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§0. Introduction. In [15], Barwise described his graduate study at Stanford.
He told of his interactions with Kreisel and Scott, and said how he chose Feferman
as his advisor. He began working on admissible fragments of infinitary logic after
reading and giving seminar talks on two Ph.D. theses which had recently been
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completed: that of Lopez-Escobar, at Berkeley, on infinitary logic [45] (see also
the papers [46], [47]), and that of Platek [57], at Stanford, on admissible sets.

Barwise’s work on infinitary logic and admissible sets is described in his thesis
[3], the book [12], and papers [4]—[15]. We do not try to give a systematic review
of these papers. Instead, our goal is to give a coherent introduction to infinitary
logic and admissible sets. We describe results of Barwise, of course, because he
did so much. In addition, we mention some more recent work, to indicate the
current importance of Barwise’s ideas. Many of the central results are stated
without proof, but occasionally we sketch a proof, to indicate how the ideas fit
together.

Chapters 1 and 2 describe infinitary logic and admissible sets at the time Bar-
wise began his work, circa 1965. From Chapter 3 on, we survey the developments
that took place after Barwise appeared on the scene.

§1. Background on infinitary logic. In this chapter, we describe the sit-
uation in infinitary logic at the time that Barwise began his work. We need
some terminology. By a vocabulary, we mean a set L of constant symbols, and
relation and operation symbols with finitely many argument places. As usual,
by an L-structure M, we mean a universe set M with an interpretation for
each symbol of L. In cases where the vocabulary L is clear, we may just say
structure.

For a given vocabulary L and infinite cardinals µ ≤ κ, Lκµ is the infinitary
logic with κ variables, conjunctions and disjunctions over sets of formulas of size
less than κ, and existential and universal quantifiers over sets of variables of
size less than µ. All logics that we consider also have equality, and are closed
under negation. The equality symbol is always available, but is not counted as
an element of the vocabulary L.

As usual, ω is the first infinite ordinal, and ω1 is the first uncountable ordinal.
Thus, Lωω is the ordinary elementary first order logic, with finite conjunctions,
disjunctions, and quantifiers. Formulas in Lωω are called finitary, or elementary.
A set of finitary sentences, closed under logical consequence, is called an ele-
mentary first order theory. Another important case is the logic Lω1ω, which
has ω1 variables, countable disjunctions and conjunctions, and finite quantifiers.
The union of Lκω over all cardinals κ is the logic L∞ω, which has a variable vα

for each ordinal α, conjunctions and disjunctions over arbitrary sets of formulas,
and quantifiers over finite sets of variables. In this article, we will be concerned
with L∞ω and its sublanguages. We only allow formulas with finitely many free
variables.

1.1. Expressive power of Lω1ω. Some mathematically interesting classes
of structures, such as algebraically closed fields of a given characteristic, are
characterized by a set of axioms in Lωω. Other classes cannot be characterized
in this way, but can be axiomatized by a single sentence of Lω1ω.

Example 1: The Abelian torsion groups are the models of a sentence obtained
by taking the conjunction of the usual axioms for Abelian groups (a finite set)
and the following further conjunct:



BARWISE: INFINITARY LOGIC AND ADMISSIBLE SETS 3

(∀x)
∨

n

x + . . . + x
︸ ︷︷ ︸

n

= 0 .

In [17], Barwise and Eklof made a serious study of these groups, using infinitary
sentences to express natural mathematical invariants.

Example 2: The Archimedean ordered fields are the models of a sentence ob-
tained by taking the conjunction of the usual axioms for ordered fields and the
following further conjunct:

(∀x)
∨

n

1 + . . . + 1
︸ ︷︷ ︸

n

> x .

Example 3: Let L be a countable vocabulary. Let T be an elementary first order
theory, and let Γ(x) be a set of finitary formulas in a fixed tuple of variables
x. The models of T that omit Γ are the models of the single Lω1ω sentence
obtained by taking the conjunction of the sentences of T and the following further
conjunct:

(∀x)
∨

γ∈Γ

¬γ(x) .

