p,26)=(9,7,5,4,1) while f(p,27) =
9,8,6,3,1), that is, state D loses a seat as the House gains a seat.

“This atrocity which [mathematicians] havé elected to call a ‘paradox’...this freak [which]
presents a mathematical impossibility” (Representative John C. Bell of Colorado, 8 January 1901,
[10], pp. 724-725) proved to be particularly upsetting in 1901. The majority, victoriously led by
Albert J. Hopkins of Illinois, Chairman of the Census Committee, opted for a House of 357
members: but every apportionment for 350 through 400 gave to Colorado 3 seats save for one,
namely 357, which gave her 2. Representative Charles E. Littlefield of Main was also considerably
upset: “Not only is Maine subjected to the assaults of the chairman [Hopkins] of this committee, but
it does seem as though mathematics and science has combined to make a shuttlecock and battle door
of the State of Maine in connection with the scientific basis upon which this bill is presented ... God
help the State of Maine when mathematics reach for her...” ([10], pp. 592-593). By the apportion-
ment act of 1891 Maine received 4 seats, whereas for the populations of 1900 she would receive only
3 in a house of 357. Moreover, “Maine loses on 382. She does not lose when the House is increased
to 383, 384, or 385. She loses again with 386, and does not lose with 387 or 388. Then she loses again
on 389 and 390, and then ceases to lose.” ([10, p. 592.) Perhaps the gentleman from Maine should be
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excused his exasperation with mathematicians for, several days later, in the continuing debate
concerning apportionment, Hopkins explained: “It is true that under the majority bill Maine is
entitled to only three Representatives, and, if Dame Rumor is to be credited, the seat of the
gentleman who addressed the House on Saturday last is the one in danger ... [He] takes a modest way
to tell the House and the country how dependent the State of Maine is upon him ... Maine crippled!
Maine, the State of Hannibal Hamlin, of William Pitt Fessenden, of James G. Blaine ... That great
State crippled by the loss of LITTLEFIELD! Why, Mr. Speaker, if the gentleman’s statement be
true ... I can see much force in the prayer he uttered here when he said, ‘God help the State of Maine’
[laughter],” ([10], pp. 729-730).

Although several voices spoke out for other methods in the period 1800-1901, the primary
discussion centered on the size of the House. “Mr. Speaker, in the reapportionment of members of
Congress the first question that arises should be as to the seating capacity of the hall in which they
are to meet and do business.” (Representative Galusha A. Grow of Pennsylvania, January 1901, [10],
p. 664.) In a more realistic vein the force of most arguments were as stated in the “Views of the
Minority” in 1901: “We also believe that in the new apportionment no State should lose a
Representative. We therefore recommend a House of 386 members™ ([1], p. 116). In fact, the
apportionment act of 16 January 1901 used the Hamilton method and fixed the House at 386. Despite
this, the obvious malaise was due to the so-frequent occurrence of the Alabama paradox.

An apportionment solution is said to be house monotone if f (p, h + 1) = f (p, h) for all h, that is, if
it does not admit the Alabama paradox. An apportionment method is house monotone if all its
solutions are. Clearly, house monotonicity is an essential property of any acceptable apportionment
method. As stated by Seaton, in his letter of 1881, after discovering the paradox, “Such a result as
this is to me conclusive proof that the process employed in obtaining it is defective ... [The] result of
my study of this question is the strong conviction that an entirely different process should be
employed.” ([1], p. 18.)

Several attempts were made to alter the prevailing Hamilton (called Vinton) method to produce a
house monotone method satisfying quota. For example, the modified Vinton method is: first, give to
each state i its lower quota |g;]; then order the states by

e=(q—|a])piz0

in a priority list ¢, = ¢,=---Z ¢,. Second, give one additional seat to each of the first h —= |g; |
states on the list. The unique solution given by this method for the example of Table 1 at house size
26is f (p,26)=(9,7,5,3,2). However, it is not difficult to construct an example for which this method
produces the Alabama paradox.

4. United States Apportionment History 1910-1973: Avoiding the Alabama Paradox. The modern
era of apportionment dawns with the act of 8 August 1911. The House settled on a membership of
433, and chose this number for the usual reason: “It is proper to say in this connection that a
membership of 433 in the House is the lowest number that will prevent any State from losing a
Representative.” ([2], p. 1.) The bill provided that if either Arizona or New Mexico were admitted as
states before the next apportionment, each would be given 1 representative, thus bringing the total to
435. The method used, and presented as essentially original by Professor W. F. Willcox of Cornell
University in his letter of 21 December 1910 to Representative E. D. Crumpacker, Chairman of the
Committee on the Census, was the Webster method but was dubbed by Willcox “the method of
major fractions.” Two arguments were put forward for its acceptance. First, that the Alabama
paradox property of the Hamilton (or Vinton) method “...is so eminently unfair that in several
instances Congress has modified it to prevent palpable injustice.” ([2], p. 3.) Second, “The history of
reports, debates, and votes upon apportionment seems to show a settled conviction in Congress that
every major fraction gives a valid claim to an additional Representative” ([2], p. 9. from Willcox’s
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letter), where a “major fraction” is any fraction above 1/2. Willcox (see also [20]) must be credited
with having turned the Webster construction into a method. This is shown by the fact that he
supplied Congress with tables giving the apportionments based on the census of 1910 for
memberships of the House ranging from 390 through 440 inclusive.

No apportionment was accepted on the basis of the census of 1920. Many members of the House
contended that the 1920 census figures were not accurate, that due to a bad winter certain rural areas
were undercounted and, also, that temporary migrations caused distortions in the totals reported.
But much discussion was generated.

In 1921 E. V. Huntington, Professor of Mathematics at Harvard, initiated an investigation [14] of
a class of house monotone methods. His general point of view is summarized as follows:
“..between any two states there will practically always be a certain inequality which gives one of
the states a slight advantage over the other. A transfer of one representative from the more favored
state to the less favored state will ordinarily reverse the sign of this inequality, so that the more
favored state now becomes the less favored, and vice versa. Whether such a transfer should be made
or not depends on whether the amount of inequality between the two ...is less or greater than it was
before; if ... reduced ... it is obvious that the transfer should be made. The fundamental question
therefore at once presents itself, as to how the ‘amount of inequality’ between two states is to be
measured”” ([13], p. 85). He therefore asks for an apportionment which is stable in the sense that no
inequality, computed according to the chosen measure, T, can be reduced by transferring one seat
from one state delegation to another.

Given population p =(pi,-**,ps), and an apportionment a = (ay,- - ,as) for h, consider the
numbers pi/a; and a:/p. These represent the “average district size” and “average share of
representatives” in state i. If p;/a; > p;/a;, or a:/p: < a;/p; or a; > a; (p;/p:) or a;(pi/p;)> ai, then
state j is better off than state i. Define the relative difference between two numbers x and y to be
|x — y|/min(x, y). Huntington puts forth as the proper measure of inequality T the relative
difference between any of these pairs since the relative difference, (p.a;/p;a:) — 1, is always the same.
If a transfer of one representative from state j to state i lessens the inequality then it should be
made. The apportionment is stable if no transfer is justified, i.e., if any such transfer from'j to i
makes i advantaged, j disadvantaged and the inequality at least as great (as bad) as before. Thus, the
condition for Huntington stability is that

p,-(a,~+1)_12M_1
pi(a;—1) T piti
or
2 2
0] Pi >_ Pi or /I /-
(a-Da; a(a+1) V(g - 1)a; Va(a +1)

for all pairs of states i and j (clearly, if j is less well off than i or if i = j the inequality must hold).

An apportionment satisfying (1) is easily constructed. One way is as follows. At h = 0 every state
has fi(p,0)=0. If f(p,h)=a =(a\,---,a,) is an apportionment for h =0, an apportionment for
h +1is obtained by assigning the additional seat to any one state j which maximizes the rank-index
pilVa; (a; + 1). Not only does such an apportionment satisfy (1), but any apportionment satisfying
(1) can be obtained in this manner. The solution is therefore, except for ties, unique ([5], although
this key point seems to have been missed by Huntington).

Another way to obtain solutions is to observe that (1) implies the existence of a divisor A
satisfying

¥)) min—L—>A2=m Pi

V(g - g N a@ D)

Conversely, given A, if a; (1) is chosen for each j to be the smallest integer satisfying the divisor
criterion V(q; + 1)a; = p;/A, then a = (a4, - -, a,) is an apportionment for ;a; (A) = h satisfying (1).
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This gives a “local” condition for verifying that a given apportionment satisfies Huntington’s
criterion (1). As A is decreased, apportionments satisfying (1) may be obtained for all A, although
because of “ties” several apportionments for different house sizes may correspond to the same A
(for the precise procedure see below). Huntington cleverly baptized his candidate the method of
equal proportions, or EP. The unique EP apportionment for 26 in the example of Table 1, obtained
for example with A =960, is f(p,26)=(9,7,6,3,1).