There are many natural examples of mathematical properties expressible in
Lω1ω. Let α be a countable ordinal. In the vocabulary L = {≤} of orderings,
there is an Lω1ω sentence whose models are just the orderings of type α, and
there is an Lω1ω formula saying, in a linear ordering, that the interval to the
left of x has type α. In a vocabulary appropriate for Boolean algebras, there
is an Lω1ω sentence whose models are just the Boolean algebras of type I(ωα),
and there is an Lω1ω formula saying, in a Boolean algebra, that x is an α-atom.
In a vocabulary appropriate for groups, there is an Lω1ω formula saying, in an
Abelian p-group, that x has height α.

There are limits to the expressive power of Lω1ω. Morley [50], and Lopez-
Escobar [47] showed that the class of well orderings is not definable in Lω1ω.

Theorem 1.1.1 (Morley, Lopez-Escobar). If σ is an Lω1ω sentence true in all
countable well orderings, then σ has a model with a subset of order type η—the
order type of the rationals.

1.2. The back-and-forth construction. One of the earliest and most pow-
erful tools in infinitary logic is the back-and-forth construction. This was first
used by Cantor to prove that every countable dense linear ordering without
endpoints is isomorphic to the rationals. Back-and-forth constructions were de-
veloped as a general method in finitary logic by Ehrenfeucht and Fräıssé, and in
infinitary logic by Karp. Barwise’s paper [9] gives a beautiful exposition of their
role in infinitary logic.

Let M, N be structures with universes M,N , respectively. A partial iso-
morphism from M to N is a pair of tuples (a, b), of the same finite length,
such that a is from M , b is from N , and a and b satisfy the same quantifier-free
formulas. We will sometimes add new constant symbols to the vocabulary, and
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we note that (a, b) is a partial isomorphism from M to N if and only if the empty
pair (∅, ∅) is a partial isomorphism from (M, a) to (N , b). A back-and-forth
family for M,N is a set F of partial isomorphisms from M to N such that:

• F 6= ∅,
• for each (a, b) ∈ F and c ∈ M , there exists d ∈ N such that (ac, bd) ∈ F ,
• for each (a, b) ∈ F and d ∈ N , there exists c ∈ M such that (ac, bd) ∈ F .

We say that two structures M and N , of arbitrary cardinality, are poten-
tially isomorphic if there is a back-and-forth family for M,N . It is obvious
that isomorphic structures are potentially isomorphic. In the other direction,
potentially isomorphic structures are very similar to each other, but are not nec-
essarily isomorphic. For example, any two infinite structures with the empty
vocabulary are potentially isomorphic. While two potentially isomorphic struc-
tures may not be isomorphic, Barwise [9] and Nadel [54] showed that they would
become isomorphic if the set-theoretic world were extended in such a way as
to collapse the cardinalities of both structures to ℵ0. There is one special case
where potential isomorphism does imply isomorphism. Using Cantor’s original
argument, one can show that any two countable structures which are potentially
isomorphic are isomorphic.

The link between back-and-forth constructions and infinitary logic is given by
the following basic theorem of Karp [37].

Theorem 1.2.1 (Karp’s Theorem). Two structures are potentially isomorphic
if and only if they satisfy the same sentences of L∞ω.

Proof. For the implication from left to right, we first note that if F is a
back-and-forth family witnessing the potential isomorphism of M and N and
(a, b) ∈ F , then (M, a) and (N , b) are potentially isomorphic. Now, it is not
difficult to show, by induction on complexity of formulas, that for all (a, b) ∈ F ,
M |= ϕ(a) iff N |= ϕ(b). For the implication from right to left, we define a back-
and-forth family F consisting of the pairs (a, b) such that the L∞ω formulas
satisfied by a in M are the same as those satisfied by b in N . Let (a, b) ∈ F ,
and let c ∈ M. We need d such that (ac, bd) ∈ F . For each d ∈ N such that
(ac, bd) /∈ F , choose a formula ϕd(u, x) satisfied by ac in M but not by bd in
N . Let ψ(u, x) be the conjunction of the formulas ϕd(u, x). Since ∃xψ(u, x) is
true of a in M, it is true of b in N . Taking d such that N |= ψ(b, d), we get
(ac, bd) ∈ F . a

For countable structures, Karp’s theorem has a simpler form.

Corollary 1.2.2. Two countable structures for a countable vocabulary L are
isomorphic if and only if they satisfy the same sentences of Lω1ω.