Huntington’s method presents, however, several serious difficulties. These must be aired despite
the risk of persuading readers of the force of Representative Gillett’s 8 January 1901 statement: “It
has been abundantly proved that mathematics cannot determine any apportionment which shall be
universally fair and equal.” ([10], p. 742.) Most seriously, EP does not satisfy quota. In some
examples it accords more than rounding the exact quota g; up, in others less than rounding the exact
quota down. While explicitly recognized by the many proponents of EP, this flaw was conveniently
painted over. It is for them fortunate, indeed, that no census figures since 1930 have provided an
example exhibiting the non-quota phenomenon. It is also fortunate for EP that no careful
investigation has heretofore been made of how badly non-quota EP solutions can become, but more
on this point anon. Furthermore, there are other natural definitions of a measure T of the inequality
between two states besides the relative inequality. There is nothing sacred about Huntington’s
notion. For example, why not consider p;/a; — p;/a; or a;/p; — a:/p: or a; — a; (p;/p:) or a; (p:/p;) — a,
where j is in each case the advantaged state? Each of these leads to a different priority list method
and to a different divisor test method. And still other tests may yield still different methods.

In general, let r(p,a) be any real valued function of two real variables called a rank-index
(possibly including + o for certain values of p and a). Given a rank-index, a Huntington method M
of apportionment is the set of all solutions obtained recursively as follows:

(i) fi(p0=0, 1=i=s
(ii) If a: =fi(p,h) is an apportionment for h of M, and k is some one state for which
r(pw, a) Zr(pi, a;) for, 1=i =, then,

fiph+D)=ac+1, fi(pbh+1)=a; for i#k

By definition, any Huntington method is house-monotone (avoids the Alabama paradox). Moreover,
each of the measures of inequality listed above yields a Huntington method. In fact, in trying various
difference measures [13] it was found that either a measure does not guarantee the existence of a
stable solution or one of five distinct methods result, one of which is equal proportions, one of which
is Jefferson’s, and one of which is Webster’s. These five are commonly referred to as the “modern
workable methods,” because they avoid the Alabama paradox (see Table 3).

Instead of focusing on a rank-index, one can take the divisor test idea and generalize it to
produce a class of methods instead. Let d(a), called a divisor criterion, be any real-valued
monotone-increasing function of the one variable a with d (0)=0, and lim._..d (a) = ». Given a
divisor criterion, a divisor method M of apportionment is the set of solutions obtained as follows:
Given h, for each A, 0 <A =, let a; (A) be the smallest integer satisfying d (a; (A)) = p;/A. Choose A
so that 2ia; (A) =h'=h and, for all sufficiently small ¢ >0, Zia; (A —¢)=h">h. Let

EQ)={i;d(a:(A\))=pi/A}, |[EQ\)|=h"-h'=Z1.
If h"—h' =& > 1 then order (arbitrarily) the elements of E (1), and let E, () be the first a of the
elements of E(A) (= Es(A)). Then

fiph)=ai(A), 1=i=s;
and, for h' +a <h’,
fiph' +a)=a;,(A)+1 for i€E.,(),

=a;(A) otherwise.
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Clearly, any divisor method is house-monotone. In fact, any divisor method is a Huntington
method, as is easily seen. The rationale for a divisor criterion is this: the numbers p;/A “should” be
proportional to the numbers of seats received by the states, but because of the integer problem, the
specific sense of this proportionality is interpreted through the particular divisor criterion chosen. If
we take d (a) = Va(a + 1) then we obtain the method of equal proportions. Jefferson’s method is
obtained with d(a)=a +1, and Webster’s with d(a)=a +3. In fact, these are three of the five
so-called “modern workable methods,” all of which are divisor methods. Table 2 lists the five
methods, their various names, the measures of difference or stability criteria, rank-index and divisor
criteria associated with each. Table 3 gives, for the example of Table 1, the unique apportionment
for h =26 obtained by each of the five methods in question.

Method Stable for test T Rank-index Divisor criterion
(where pi/a; Zp;la;) r(p,a) d(a)

Smallest Divisors (SD) T.: a; — a; (p;/pi) pla a

Harmonic Mean (HM) Tz pila; — p;la; p/{2a(a + 1)/2a + 1)} 2a(a+1)/Q2a +1)

Equal Proportions (EP) Ts: (pia;/pya) — 1 pl{a(a + 1} (a(a+ N

Webster (W)
(also known as Ts: a;/p; — ai/p: pl(a +3) a+:
Major Fractions)

Jefferson (J)
(also known as

Greatest Divisors Ts: a; (p:/p;) — a, pla+1) a+1
or d’Hondt) :
TABLE 2.
State P q(p,26) SD HM EP w J
A 9061 9.061 9 9 9 9 10
B 7179 7.179 7 7 7 8 7
C 5259 5.259 5 5 6 5 5
D 3319 3.319 3 4 3 3 3
E 1182 1.182 2 1 1 1 1
26000 26 26 26 26 26 26
TABLE 3.

Let two states in some apportionment problem have populations p * and p with p* > p. Suppose
that f' € M’ accords a* seats to the star-state and a seats to the bar-state at some house size h’, and
that f” € M" accords a total of a* + a seats to this pair of states at some house #". Then f" favors the
large state over f' if it accords at least a* seats to the star-state at h”, for any such choice of p*, p, h’
and h". A method M" favoers large states over M’ if any solution f” € M" favors the large state over
any f' € M'. Table 4 suggests that the “modern workable methods” are listed, in Table 3, in the
order of increasing favoritism to large states, SD tending to most favor small states, J to most favor
large states. This is, in fact, the case and can be verified by using the following theorem.

THEOREM 1. Let M' and M" be methods determined by divisor criteria d' and d" respectively
where, for all integers a >b (=0), d"(a)ld"(b) <d’'(a)/d’(b). Then M" favors large states over
M.
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Proof: Suppose p*>p and some f' € M' accords the star-state a* seats and the bar-state a
seats. Then, d'(@)=p/A'=d'(@—1) and d'(@a¥)=p*/A' = d'(a* - 1) implying d’(a* - 1)/d'(a) =
p*/p. Suppose, contrary to what is to be shown, that for some f” € M" the bar-state is accorded
a +k seats and the star-state a* — k seats with k = 1. Then

d'@+k)zp/A"zd"@+k-1 and d"(a*-k)zp*r"zd"(a*-k-1)

implying d"(a*—k)/d"(a + k —1) = p*/p. Since d” is monotone the derived inequalities imply
d"(a*-1)/d"(@)zd"(a*-k)/d"(@+k-1)=d'(a*-1)/d'(a),

contradicting the condition of the theorem.

For example, compare EP and J. If a > b then (a + 1)/(b + 1) <{a(a + 1)}}/{b(b + 1)}} as is easily
verified. Thus J favors large states over EP. .

Why choose one stability criterion rather than another? Why one rank-index than another? Why
one divisor criterion than another? Contrast, for example, SD, EP, W and J via still other
characterizations (closely related to the divisor criteria), where for simplicity it is assumed no “ties”
occur. An SD apportionment for & is gotten by choosing a A such that if a; = [p;/A] then Za; = h;
an EP apportionment for & by choosing a A such that if a; = [{p3/A*+4:+1] then S, =h;a W
apportionment h by choosing a A such that if a; = |p;/A +3] then Z.a = h; and a J apportionment
for h by choosing a A such that if a; = |pi/A ] then Z.a; = h. Viewed in this manner EP is a most
peculiar choice of method: both W and J appear to be more natural. But the essential problem with
the approach is: there is no a priori justification for choosing one test or measure of inequality over
another.

What then happened in the 1920’s? Repeated attempts to reapportion were defeated. Some 42
bills shared this fate through 1928. Finally, on 18 June 1929, an “automatic” apportionment act was
accepted by Congress. Broadly, it provided that the President would send to Congress, together with
the apportionment population of each state based on the census figures, the apportionments for a
membership equal in number to the existing number of Representatives in the House (435) obtained
by (i) the method used in the preceding apportionment, (ii) the Webster method (called major
fractions) and (iii) the equal proportions method. As it happened, of course, this meant that (i) and
(ii) would be one and the same for the census of 1930. The major force behind the automatic
apportionment act was Senator Arthur H. Vandenberg of Michigan who not only spoke in Congress
but also, in 1929, addressed the nation by radio on the essential democratic need for a reapportion-
ment based upon the census, and, to avoid a repetition of the experience of the 1920’s, for the
automatic provision. In fact, Vandenberg favored W over EP, and thus sided with Dr. Willcox.
However, the weight of “scientific” advice to Congress supported EP. At the request of the Speaker
of the House, Nicholas Longwarth, the National Academy of Sciences prepared and submitted a
report dated 7 February 1929 signed by lions of the mathematical community, G. A. Bliss, E. W.
Brown, L. P. Eisenhart and Raymond Pearl [7]. They gave what now appears to be the traditional
argument for accepting EP. First, “there are five methods of apportionment now known which are
unambiguous (that is, lead to a workable solution), and should be considered at this time ... In the
present state of knowledge your committee regards these as the only methods of apportionment
avoiding the so-called Alabama paradox which require consideration at this time.” Second,
“...[HM] and [W] are symmetrically situated on the list. Mathematically there is no reason for
choosing between them. A similar symmetry exists for [SD] and [J] for which the defining
discrepancies seem, however, more artificial than those for any one of the other three methods ... but
[EP] satisfies the [relative difference test] when applied either to sizes of congressional districts or to
numbers of Representatives per person.” Concluding, “[EP] is preferred by the committee
because ...it occupies mathematically a neutral position with respect to emphasis on larger and
smaller states.”
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Paraphrased the argument is: (1) there are five known house-monotone methods, (2) of these, EP
satisfies a test which seems to be preferable to others; and (3) EP “occupies the central position
among the five methods” ([13], p. 103). A 1948 National Academy of Sciences Report [16], this time
co-authored by Marston Morse, John von Neumann and Luther P. Eisenhart, furthered sustained
EP as the best compromise and buttressed this choice with an additional argument. If the tests T, T
and T, are accepted as the most natural ones of the five, then EP can be measured by them as against
each of the other four methods. Clearly HM is always best by T>; EP is always best by T5; W is
always best by T.. The authors of the 1948 report introduce the following: a method M is said to be
T-superior to M’ if for every pair of states and for any populations the measure of different T
cannot be made smaller by solutions of M’ than by solutions of M. They state that EP is T-superior
to W for T = T, Ts; EP is T-superior to SD for T = T, T4; EP is T-superior to HM for T = T3, T.;
and EP is T-superior to ] by T = T, Ts. They then conclude: “The committee is unaware of any new
method which has been explicitly developed in workable detail since 1920 which goes beyond the
five methods discussed above...[By the T-superior criteria] the total score in favor of EP against the
other methods is decisive.”