1.3. The Scott isomorphism theorem. The following result of Scott [62]
gives further evidence of the expressive power of Lω1ω for countable structures.

Theorem 1.3.1 (Scott Isomorphism Theorem). Suppose the vocabulary L is
countable. Then for any countable L-structure M, there is an Lω1ω sentence θ
such that the countable models of θ are just the isomorphic copies of M.
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A sentence θ with the property in Theorem 1.3.1 is called a Scott sentence
for M. We will first give a quick proof of Scott’s Theorem, and then give a
longer proof which provides additional information. We need some definitions.
Consider a countable structure M. For any tuple a in M , the orbit of a is
the set of tuples b such that some automorphism of M maps a to b. A partial
isomorphism from M to M is called a partial automorphism of M. Note
that if a and b are in the same orbit then (a, b) is a partial automorphism of M.

A Scott family for M is a set Φ of L∞ω formulas such that for each tuple a
in M ,

• There is some ϕ ∈ Φ such that M |= ϕ(a), and
• If ϕ ∈ Φ and M |= ϕ(a), then ϕ defines the orbit of a in M—so, if ϕ ∈ Φ

and M |= ϕ(a) & ϕ(b), then a and b are in the same orbit.

In some settings, it is useful to allow a finite tuple of parameters in the formulas
of a Scott family, in hopes of one that consists of formulas of a special form—e.g.,
finitary existential. In the definition above, we do not allow parameters, and we
put no restrictions on the complexity of the L∞ω formulas in the Scott family.
In the case where the vocabulary and the structure are both countable, we can
do better.

Lemma 1.3.2 (Scott). Let L be a countable vocabulary. Then each countable
structure M has a countable Scott family of formulas in Lω1ω.

Proof of Lemma 1.3.2. Let a be a tuple in M . For each tuple b in M , of
the same length as a, if there is a formula of Lω1ω true of a and not true of b,
we choose one, and we let ϕa(x) be the conjunction of the chosen formulas. Let
Φ be the set of these formulas— Φ = {ϕa(x) : a in M}. Since M is countable,
Φ is a countable set of formulas of Lω1ω. Clearly, each tuple a in M satisfies the
formula ϕa ∈ Φ. Moreover, if ϕ ∈ Φ, then ϕ = ϕa for some tuple a in M , and ϕ
defines the set of all tuples which satisfy the same Lω1ω formulas as a in M . By
the corollary to Karp’s Theorem, this set is the orbit of a in M . It follows that
Φ is a Scott family for M. a

Proof of Theorem 1.3.1. ¿From the Scott family Φ in Lemma 1.3.2, with
ϕa defining the orbit of a, we obtain a Scott sentence θ as follows. Let

θ∅ = (∀y)
∨

b

ϕb(y) &
∧

b

(∃y) ϕb(y)

(where the conjunctions and disjunctions are over all b ∈ M). More generally,
for each tuple a in M , let

θa = (∀x)

[

ϕa(x) →

(

(∀y)
∨

b

ϕab(x, y) &
∧

b

(∃y) ϕab(x, y)

)]

.

Then the desired Scott sentence is

θ =
∧

a

θa .

a
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The longer proof of Scott’s Theorem takes into account refinements due to
Chang [25] and Nadel [54], and gives additional information. The formulas in the
Scott family will be chosen in a canonical way, and are defined for uncountable
as well as countable vocabularies and structures. The proof gives an ordinal, the
Scott height of M, which provides a measure of model-theoretic complexity.
To give an idea how the argument goes, we will break it into a series of definitions
and easy lemmas whose proofs are left as exercises.

We first define the quantifier rank qr(ϕ) of a formula ϕ of L∞ω. There is no
prenex normal form for L∞ω (in general, we cannot bring all of the quantifiers
to the front), but the quantifier rank is a useful substitute. The definition is by
induction on the complexity of formulas.

• If ϕ is atomic, then qr(ϕ) = 0,
• qr(¬ϕ) = qr(ϕ),
• qr(

∧

Φ) = qr(
∨

Φ) = supϕ∈Φ qr(ϕ),
• qr((∃v)ϕ) = qr((∀v)ϕ) = qr(ϕ) + 1.

We write M≡α N if M and N satisfy the same sentences of quantifier rank
at most α. It is clear that every finitary formula has finite quantifier rank, and
that every formula of Lω1ω has countable quantifier rank.