Senator Vandenberg argued otherwise. In a 2 March 1929 letter to Huntington he explained:
“The basic problem is not mathematical at all ... I contend as a constitutional axiom that ... a group of
individuals should have as nearly as may be the same weight in choosing Representatives in the
House whether they happen to live in the large States or the small States. Doctor Willcox declares
that [W] is the only method in the long run that secures this end ...I assume you will consent that I
am entitled to rely upon his statements of abstract fact ... Supporting [his] view is the testimony of
such men as ... Professor Charles K. Burdick, dean of the Cornell University Law School, Professor
J. S. Hall, dean of the University of Chicago Law School, Professor Max Farrand, former professor
of American History at Yale ... There is constitutional warrant for [W]... I stood for [W]... then came
the unfortunate detour. Quarelling over mathematics the Senate once more permitted the basic
constitutional mandate to be given another anesthetic... The contest will be renewed in the
approaching extra session ... I will frankly say to you that I am perfectly willing to treat [the choice
of methods] from the sfandpoint of expediency and to take whichever method will best win...a
majority” ([11], pp. 4964-4965). Thus the compromise resulting in apportionments computed by both
EP and W. The choice was agreeable for the 1930 census: the two apportionments for 435 were
identical.

But, in 1940, through a quirk of time limitations written into different bills, it was impossible to
fulfill the conditions of the apportionment act of 1929: the census figures could not be delivered in
time. Discussion flared again. Professor Willcox, perhaps piqued, but certainly unreliable in
statements of abstract facts, said, on 28 February 1940, “ ...if the main purpose of apportionment is
to make the average population of congressional districts as nearly equal as possible, that purpose is
best served by [SD].” ([3], p. 16.) If he meant apportionments which are T.-stable, he was wrong,
since such belong to HM. If he meant an apportionment for & solving the problem

min,, max; |pi/a; —p;j/a;| when Z;a; =h, a;=0 integer

he was wrong again, for such apportionments do not specify a house-monotone method (see, for
example, [17], p. 82).* On 29 February 1940 Willcox declared, before the same committee, “That is
my reason for favoring the major-fractions idea, so that every fraction larger than one-half will
entitle a state to an extra Representative.” ([3], p. 37.) Almost one year later, on 27 February 1941 he
stated “It is my conviction that the mathematical aspects of apportionment have been greatly
exaggerated ... the first and most important reason [for rejecting EP] is the difficulty in understanding

*This same approach was advocated in Oscar R. Burt and Curtis C. Harris, Jr., ‘“‘Apportionment of the U.S.
House of Representatives: a minimum range, integer solution, allocation problem,” Operations Research,
11(1963) 648-652. The fact that it admits the Alabama paradox was pointed out in E.J. Gilbert and J.A. Schatz,
“An ill-conceived proposal for apportionment of the U.S. House of Representatives,” Operations Research,
12(1964) 768-773.
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it...[Senator Vandenberg] did state that the correspondence he had had with the advocates of [EP]
had given him a chronic headache.” ([4], pp. 15 and 20.) Senator Vandenberg, in continuing hearings
on H.R. 2665, declared: “When I came to the Senate 13 years ago, the question of reapportionment
was a flaming issue ... the question before this committee is whether, for the sake of controlling the
specific seat ... the practice of automatic reapportionment ... shall be upset ... Arkansas would not be
in love with [EP] on account of [EP]. It is in love with [EP] at the moment because it involves a seat
in the House. This is the vice of the situation every 10 years ... the very purpose of this automatic
reapportionment law is to protect the Constitution against political appetites ... It is for these reasons
that I oppose the House bill and ask for a defense of the only formula ever devised to guarantee the
validity of that section of the Constitution ... ” ({4], pp. 48-50). The Senator from Michigan should be
excused his vehement defense of W; the only difference between the EP and W apportionments for
435 according to the census figures of 1940 was that EP gave Arkansas 7 and Michigan 17, whereas
W gave Arkansas 6 and Michigan 18.

On 15 November 1941 President Franklin D Roosevelt signed “An Act to Provide for

Apportioning Representatives in Congress among the several States by the equal proportions
method” (Public Law 291, H.R. 2665, 55 Stat 761) which also fixed the size of the House at 435.*
Commenting on this event and on the previous debate concerning it, students of the Yale Law
School said in 1949 ([22, p. 1382):
“Despite the mathematical superiority of [EP], it would be naive to assume that its continued use by
Congress is assured ... Congress [in 1941] chose ... to give the extra seat to Arkansas, and thus to use
[EP]. But the decision had nothing whatsoever to do with the mathematical or logical soundness of
[EP]. Arkansas is usually a safe Democratic state; Michigan’s normal leanings are Republican.
Every Democrat in Congress, except those from Michigan, voted for [EP]... Every Republican
voted for [MF]... There were more Democrats ... than Republicans. Thus [EP].”” One can only hope
that lawyers may regain some naivete, at least if they become Representatives, so that, indeed, as
Representative Ernest W. Gibson of Vermont stated on 10 January 1929 ([11], p. 1500), “The
apportionment of Representatives to the population is a mathematical problem. Then why not use a
method that will stand the test under a correct mathematical formula?”

In fact, it seems that no other serious debate has arisen concerning which method should be used
or how many members the House should have. Willcox, in 1952, wrote his “Last words on the
apportionment problem” ([21]), continuing to argue that the problem is not mathematical but
political and that SD should be adopted. There appears to have been no other challenge since then.

Incredibly, all modern contributors and commentators simply disregard the fact that EP does not
satisfy quota. “Now it is a common misconception that in a good apportionment the actual
assignment should not differ from the exact quota by more than one whole unit.” ([13], p. 94.) “The
proper apportionment ... may differ by several units from the number obtained by simple propor-
tion.” ([7].) Although the fact was recognized, the implicit inference from the examples illustrating it
([13], p. 96) is that the event is rare and at worst minor in magnitude. But, “as a proper method of
apportionment must meet every conceivable variation in population no matter how fantastic” ([17],
p. 73), consider the two examples of Table 4 which are very much in the tradition of the many lovely
examples given by Huntington [13]. In the first example, the EP apportionment “rounds” the exact
quota of state 1 up by more than 63; in the second, it “rounds” the exact quota of state 1 down by
more than 6;. These are fantastic artificial examples. But in Table § is given the census populations
for the 50 states in 1960, 1970 and two hypothetical projections of populations to the year 1984 (1984
A and 1984 B). The exact quotas and equal proportions apportionments are given for each state in all
three cases. In the 1984A EP apportionment four of the five largest states receive more
Representatives than their upper quotas. California receives 45 while its exact quota is 42.960; New
York 42 while its exact quota is 39.939; Pennsylvania 26 while its exact quota is 24.974; and Texas 25
while its exact quota is 23.952. In the 1984 B EP apportionment the reverse is true, every one of the

*In 1959, Alaska and Hawaii were admitted to the Union, each receiving one seat, thus temporarily raising the
House to 437. The apportionment based on the census of 1960 reverted to a House size of 435.
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State 4 q(p,102) f by EP State P q(p,98) f by EP
1 60,272 61.477 68 1 68,010 66.650 60
2 1,226 1.251 1 2 1,590 1.558 1
3 1,227 1.252 1 3 1,591 1.559 1
' " ! ' 4 1,592 1.560 2
! ! ! ! 5 1,593 1.561 2
31 1,255 1.280 1 ! ! ! !
32 1,256 1.281 2 ! ! ! !
33 1,257 1.282 2 21 1,609 1.577 2
(s =33) 100,000 102 102 (s =21) 100,000 98 98

TABLE 4.

five largest states receives less than its lower quota. In fact, examples may be constructed, using
different numbers of states s and different house sizes &, to show that EP can give apportionments
with delegations arbitrarily far off exact quota. This possibility surely makes EP unacceptable.
Zecharia Chaffee, Jr., the constitutional authority, pointed out that “the preservation of a respect for
the law will in the long run be best obtained by the adoption of the plan which is least likely to
produce a sense of unfairness in those who are forced to obey legislation” ([8], pp. 1043-1044).

Notice, moreover, that both censuses of 1984 have the same total population, that in 1984 B
California has a slightly higher population but four fewer seats by EP. Thus, in addition to all the
other objections EP is very unstable: small shifts in population can lead to large shifts in the
apportionment.

To Jefferson, Washington, Hamilton and other early writers on apportionment the idea of a
method satisfying quota was so natural that they could not even imagine a method not having this
property. As in the case of the Alabama paradox, the possibility of a non-quota method was so
inconceivable that an instance had to arise before the possibility was recognized. This actually
occurred in a proposed apportionment bill of 1832, and Daniel Webster at once pointed out its
absurdity in his speech to the Senate on April 5, 1832: “The House is to consist of 240 members.
Now, the precise portion of power, out of the whole mass presented by the number of 240, to which
New York would be entitled according to her population, is 38.59; that is to say, she would be
entitled to thirty-eight members, and would have a residuum or fraction; and even if a member were
given her for that fraction, she would still have but thirty-nine. But the bill gives her forty ... for what
is such a fortieth member given? Not for her absolute numbers, for her absolute numbers do not
entitle her to thirty-nine. Not for the sake of apportioning her members to her numbers as near as
may be because thirty-nine is a nearer apportionment of members to numbers than forty. But it is
given, say the advocates of the bill, because the process which has been adopted gives it. The
answer is, no such process is enjoined by the Constitution”. ([19], pp. 105-111.) Thus Webster
clearly enunciates the principle that each state is entitled to at least the integer part of its exact
quota, but cannot justifiably receive any more than its upper quota; in other words, any
Constitutional apportionment method ought to have the quota property.

Does any Huntington method satisfy quota?

THEOREM 2. There exists no Huntington method satisfying quota. Of the five ‘“‘known workable”
methods, only one, SD, satisfies upper quota; and only one, J, satisfies lower quota.*

*It should be pointed out that C.W. Seaton, Chief Clerk of the Census Office, independently devised the
Jefferson method in his letter of 1881 (referred to earlier), but presented it in a different manner. He proposed
that, in common with the Hamilton method, each state should first be given |q; |, the integer part of its exact
quota. Then, ‘it is my opinion that it is not the remainders, but rather the quotients which result from dividing the
populations of the States by the increased number of Representatives, which should govern the allotment.” [1].
That he really meant J, and not a generalized Hamilton method in which a state can receive at most one extra seat
in this manner, is evidenced by the fact that in applying his method Ohio received two additional seats. This is the
same as J since J necessarily satisfies lower quota.
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1960 1970 1984 A q EP 1984 B q EP
Alabama 3,266,740 3,475,885 3,659,293 7.198 7 3,608,877 7.099 7
Alaska 226,167 304,067 451,884 .889 1 329,928 649 1
Arizona 1,302,161 1,787,620 2,184,366 4.297 4 1,885,014 3.708 4
Arkansas 1,786,272 1,942,303 2,176,565 4282 4 1,948,052 3.832 4
California 15,717,204 20,098,863 21,839,542  42.960 45 21,944,556  43.167 41
Colorado 1,753,947 2,226,771 2,664,373 5.241 5 2,410,663 4.742 5
Connecticut 2,535,234 3,050,693 3,158,612 6.213 6 3,438,575 6764 7
Delaware 446,292 551,928 685,196 1.348 1 802,199 1.578 2
Florida 4,951,560 6,855,702 7,081,224 13.929 14 7,671,182 15.090 15
Georgia 3,943,116 4,627,306 5,112,891 10.058 10 5,053,140 9.940 10
Hawaii 632,772 784,901 993,246 1.942 2 840,834 1.654 2
Idaho 667,191 719,921 691,063 1.359 1 804,232 1.582 1
Tllinois 10,081,158 11,184,320 11,947,647  23.502 24 12,290,721 24177 23
Indiana 4,662,498 5,228,156 5,610,014 11.035 11 5,570,655 10958 11
Towa 2,757,537 2,846,920 3,161,153 6.218 6 2,958,171 5819 6
Kansas 2,178,611 2,265,846 2,675,456 5.263 5 2,456,416 4.832 5
Kentucky 3,038,156 3,246,481 3,657,104 7.194 7 3,465,010 6816 7
Louisiana 3,257,022 3,672,008 4,140,835 8.145 8 3,968,799 7.807 8
Maine 969,265 1,006,320 1,078,588 2.122 2 1,298,870 2.555 3
Maryland 3,100,689 3,953,698 4,131,001 8.126 8 3,978,966 7.827 8
Massachusetts 5,148,578 5,726,676 6,085,436 11971 12 6,086,136 11972 12
Michigan 7,823,194 8,937,196 9,438,773 18.567 19 9,489,634 18.667 18
Minnesota 3,413,864 3,833,173 4,129,984 8.124 8 4,003,368 7.875 8
Mississippi 2,178,141 2,233,848 2,679,798 5271 5 2,421,339 4.763 5
Missouri 4,319,813 4,718,034 5,123,214 10.078 10 5,108,552 10.049 10
Montana 674,767 701,573 691,146 1.360 1 773,730 1.522 2
Nebraska 1,411,330 1,496,820 1,643,502 3.233 3 1,834,178 3.608 4
Nevada 285,278 492,396 686,213 1.350 1 534,291 1.051 1
New Hampshire 606,921 746,284 908,754 1.788 2 842,868 1.658 2
New Jersey 6,066,782 7,208,035 7,573,756 14.898 15 7,676,299 15.100 15
New Mexico 951,023 1,026,664 1,182,655 2.326 2 1,313,105 2.583 3
New York 16,782,304 18,338,055 20,303,765 39.939 42 19,842,029  39.031 37
No. Carolina 4,556,155 5,125,230 5,614,931 11.045 11 5,552,320 10922 11
No. Dakota 632,446 624,181 684,688 1.347 1 755,938 1.487 2
Ohio 9,706,397 10,730,200 11,437,560  22.499 23 11,735,587 23.085 22
Oklahoma 2,328,284 2,585,486 2,675,479 5.263 5 2,901,743 5.708 6
Oregon 1,768,687 2,110,810 2,182,157 4.293 4 2,385,753 4.693 5
Pennsylvania 11,319,366 11,884,314 12,696,129 24974 26 12,799,259 25138 24
Rhode Island 859,488 957,798 1,131,130 2.225 2 1,316,663 2.590 3
So. Carolina 2,382,594 2,617,320 2,674,982 5.262 5 2,905,301 5.715 6
So. Dakota 680,514 673,247 686,555 1.351 1 752,887 1.481 2
Tennessee 3,567,089 3,961,060 4,133,034 8.130 8 4,031,836 7.931 8
Texas 9,579,677 11,298,787 12,176,464  23.952 25 12,228,700  24.055 23
Utah 890,627 1,067,810 1,197,568 2.356 2 1,360,383 2.675 3
Vermont 389,881 " 448,327 660,279 1.299 1 485,488 955 1
Virginia 3,966,949 4,690,742 5,098,449 10.029 10 5,026,197 9.887 10
Washington 2,853,214 3,443,487 3,648,182 7.176 7 3,519,403 6.923 7
W. Virginia 1,860,421 1,763,331 1,691,133 3.327 3 1,854,004 3.647 4
Wisconsin 3,951,777 4,447,013 4,631,008 9110 9 4,519,866 8.891 9
Wyoming 330,066 335,719 571,638 1.124 1 376,698 741 1
TOTALS 178,559,219 204,053,325 221,138,415 435 435 221,138,415 435 435

TABLE S.
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Proof: That no Huntington method satisfies quota is obtained as a corollary to Theorem 3, which
is stated and proved in Section 5. Examples show SD, HM, EP and W do not satisfy lower quota,
and that HM, EP, W and J do not satisfy upper quota. In fact, the examples of Table 4 suffice (see
Table 10).

Thus EP, in particular, is an unsatisfactory method of apportionment: (1) it does not satisfy
quota; (2) it rests upon an arbitrary definition of measure of inequality in representation between
states; and (3) it is very unstable in that small shifts in populations can produce serious differences in
state delegations. Huntington’s original motivation to devise a method that avoids the Alabama
paradox sacrificed the essential quota property. '

5. The Quota Method. The obvious question is: does there exist a house-monotone method which
satisfies quota? The answer is: yes. In fact, in this section it is shown that there is, subject to a
certain consistency condition, only one such method, the “quota method.”

Suppose that M is a house-monotone method. Then given a solution f € M with f;(p,h — 1) = a,
the state j is said to be eligible at h for its (a + 1) st seat if a < p;h/Z:p: = q; (p, h). In other words j is
eligible at h for its (a + 1) st seat if it had a seats at h — 1, and if it can receive the hth seat without
exceeding upper quota.