Now, for each structure M, tuple a in M , and ordinal α, we define the formula
σα
M,a(v) as follows, where the tuple of variables v has the same length as a.

• For α = 0, σ0
M,a(v) is the conjunction of all atomic and negated atomic

formulas satisfied by a in M.
• For α = β + 1, σα

M,a(v) is the conjunction

σβ
M,a(v)& (∀u)

∨

c∈M

σβ
M,ac(v, u) &

∧

c∈M

(∃u)σβ
M,ac(v, u).

• For a limit ordinal α, σα
M,a(v) is the conjunction

∧

β<α σβ
M,a(v).

It is not difficult to see that σα
M,a(v) is a formula of L∞ω of quantifier rank α.

Note that a satisfies σα
M,a(v). Moreover, if α ≤ γ, then σγ

M,a(v) logically implies
σα
M,a(v).

Lemma 1.3.3. For any structures M and N , any tuples a in M and b in N ,
of the same length, and any ordinal α, the following are equivalent.

(a) (M, a) ≡α (N , b).
(b) N |= σα

M,a(b).
(c) σα

M,a(v) = σα
N ,b

(v).

Lemma 1.3.4.

1. For each M there is a least ordinal α, called the Scott height of M, such
that for all partial automorphisms (a, b) of M, (M, a) ≡α (M, b) implies
(M, a) ≡α+1 (M, b).

2. If α is the Scott height of M and (M, a) ≡α (M, b), then (M, a) is poten-
tially isomorphic to (M, b).

It is easily seen that each countable structure M has countable Scott height.
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Let α be the Scott height of M. We define the canonical Scott sentence of
M to be the sentence

σM = σα
M,∅ &

∧

a

(∀v) [σα
M,a(v) → σα+1

M,a(v)] ,

where the infinite conjunction is over all tuples a in M . Note that if M has
Scott height α, then the canonical Scott sentence σM has quantifier rank α + ω.

Theorem 1.3.5. N is a model of the canonical Scott sentence of M if and
only if N is potentially isomorphic to M.

Corollary 1.3.6. If L is a countable vocabulary, and M is a countable
L-structure, then the canonical Scott sentence of M is a Scott sentence for M
in the sense of the Scott Isomorphism Theorem.

Makkai [49] gave the following definition. A structure M is absolutely char-
acterizable if M is at most countable and the canonical Scott sentence has no
uncountable models (so the class of models of the canonical Scott sentence is
just the class of all isomorphic copies of M).

Examples: The countable structure for the pure identity vocabulary, and the
ordered set of rational numbers, both have Scott height 0 and are not absolutely
characterizable.

We have mentioned that the Scott height gives a measure of complexity of a
structure. A further distinction can be made by asking whether or not the Scott
height is “attained”, in the following sense. The local height of a tuple a in M
is the least ordinal α such that for all tuples b in M , (M, a) ≡α (M, b) implies
that (M, a) and (M, b) are potentially isomorphic. Then the Scott height of M
equals the supremum of the local heights of the tuples a in M . We will say that
the Scott height is attained in M if there is a tuple a in M whose local height
is equal to the Scott height of M.

Example: For each countable ordinal α > 0, the structure (α,<) is absolutely
characterizable. If α is a limit ordinal, then (α, <) has Scott height α, and the
Scott height is not attained. If α is a successor ordinal β + 1, then (α, <) has
Scott height β, and the Scott height is attained.

1.4. ω-logic. Before proceeding with the Completeness Theorem and other
results for the logic Lω1ω, we mention a somewhat simpler related logic. By an
ω-vocabulary we mean a countable vocabulary L with a special constant symbol
n for each n ∈ ω. A structure M (for such a vocabulary) is called an ω-model
if each element a is the interpretation of the constant n for some n ∈ ω. For
a proof system for deriving sentences true in all ω-models, we add to the usual
finitary rules the following infinitary rule of proof, called the ω-rule:

{ϕ(n) : n ∈ ω} ` (∀x) ϕ(x) .