Let p* and p be the populations of some two states and suppose that by some solution f € M,
where M is house-monotone, the star-state is eligible at some h for its (a*+ 1) st seat and the
bar-state is eligible at i for its (a@ + 1) st seat, but f gives the hth seat to the star-state. Then the
star-state is said to have weak-priority by M over the bar-state at p*, p, a*, and 4. Since both states
were eligible and the star-state received the extra seat its claim to the extra seat is certainly as good
as that of the bar-state. A natural requirement for any method M is that the relative claims for an
extra seat between two states should depend only upon their respective populations p* and p and
current apportionments a* and . To be precise, suppose that the star-state has weak priority by M
over the bar-state at p*, p, a*, and d. Let g € M be a solution for some population vector ¢, which
contains a pair of states having populations p* and p, and suppose these states are, respectively,
eligible for their (a* + st and (a + 1) st seats at h’, but that g gives the h'-th seat to the bar-state
rather than the star-state. Then M is said to be consistent if g" ', the restriction of g upto h' — 1, has
an extension by which the h'-th seat is given to the star-state. That is, a method M is consistent if it
never switches priorities at p*, p, a*, a unless the two states have equal claim to the extra seat.
Clearly, any Huntington method is consistent, for the claim to an extra seat is determined by the
rank-index r (p, a) which depends only upon the population and current apportionment of any state.
In fact, any Huntington method is consistent even if the condition of eligibility is dropped. Given the
concern with methods satisfying quota it is important to impose the eligilibility requirement since,
otherwise, apportionments violating the upper quota condition could be encountered. The set of all
states eligible at & will be denoted E (h).

The quota method Q is the set of all solutions f obtained recursively as follows:

fi(@,0)=0 1=iss;
" and if a; =fi(p,h), and k € E (h +1) is some one state satisfying pi/(ax + 1) = p:/(a; +1) for all
i€ E(h+1) then

fiph+D)=ac+1, fi(ph+1)=a all izk

It is justifiable to name Q the quota method because it is the unique method satisfying
house-monotonicity, consistency, and quota in this sense: if Q' is any other set of apportionment
solutions satisfying these properties then Q' C Q. The method is very simple to apply so examples
are postponed until later in the discussion.

THEOREM 3. Q is the unique apportionment method which is house-monotone, consistent, and
satisfies quota.
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Proof: The proof is in two parts. First, it is shown that Q satisfies the three properties claimed
for it; second, uniqueness is established.

(i) PropPERTIES. By definition Q is house-monotone and consistent. Moreover, since no state
receives a seat without being eligible Q satisfies upper quota. Thus it is only necessary to show that
Q is also lower quota. To simplify notation abbreviate f(p,h) by f(h), and normalize the
populations letting p; = p;/(Z} p:), for all j.

Suppose Q is not lower quota. Then, for some p, f € Q and house size ho, there must exist a state
j for which f; (ho) = pijho—1. Since Z:f: (ho) = ho, this implies that there exists a state / with
a; = fi (ho) > Piho, that is, whose apportionment for h, is at upper quota. Therefore,

©) Plfi (ho) < 1/ho = pi[(f; (ho) + 1).

Let h, be the house size at which state | received its last or a,-th seat. State | may be chosen so
that h; is largest among all states | with apportionments for h, at upper quota. Note that h, = h is
impossible because j is eligible at ho and, by (3), would receive its (f; (ho)+ 1) st seat before [
received its f; (ho) th seat. Therefore h, < ho. Let K # & be the set of states receiving additional seats
at house sizes h in the interval h < h = h,. State | cannot be eligible in this interval, so /& K. For
any k € K it is impossible that fi (ho) > pxho because then h, > hy, contradicting the: choice of 1.
Hence

C)] fc (ho)=prho for kEK.
But, since fi () < fi (ho) for all k EK,
Pil(fe (W) +1) Z pilfec (ho) = 1/ ho > pilfy (ho) = pilfi () for k€K

This means that every k € K must have been ineligible at h, K N E (h;) = &, for, otherwise, one of
these states would have been given the h,-th seat by Q. Thus,

) . R =fi(u—-1)=ph for kEK.

In the interval h, <h = h, exactly ho— h, seats were awarded to the states in K, so 2 {fx (ho) —
fx (l)} = ho— hi. Subtracting (5) from (4) and then summing over K

ho— hl = Ek {fk (ho) _fk (hl)} = zkﬁk (ho - hl)-

But ho— h; > 0 implies 2, p = 1, a contradiction, since K is a subset of all states, 2{ p; = 1, [ K and
i >0. Therefore, Q satisfies lower quota and so Q satisfies quota. This completes the first part of
the proof.

(ii) UNIQUENESS. Let Q' be any set of solutions satisfying all properties and suppose it is not
contained in Q. Then there must exist a solution f € Q' ~ Q for some problem p. This means there is
a house h, and a pair of states i and j, say with populations p; = p* and p; = p and apportionments
fi(p,h) =a*, f;(p,h)=a, both eligible at h+1, i,j EE(h +1), and p*/(a*+1)>p/(a+1), but
(contrary to Q) fi(p,h+1)=a+1. Since f satisfies quota, p*(h +1)/Zip;<a*+1 and
p (h +1)/Z5 pi > a, implying

(6) pla>p*/(a*+1).

Fix the populations p* and j and consider all choices of population vector p in which some two
states have populations p* and p respectively, and h, a*, @ and f € Q' are as assumed above.
Among these choose a situation for which a*+ a = A is a minimum. In other words, single out a
“first”” occurrence in which a solution violates the conditions of Q. We derive a contradiction from
this hypothesis by induction on A.
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Suppose A = 0. Then p* > p but there is some solution of Q' by which a state with population p
receives its first seat before a state with population p* does. Consider, then, the problem having
t + 1 states and population vector ¢ =(p*,p,- - -,p) where ¢t is chosen to be any integer satisfying
t Zp*/(p* - p). For any f € Q' let h; be the largest house for which f,(q, h;) = 0, and suppose that
hs < t. Since there are ¢ + 1 states, f; (q, by + 1) = 0 for some j, 2=j =¢ + 1. Therefore, states 1 and j
are eligible for their first seats at h; + 1 but f gives state 1 the (h; + 1) st seat. Therefore, by the
consistency of Q’, there is an extension of f* which, instead, gives that seat to state j. This, of
course, can be repeated and so this means we can assume h; = ¢. But, then, the lower quota of state 1
at hy is

P*hel(p*+tp) Zp*t/(p* +tp) Z (p*+ tp)(p*+1p) =1,
by choice of ¢, implying f is not (lower) quota at hy, a contradiction.

Suppose, then, that A = a* + a > 0. As before, form the problem ¢ = (p*,p,---,p) having ¢ + 1
states where ¢ is now any integer satisfying
p *
p*@+1)-pa*+1)

t=

or tp*@+1)z=p*+tp(a*+1).
Since, p*/(a*+1)>p/(a + 1), by assumption, ¢ is positive. Consider a house h'=a*+t(a +1).
Then the exact quota of state 1 at h' satisfies

p*h' _p*(a*+t@+1)_a*p*+p*t@+1)_a*p*+p*+tp(a*+1)
p¥+tp p*+tp p*+tp = p*+tp

=a*+1.

™

For each f€ Q' let h; be the largest house such that fi(q, hs) = a*, and among these solutions
choose one f so that h; is largest among the h;. Since f is quota, (7) implies that hs < h'. Either (a)
the exact quota of state 1 at h7+ 1 is at least a*+1 or (b) it is less than a* + 1.

(a) Suppose p*(h; + 1)/(p* + tp) = a* + 1. By (6) this implies j (b7 + 1)/ (p* + tp) > a. f is quota
so each state i, 2=i =t + 1, has at least @ seats at h; + 1; on the other hand, i < h' = a* +t(a +1)
so at least one of these states, say j, must have at most a seats, hence exactly a seats, at hr + 1. This
state is eligible for its (@ +1)-st seat at hy+ 1, whereas, by construction, state 1 received its
(a*+1)-st seat at h7 + 1. By consistency with the original hypothesis there must, therefore, exist an
extension of f*7 that accords the (b7 + 1)-st seat to state j instead of state 1. But this contradicts the
choice of f.

(b) Suppose p*(h; +1)/(p*+tp)<a*+ 1. This means state 1 is at its upper quota at h; + 1 so
some state j, 2=j =t + 1, must be at its lower quota, call it a’, where a’ =a. If a’ = 3 then by
consistency there must exist an extension of f*/ that accords the (k7 + 1)-st seat to j instead of to 1,
again contradicting the choice of f. Therefore, a’ <a whence a*+a’ <A. Moreover, consider
states 1 and j: they have a* and a’ seats, respectively, at house hj, are both eligible at h; + 1, and f
gives to state 1 the (k7 + 1)-st seat, whereas, from (6)

plla’+1)zpla>p*/(a*+1).

This contradicts the inductive hypothesis on A.
This completes the proof of uniqueness and establishes Theorem 3.

6. The Quota Method with Minimum Requirements. The preceding section considered the “pure”
apportionment problem where no requirements are placed on the minimum number of representa-
tives. However, the Constitution specifies that each State have at least one Representative and it is
obvious that an apportionment method satisfying quota cannot in general meet this requirement. For
example, in a house of 50 seats the 1970 exact California quota is 4.927. Certain other systems have



1975] THE QUOTA METHOD OF APPORTIONMENT 717

different minimum requirements: for example, France requires a minimum of 2 “députés” per
“departément.” This section broadens the formulation of the apportionment problem to explicitly
include the possibility of minimum requirements different from zero. We shall show that Theorem 3
and the quota method have natural generalizations which coincide with the preceding results when
the minimum requirements are zero.

In this broader view the data of the problem are the (positive integer) populations of s states
p =(p1,- - -, ps) and nonnegative integer requirements r = (r,,- - -, r;), with r; the minimum number
of representatives which can be given state i in any admissible apportionment. Clearly, there are no
admissible apportionments for any house size less than the minimum house 4 ° = 3 r.. The problem is
to find, for each house size h = h° an apportionment for h: an s-tuple of integers (a,, - - -, a,), with
a; Zr all i and 2ia; = h. A solution of the apportionment problem with requirements is a function f
which to every p, r and h = h° associates a unique apportionment for h, a; = f; (p,r,h)=r, 1S i=<s
and X} a; = h. An apportionment method with requirements is a set of apportionment solutions as
here defined. House-monotonicity and consistency are as defined before (for h = h°, a; = r;), with the
set of states eligible at h, E (h), precisely the same.

However, as was pointed out above, it is impossible, in general, to ask for solutions satisfying
quota. Thus this definition needs to be modified. A very natural extension of the quota idea can be
made. Given p = (p1,--*,ps), r =(ry, -+, r.) and h ==} r, = h° define the (generalized)* upper quota
u; = u; (p,r,h) of state i to be the maximum of the previously defined upper quota and r,

u; = max{r, [ph/(Zip;)]}.

Generalizing lower quota is slightly more involved. Suppose that the exact quota p:i /(2§ p;) of
state i at h is less than or equal to r.. Then state i certainly deserves no more than r; seats, while it is
required to have at least r; seats. A fair method would, therefore, allot to i exactly r seats.
Subtracting such seats from & there is left a smaller house which is to be allocated to the remaining
states. Using this smaller house compute the exact quotas for the remaining states and give r; to any
whose exact quota is at most r;, and so forth.

Define, then, Jo = Jo(h) = {1, - -, 5} to be the set of all states, and let ho = h (= h°). As suggested
by the above reasoning, define also J, = J,(h) = {i € Jo; pihol(Zs,p;) > r:} and hy = ho— Zies, 1. Any
state i € J; deserves pihi/(Z;, p;) seats, so if this number is at most 7 then i should receive precisely
r; seats. Thus, let J,=J,(h)={i €Ji;ph:/Cs,p;)>r} and hy=ho—Zigs, 1, and so on. This
produces, for each h, a nested sequence Jo(h)DJi(h)D---DJ.(h) of sets with house sizes
h =ho>h,>--->h, such that for all i €J, (h), p:h,./(Z;, p;)>r.

It is convenient to note several relationships at this point. By definition, for all @, 0= a > u,
piha/(E;ap;) =r fori € ]a ~ Ja+1.

Therefore
_ _ ) _ Eja_ 1 pfha _ ha Eja.,_, Di
haer = he = Zsmgoi i S he 3np 2D
and so,
(8) ha+l/2.’a+l p] = ha /EJQPI'

The set J, (h) is uniquely defined as a function of p, r and h (= h°) and is called the slack set for
h. The (generalized) lower quota I (p,r, h) of state i at h is defined to be

Li=|pih=Zigs,r)Zp] for i€,
R for igJ, ().

*In the sequel the modifier “‘generalized” will be omitted wherever no confusion with the “pure”” (r = 0) problem
can arise.
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Notice that if all requirements r; = 0, the generalized upper and lower quotas are the same as the
ordinary upper and lower quotas (in this case the slack set J, = Jo, the set of all states). For clarity
the upper and lower quotas are computed in Table 6, for h =26 in the example of Table 1.

State R r q(26) 1(26) u (26)
A 9061 6 9.061 8 10
B 7179 6 7.179 6 8
C 5259 5 5.259 5 [
D 3319 4 3.319 4 4
E 1182 2 1.182 2 2
26,000 h°=23 26

TABLE 6.

Therefore, the vector of upper quotas u(26) is as specified, [ =2, [ =4, J, ={A,B,C} and h, =20.
Thus g 4(20) = (9061) (20)/21499 = 8.429, q £(20) = 6.678, and q ¢(20) = 4.892 implying /c = 5. Finally,
J>={A,B}, h, =15, q4(15) = (9061) (15)/(16240) = 8.369, and q s = 6.631, so that J,=J,, and [, =8,
IB = 6.

A generalized apportionment method M is said to satisfy quota if for all f € M and for all p, r,
and h =h°=3ir,

L) =fiprhSuprh) 1siss.

Thus, a generalized apportionment method satisfying quota at h = 26 for the data of the example
above would have to yield an apportionment f(26) for 26 satisfying I (26) = f (26) = u (26).
Assume the data p, r of the problem satisfy the condition

9) if p;=p; then pi/rzp;lr.

Such problems will be said to have unbiased requirements r. In other words, if state i is larger than or
equal to state j in population, then state i’s minimum allocation does not advantage it over state j’s
minimum allocation. This seems quite natural and is, of course satisfied in the usual case where the
minimum requirements are the same for all states, . =r, 1 =i =s. For data satisfying (9) the
(generalized) quota method Q (r) is defined to be the set of all apportionment solutions f obtained
recursively as follows:

fi(P,",ho)Zri, léiés;

and if a; = f, (p,r,h), h = h° and k € E (h + 1) is some one state satisfying pi/(a. + 1) = pi[(a; + 1)
foralli € E(h +1) then fi (p,r,h +1)=ax + 1, fi(p,r,h + 1) = a; for all i # k, (E(h + 1) is the set of
eligible states as defined previously). The only difference between Q and Q (r) is that the latter
begins by giving, to each state i, r; seats in a house 4 °, and otherwise continues as before. Clearly Q
and Q(0) are identical. The unique Q(r) solution for the above example (see Table 6) and house
sizes 23 =h =28 is shown in Table 7 (here f(h) abbreviates f(p,r,h)).

State p fQ23) @4 £Q@25) fQe6) £@27 £28)
A 9061 6 7 8 8 9 10
B 7179 6 6 6 7 7 7
C 5259 5 5 5 5 5 5
D 3319 4 4 4 4 4 4
E 1182 2 2 2 2 2 2

26,000 23 24 25 26 27 28

TABLE 7.
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Again it is justifiable to baptize Q (r) the quota method because it is, for unbiased requirements
(9), the unique method which is house-monotone, consistent, and satisfies quota. (For biased
requirements a unique method still obtains but its definition is not quite so straightforward, for the
eligible set of states at & + 1 must be taken as E (h + 1) N J, (h + 1) rather than simply E (h +1).)
This will now be established via arguments which closely parallel those for Q (0). First, it is shown
that Q (r) never gives more than r; seats to any state i whose “adjusted exact quota” is at most r;,
(i.e., to any state not in the slack set).

Lemma 1. Iff € Q (r) for r unbiased then f; (p,r,h) = r. for i & J,., where J,, is the slack set for h.

Proof: Given p, r and h =2 h° let JobDJ,D---DJ, and h = ho>---> h, be defined as in the
above construction. Assume, by way of contradiction, that a; = f; (p, r, h) > r; for some i & J,.. This
surely implies that i is not in the slack set J, (k') for any h’' = h, so it may be assumed that state i
actually received the hth seat. Moreover, since f € Q (r) is house-monotone it can be assumed that
a; =r;+1. Since i& J, there is an a, 0=a <p with i €J, ~J,., and

(10) ai—1=r Z(ph./Z;,p;).

By definition
h= EjEJ,,,rj + 21,. (pihp./zlupk)

and, since f € Q, a; = r; for all j, so a; > r; implies ax = fi (p, r, h) < pxh,.[Z;, p; for some k € J,. But
this, in turn, implies by repeated use of (8) that for this state k

an a < pih |25, pi = piha 25, p; = pih (2] .

Now (10) and (11) together yield that for the pair of states i and k, p:/(a; — 1) < p«/aw. By (11), state k
is eligible for its (a. + 1) th seat. But state i received the hth seat, and therefore, p;/a; = p«/(ax +1).
These last two inequalities imply p; > pi. But p:i/ri = pi/(a; = 1) < p«/ax = p«/ri, and this contradicts
(9). This establishes Le.mma 1. ’

THEOREM 4. Q(r) is the unique apportionment method for unbiased requirements r which is
house-monotone, consistent, and satisfies quota.

Proof: First, it is established that Q (r) satisfies the requisite properties; second, it is shown to be
unique.

(i) ProPERTIES. By definition Q (r) is house-monotone and consistent. Moreover, since no state
receives a seat without being eligible Q (r) satisfies upper quota. Thus it is only necessary to show
that it satisfies lower quota. To simplify notation abbreviate f (p, r, h) by f (h), and similarly for / and
u.

Suppose Q (r) is not lower quota. Then, for some p, r, f € Q (r) and ho= Z7r; there must exist a
state j for which f;(ho) <l (ho). By Lemma 1, j € J, (ho)=J.. Letting ho=ho— Zies, i and
Pi = pi/2s, i, for each i € J,, this means f; (ho) + 1 = |Fiho] = piho. Since 2, f; (ho) = ho this implies
that there exists a state | € J, which has more than its lower quota, that is, a, = f; (he) > pifto. Thus

(12) Pulfi (ho) < 1/ho = pi /(f; (ho) + 1).
Notice also that for all k € J,
(13) ﬁkﬁo = Dk (ho— EiEJ“ri)/(EJ#pi) = tho/(Efpi),

by repeated application of (8). In particular (12), and (13) with k = j, show that state j is eligible at A,
for its (f; (ho) + 1) st seat.