The Henkin construction [33] is a useful method for constructing countable
models for a countable set of Lωω sentences. Henkin [34], [35] and Orey [56]
used essentially the same construction to produce ω-models, in the following
result.
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Theorem 1.4.1 (ω-Completeness). Let L be an ω-vocabulary.
1. An L-sentence is true in all ω-models if and only if it is provable using the

ω-rule.
2. A set T of L-sentences has an ω-model if and only if there is no proof of a

contradiction from T , using the ω-rule.

We may think of ω-logic as logic omitting the type

Γ(x) = {x 6= n : n ∈ ω} .

The ω-Completeness Theorem may be modified so that it applies to other types,
or countable families of types. Given an Lω1ω-sentence ϕ, we can produce
a countable elementary first order theory T and a countable family of types
(Γi(xi))i∈ω, involving different tuples of free variables, such that ϕ has a model
if and only if T has a model omitting all of the types Γi(xi).

Kreisel [39] proved a Compactness Theorem for ω-logic. The usual statement
fails, of course. Kreisel’s Compactness Theorem, which we shall state later,
involves changing the notion of “finite”.

1.5. Familiar theorems. C. Karp [36] gave rules of proof for Lω1ω, including
the following variant of the ω-rule, for infinite conjunctions.

{ϕi : i ∈ ω} `
∧

i

ϕi .

Karp proved the following Completeness Theorem. As usual, we write |= for
logical consequence and ` for provability from the infinitary rules.

Theorem 1.5.1 (Completeness). For an Lω1ω sentence ϕ, |= ϕ if and only if
` ϕ.

Makkai [48] gave a useful criterion for model existence. Let L be a countable
vocabulary, and let C be a countably infinite set of new constant symbols. A
consistency property is a non-empty family S of finite or countable sets of
sentences of (L∪C)ω1ω such that for each Φ ∈ S, Φ has no explicitly contradictory
pair ψ, ¬ψ, and
• if (∀x) ψ(x) ∈ Φ, then for all c ∈ C, Φ ∪ {ψ(c)} ∈ S,
• if

∧

i ψi ∈ Φ, then for all i, Φ ∪ {ψi} ∈ S,
• if (∃x) ψ(x) ∈ Φ, then for some c ∈ C, Φ ∪ {ψ(c)} ∈ S,
• if

∨

i ψi ∈ Φ, then for some i, Φ ∪ {ψi} ∈ S,
• if ¬ψ ∈ Φ, and ψ¬ is the sentence obtained from ¬ψ by bringing the

negations inside, then Φ ∪ {ψ¬} ∈ S.

Theorem 1.5.2 (Model Existence).
1. Let ϕ be an Lω1ω sentence. Then ϕ has a model if and only if there is a

consistency property S with an element Φ containing ϕ.
2. Let T be a countable set of Lω1ω sentences. Then T has a model if and only

if there is a consistency property S such that for all ϕ ∈ T and all Φ ∈ S,
Φ ∪ {ϕ} ∈ S.

Lopez-Escobar [45], [46] proved the following Interpolation Theorem.
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Theorem 1.5.3 (Interpolation). Let L1 and L2 be vocabularies with
L = L1 ∩ L2. Let ϕ ∈ L1

ω1ω and ψ ∈ L2
ω1ω be sentences such that |= ϕ → ψ.

Then there is a sentence θ ∈ Lω1ω such that |= ϕ → θ and |= θ → ψ.

Here is a version of the Downward Löwenheim-Skolem-Tarski Theorem.

Theorem 1.5.4 (Downward Löwenheim-Skolem-Tarski Theorem). Suppose
ℵ0 ≤ µ ≤ κ. If a sentence ϕ of Lω1ω has a model M of cardinality κ, then it
has a model N of cardinality µ.

The proof of Theorem 1.5.4 resembles that of the corresponding result for
Lωω in that we take N to be a substructure of M. However, we do not try to
preserve satisfaction for all Lω1ω formulas—there are too many. It is enough to
preserve satisfaction just for the subformulas of ϕ. The possible strengthening of
Theorem 1.5.4, saying that M has a substructure N , of the smaller cardinality,
preserving satisfaction of all Lω1ω formulas, is false.

Corollary 1.5.5.
(a) If two sentences of Lω1ω have the same finite and countable models, then

they are logically equivalent.
(b) Let L be a countable vocabulary and M be a countable structure. Then

any two Scott sentences of M are logically equivalent.