Let h, be the house size at which state [ received its last (@, th) seat. State / may be chosen so that
h, is the largest among all states | € J,, which get more than their lower quota at ho. & cannot equal
ho, because of (12) and the fact that j is eligible for the hoth seat. Therefore h; < ho. Let K # & be the
set of states receiving additional seats at house sizes h, where h, <h = h,. Clearly /& K. Moreover,
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by choice of I, fi (ho) = piho for all k € K. Thus, using (13),
(14) ﬁ( (ho) §ﬁkﬁo §pkh0/2§p: for keK.
But, since fi (b)) < fi (ho) for all k €K,

Pel(fic (h) + 1) Z pilfic (ho) Z 1 ko> pilfy (ho) = pilf, ().

This means that every k € K must have been ineligible at h, K N E () = &, for, otherwise, one of
these states would have been given the hth seat by Q (r). Thus,

(15 fi (h1)=fk (h — l)zpkh,/Eip; for k€K

In the interval h, <h = ho exactly ho— h, seats were awarded to the states in K, so =g {fi (ho) —
fi (W)} = ho— hi. Subtracting (15) from (14) and summing over K

ho—hi = Zk {fi (ho) — fi (M)} = Zk (px (ho— h)[Z5 p1).

But ho— h, >0 implies Zxp« =2ip; =1, a contradiction, since K is a proper subset of all states,
[Z K, and p, > 0. Therefore, Q (r) satisfies lower quota and so satisfies quota. This completes the
first part of the proof.

(ii) UNIQUENESS. Let Q' (r) be any set of solutions satisfying all properties and suppose it is not
contained in Q (r). Then there must exist a solution f € Q'(r) ~ Q (r) for some problem p, r. This
means there is a house & = =} r; and a pair of states i and j, say, with populations p; = p*and p; = p
and apportionments f; (p,r,h) = a*,f;(p,r,h) = a, with both eligible at h +1, i,j € E(h +1), and
p*l(a*+1)>p/(@a+1), but (contrary to Q(r)) fi(pr,h+1)=a+1. Among these choose a
situation for which @ + a* = A is a minimum. In other words, single out an occurrence in which a
solution violates the conditions of Q (r) such that A is minimum.

Either (a) p/a >p*/(a*+1) or (b) pla =p*/(a*+1).and p*>p or (c) pla =p*/(a*+1) and
pP¥*=p. .

Case (a): p/a > p*/(a*+1). Then, just as in the uniqueness proof of Theorem 3, a contradiction
is obtained.

Case (b): pla=p*/(a*+1) and p*> p. Choose ¢ to be any positive integer satisfying

*
tgp*(ti+1)p_l;(a*+l) or tp*@+1)Zp*+tp(a*+1)

and consider a problem with ¢ + 1 states, populations (p*,p,p —8,p —6,--+,p — 8), where 0 <8 <p
and & will be specified presently, and consider the unbiased requirements r’'=
(a*,a,a+1,---,a+1). Let h°be the sum of requirements, h°=a* + ¢ (a + 1) — 1. The exact quota

of state 1 at h°+ 1 is, by choice of ¢,

p*(a*+t(d+1))>p*a*+p*+tﬁ(a*+l)=a*+1
p¥+tp—(t-1)86" p*+tp—-(t—-16 ’

so state 1 is eligible for its (a* + 1) st seat at h°+ 1 for any f € Q' (r'). The exact quota of state 2
satisfies

ph°+1) _ pla*+t(a+1)) <ﬁ(a*+1)+tﬁ(d+1)<p*(d+1)+tﬁ(6+1)
p¥+tp—(t—18 p*+tp—(—-1)8 p¥+tp—(t—-1)8 p¥+tp—(t—-1)8
_ pX+tp ) ~
(Frip—i=ns) @+

Since ¢t is fixed, we may therefore choose & > 0 sufficiently small so that the exact quota of state 2 is
less then @ + 1. Therefore, for any f € Q' (r'), state 2 is eligible for its (@ + 1) st seat at h°+ 1, and the
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generalized lower quota at h°+ 1 for each state j =3 equals its requirement, namely a + 1. Hence
the generalized lower quota for state 1 at h°+ 1 is at least a*+ 1, since we have

p*a*ta+l)_p*a*+D+pa*+1) -
p*+p p*+p

Therefore, every f € Q' (r') must give to state 1 at least a* + 1 seats (in fact, exactly a* + 1 seats)
at h°+ 1. But this contradicts consistency, since consistency implies, by the hypothesis, that some f
gives a + 1 seats to state 2 and hence only a* seats to state 1.

Case (¢): pla =p*/(a*+1)and p* = p. It is conceivable that @ = F is the minimum requirement
of the bar-state. But, then, p/7F = p/a = p*/(a*+ 1) <p*/r* implying p * > p since the requirements
are unbiased. Therefore @ > F and, in particular, @ = 1.

Let & be the smallest house size at which f gives to the bar-state a seats, and b* be the number
of seats accorded the star-state at & by f. Then b*=a*. Suppose, first, that b* <a*. Then
pla <p*/(b*+1) implying, by induction, that the star-state is ineligible for its (b* + 1) st seat at .
The bar-state, however, is eligible for its ath seat at f, so

a*>b*=p*h|Cip) and a-—1<ph/Sip:)

+1.

together implying p /(@ — 1) > p */a*. This inequality is incompatible with the hypothesis of Case (c),
so it must be assumed that b* = a*.

If the star-state is ineligible for its b* + 1= a*+ 1 st seat at /1 the identical contradiction results,
so it must be assumed that it is eligible. This implies that at & the bar-state has priority over the
star-state at p, p*, a —1, a*. By induction this means p/a = p*/(a*+ 1) and, therefore, p/a =
p*l(a*+1).

As in Case (b), choose ¢t to be any positive integer satisfying
p*

L2 R @+ D-p@ +1

v

or tp*@+)z=p*+tp(a*+1)

and consider a problem with t+2 states, populations (e, p*,p,---,p), and requirements
(b,a*,a*,---,a*). Thus, h®°=b +(t + 1)a*. Choose ¢ such that 0<e <p*, and let b be any
integer satisfying ea*/p* < ¢ (@ + 1)/p < b and sufficiently large so that the states with population p
are each eligible for @ +1 seats at any house h = h°. The requirements are unbiased, because
e<p*=pand e/b <p*la*=pla* with p*la*=pla*if p*=p. Let h'=b +a*+t(a+1). For
any house size h, h°=h < h', the exact quota of state 1 is less than b, and so is ineligible. For any
such h, at least one of the p-population states, say i, has less than a +1 seats, say a; <a + 1.
Moreover, i is eligible. If a; = a or a; = a — 1, then, by the above, state i has priority over state 2
receiving its a*+ Ist seat. If a; <a —1 then p*/(a*+1)<p/(a; +1) and so by the induction
hypothesis on A, state i again has priority over state 2 receiving its a*+ Ist seat. Therefore,
considering successive h, h® =h < h', we can find a solution f in Q' which gives the apportionment
(b,a*,a+1,---,a+1) at h'. But this contradicts the generalized lower quota of state 2 at h’,
because, since state 1 is not in the slack set, the exact quota of state 2 is

p*a*+t(a+1))
p*+ip

This completes the proof of uniqueness.

=a*+1.

7. Conclusion. Two basic principles emerge from the discussions surrounding apportionment
from the founding of the Republic to the present day. The first principle is that any apportionment
should satisfy quota. Not only does this square with common sense, but it was clearly what the
architects of the Constitution had in mind when they used the phrase “apportioned ... according to
their respective numbers.” The discussion leading up to the adoption of the above phrase in the
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Constitutional Convention illustrates this. Edmund Randolph, Delegate from Virginia, first proposed
“that the rights of suffrage in the National Legislature ought to be proportioned to the quotas of
contribution, or to the number of free inhabitants,” ([15a], v. 3, p. 41). The terms “‘proportion” and
“quota’” recur repeatedly.

James Madison of Virginia enunciated the general principle that the States “ought to vote in the
same proportion in which their citizens would do, if the people of all the States were collectively
met” ([15a], v. 3, p. 385). Randolph’s proposal contained the essence of the final version which stated
that both direct taxes and Representatives should be apportioned together and by the same
principle. The Convention members saw considerable justice in this. “[Mr. Read] had observed ...a
backwardness in some of the members from the large states, to take their full proportion of
Representatives ... He now suspects it was to avoid their due share of taxation.” ([15a], v. 3, p.
418).The issue of whether every state should necessarily receive a Representative did not come up
until later in the discussion, when Governor Morris -of New Jersey pointed out that apportioning
Representatives proportionally to population might mean that some states would get none: “[It]
would exclude some states altogether who would not have a sufficient number to entitle them to a
single Representative.” ([15a], v. 3, p. 399). The way in which this difficulty was overcome in the
Constitution was to make an exception to the proportionality principle in this one case. It also
illustrates that the notion of quota was uppermost in the minds of those at the Convention. Certainly
no scheme such as Huntington’s in which every state is entitled to a Representative, no matter how
small its population, fits with the language and intent of the Constitution.

Up until 1910, all of the apportionment constructions used, or even seriously proposed, started
from the premise of satisfying quota. Hamilton’s method prevailed from 1850 to 1910, but, as we
have seen, it admits the Alabama paradox.

The Alabama paradox is a phenomenon of the method used, not of a particular solution. Since
the Constitution does not speak of apportionment solutions or methods, but only of apportionments
(for a given k), house monotonicity is not a Constitutional requirement per se. However, the reaction
of the House when the Alabama paradox was first noticed in the 1880’s is sufficient indication that
such a phenomenon is politically unacceptable, as well as repugnant to both fairness and common
sense. In fact, Congress showed real sophistication in considering the mathematical properties of the
methods used.

Thus the second basic apportionment principle is that any acceptable apportionment method
must be house-monotone. The major contribution of Willcox and Huntington was to formulate more
clearly the notion of an apportionment method (in which the house size is determined in advance),
and to propose methods that avoid the Alabama paradox. But in so doing they forfeited the essential,
and even more basic, requirement of being quota, which is rooted in the Constitutional mandate
itself.

Willcox, indeed, apparently thought that his proposal (in reality, Webster’s method) was a quota
method, which had the additional property that it rounded major fractions up and minor fractions
down, (or, if he realized that this was not so, he did not admit it). On the other hand, while
Huntington recognized that Equal Proportions (and the other four methods he considered) did not
satisfy quota, he glided very quickly over this point in his work. Instead of the quota principle which
takes as its standard of fairness the exact portion deserved by each state (i.e., the exact quotas)
Huntington adopted a different principle, namely that of pairwise comparisons between states. The
difficulty with comparing states by pairs, and adjusting their delegations accordingly, is that when we
step back and look at the whole picture we find that the resulting solution may be very far removed
from the overall standard of fairness, namely the exact quotas. The pairwise comparison leads, for
example, to such absurdities as a state deserving exactly an integer number of seats, whereas EP
gives it some other number. Huntington’s own examples illustrate this. Consider the following one,
([13], Example 6) in which all five Huntington methods give state B something different than 44
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Representatives, which is its exact due, and compare this with the quota solution.

Apportionments
State Population Exact Quota SD HM EP w J Q
A 5117 51.1700 51 51 51 51 52 52
B 4400 44.0000 43 43 43 43 45 44
C 162 1.6200 2 2 2 2 1 2
D 161 1.6100 2 2 2 2 1 1
E 160 1.6000 2 2 2 2 1 1
Total 10000 100.0000 100 100 100 100 100 100

TABLE 8.

Actually, one can go further and use Huntington’s own type of reasoning to argue against EP or any
other method that does not satisfy quota. Given normalized populations p; (i.e., Z;p; = 1), a house h,
and apportionment (a,, - - *, a,) for h, we may say that state i has a surplus if a; > p:h and a deficit if
a; <p:h. In general, in any apportionment, some states will have surpluses and others will have
deficits. Consider an EP apportionment which is not quota, say state 1 is above quota, a, > [p:h]. In
particular, state 1 has a surplus. Then some state, say state 2, must have a deficit. Comparing states 1
and 2, a transfer of a Representative from state 1 to state 2, leaves state 1 with a surplus and reduces
the deficit of state 2 (or, possibly gives it a surplus). Clearly, any such transfer should be made. Thus,
if the exact quota is considered to be the true measure of how much each state deserves, then EP
does not necessarily give the best or most stable solution even in the sense of pairwise comparisons.

A second difficulty with Huntington’s approach is that there is no single natural standard by
which the inequality of representation between two states can be measured. As Huntington himself
admits, “There has been some disagreement, however, as to what is the most suitable way of
measuring the inequality between two states™ ([14a], p. 11). This disagreement has still not been
resolved and probably never can be. Huntington, of course, advocated that the relative difference
between the average district sizes was the best measure. But this leads to various absurdities.
Consider for example, two states, state 1 having a million residents and state 2 having only one
resident. Suppose that there is exactly one representative to be distributed between the two states.
Then Huntington’s criterion says that the situation where the one-person state gets the representa-
tive and the other million go unrepresented is just as fair and desirable as the situation where the
million are represented and the one is not, because the rank index p;/V a; (a; + 1) yields + o for both
states when a; = 0. But this conclusion is patently absurd. To cite a second example, the rank index
based on relative differences says that every state should receive one representative before any state
receives two, no matter how different in size the states may be. This conveniently meets the
Constitutional requirement that each state receive at least one representative, but it does not
correspond to any reasonable notion of fair division, which Huntington’s EP method purports to be.
Thus if 50 representatives are to be apportioned among S50 states, whose populations are
(10%,1,1,- -+, 1) then the unique EP solution is (1,1, - -, 1). But this means that 49 people out of a
population of over a hundred million have 98% of the representation, and, if direct taxes were still
assessed, these same 49 would each pay in taxes an amount equal to that paid by one hundred
million! This is inherently unreasonable. Moreover, it does not correspond with the intent of the
Constitution, since the phrase “‘but each state shall have at least one representative’” was evidently
meant as an exception to whatever method of proportional allocation was used.

Marshaling the facts against the method of equal proportions we see: (i) it violates the most
intuitively basic property of all, satisfying quota; (ii) it depends upon an arbitrary, ad hoc measure
of inequality of representation between states; and (iii) it appears to be in disagreement with the
stated intent of the framers of the Constitution.
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Apportionments
State  Population Exact Quota SD HM EP w J Q

A 9061 9.0610 9 9 9 9 10 10

B 7179 7.1790 7 7 7 8 7 7

c 5259 52590 S 5 6 5 5 5

D 3319 33190 3 4 3 3 3 3

E 1182 1.1820 2 1 1 1 1 1

Total 26000 260000 26 26 26 26 26 26
TABLE 9.

State Population  Exact Qquta ~SD ~ HM  EP W J Q
1 60272 61.477 49 64 68 70 70 62
2 1226 1.251 1 1 1 1 1 1
12 1236 1,261 1 1 1 1 1 1
13 1237 1.262 2 1 1 1 1 1

25 , 1249 1.274 2 1 1 1 1 1
26 1250 1.275 2 1 1 1 1 2
27 1251 1.276 2 1 1 1 1 2
28 1252 1277 2 2 1 1 1 2
31 1255 1.280 2 2 1 1 1 2
32 1256 1.281 2 2 2 1 1 2
33 1257 1.282 2 2 2 1 1 2

100000 102.000 102 102 102 102 102 102

State Population Exact Quota . SD HM EP w J Q
1 68010 66.650 58 58 60 64 78 67
2 1590 1.558 2 2 i 1 1 1
3 1591 1.559 2 2 i 1 1 1
4 1592 1.560 2 2 2 1 1 1
7 1595 1.563 2 2 2 1 1 1
8 1592 1.564 2 2 2 2 1 1
9 1597 1.565 2 2 2 2 1 1
10 1598 1.566 2 2 2 2 1 2
11 1599 1.567 2 2 2 2 1 2
21 1609 1.577 2 2 2 2 1 2

100000 98.000 98 98 98 98 98 98

TABLE 10.
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In contrast, the virtue of the quota method is that it unites the two basic apportionment principles
— house-monotonicity and quota — into a single method. It replaces Huntington’s artificial
“measures of inequality” with a more fundamental criterion of fairness, the exact quota, and does
this without introducing the Alabama paradox. Moreover, subject to the mathematical property of
consistency, which is common to all Huntington methods, it is the only apportionment method with
these two properties.

8. Appendix. On pages 724-728 are given apportionments (for particular house sizes) for all
examples cited in this paper and others found by the “five modern workable” (Huntington) methods
and by the quota method with r, = 1 for all i. Included are: the example first considered (Table 9), the
two examples showing how far from quota EP solutions may be (Table 10); and the unique
apportionments for populations of the 1960 census (Table 11), the 1970 census* (Table 12), and the
projected censuses of 1984A (Table 13), and 1984B (Table 14).

This work was supported by the Army Research Office under Contract No. DA—31—124—ARO(D)—366.
The authors gratefully acknowledge the careful and constructive suggestions of the referee, as well as the
expositional advice of Alex Rosenberg and William Lucas.
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POLYNOMIAL CALCULUS WITH D-LIKE OPERATORS
J. W.BURGMEIER AND R. E. PRATHER

1. Introduction. The newcomer to numerical analysis is usually impressed on finding an
unexpected formal analogy [1] between the Taylor and Newton series expansions:

foo~ 3, D St a)

)(k)

f~3, (A“f)(a)(x

We say unexpected because the difference operator

(Af)x) = f(x + 1) = f(x)
and its associated factorial polynomials
x? x(x-=1---(x—j+1)
it j!
seem somewhat removed from their counterparts in the differential calculus.‘l"rue, the formal
identity

2 k
A=e®-1=D+2h P
and the Stirling numbers s (i,j) defined by x® =Z!_os(i,j)x' do help to provide a connection. And
yet, the question surely arises as to whether these two “expansion systems” are merely isolated
curiosities, or instead, singular but typical examples from a family of such systems. Naturally, we
wish to infer that it is the latter.

In order to establish an appropriate setting for the investigation, we first seek to extract the
common features of the linear operators D and A (and their associated polynomials x’/j!, x P/,
resp.) on the space P~ of all polynomials. In both cases, the associated polynomials form a simple
basis (there being just one polynomial for each degree) and the operators are linear and strictly
unit-degree-decreasing (abbreviated u.d.d. with linearity understood) over P*. And so, we begin with
a brief analysis of these u.d.d. or “derivative-like” operators and their expansion capability relative
to various simple bases. We are then led to impose a succession of familiar differential properties,
leading ultimately to a chgracterization of the derivative among all u.d.d. operators.