Example: Let M be an ordering of type ω1, and let N be a countable sub-
structure of M. Now, N has order type α, for some countable ordinal α. As we
mentioned before, N is absolutely characterizable, so its Scott sentence is true
in N but false in M.

1.6. Failure of compactness. There are obvious differences between Lωω
and Lω1ω. The usual Compactness Theorem fails. The Upward Löwenheim-
Skolem-Tarski Theorem also fails. We have already seen examples of sentences
in Lω1ω that have infinite models, but no uncountable models. There are also
sentences in Lω1ω that have uncountable models, but only up to a certain size.

Example: Let ψ be the sentence whose models are just the Archimedean or-
dered fields (described in §1.1). Then ψ has models of cardinality κ just for
ℵ0 ≤ κ ≤ 2ℵ0 .

There is a whole family of examples of this kind—sentences which, for some
cardinal µ, have models of cardinality κ just for ℵ0 ≤ κ ≤ µ. The Hanf number
for a language L is the least cardinal κ such that for each sentence ϕ ∈ L, if
for each cardinal µ < κ, ϕ has a model of cardinality ≥ µ, then ϕ has models
of arbitrarily large cardinality. Hanf [29] observed that even abstract languages
have Hanf numbers, so long as the collection of sentences is a set rather than a
proper class.

Theorem 1.6.1 (Hanf). For a language with a set S of sentences, there is a
cardinal κ such that for all ϕ ∈ S, if ϕ has a model of cardinality ≥ κ, then it
has models of arbitrarily large cardinality.

Proof. The proof is simple. For each ϕ ∈ S such that ϕ does not have models
of arbitrarily large cardinality, let µϕ be an upper bound on the cardinalities of
models, and let κ be the least cardinal greater than any µϕ. a
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The Upward Löwenheim-Skolem-Tarski Theorem shows that the Hanf number
for Lωω is ℵ0. Morley [50] determined the Hanf number for Lω1ω. The statement
involves the cardinals iα, which are defined as follows:

(i) i0 = ℵ0,
(ii) iα+1 = 2iα ,
(iii) for limit α, iα = supβ<α iβ .

Theorem 1.6.2 (Morley). The Hanf number for Lω1ω is iω1 .

Morley [51] also determined the Hanf number for ω-logic. The terminology
needed for this result will be also be used later. An ordinal α is computable
if there is a computable ordering of type α, on on ω, or a finite subset. It is
not difficult to see that the computable ordinals form an initial segment of the
ordinals. The first non-computable ordinal, which is still countable, is called
Church-Kleene ω1, or ωCK

1 .

Theorem 1.6.3 (Morley). The Hanf number for ω-logic is iωCK
1

.

§2. Background on admissible sets. In this chapter, we will describe the
situation in the theory of admissible sets at the time that Barwise began his
research. An admissible set is a transitive set A such that (A,∈) is a model
of the set theory KP of Kripke [41] and Platek [57]. Here we abuse notation,
writing (A,∈) for the structure (A, R) where R = {(a, b) ∈ A2 : a ∈ b}.

The original purpose of admissible sets was to generalize classical computabil-
ity theory (once called “recursion” theory) from the natural numbers to the
ordinals, building on earlier work of Kleene [38], Takeuti [63], Tugue [64], and
Kreisel-Sacks [40]. The axioms of KP are considered to be the minimum nec-
essary for a good notion of computation. For each ordinal α, there is a corre-
sponding family of constructible sets L(α). An ordinal α such that (L(α),∈) is
a model of KP is called an admissible ordinal.

2.1. ∆0 formulas and Σ-formulas in set theory. The theory KP is an
elementary first order theory in the vocabulary {∈}. It is a weakening of Zermelo-
Fraenkel set theory where the power set axiom is removed, and the separation
and collection axiom schemes are restricted to “∆0” formulas. The ∆0 formulas,
introduced by Levy in [43], are the members of the smallest class of formulas
that contains the atomic formulas in the vocabulary {∈} and is closed under
finite conjunction and disjunction, bounded quantifiers (∃x ∈ u) and (∀x ∈ u),
and negation. In particular, the negation of a ∆0 formula is a ∆0 formula. The
Σ-formulas are the members of the smallest class of formulas which contains
the ∆0 formulas and is closed under finite conjunction and disjunction, bounded
quantifiers (∃x ∈ u) and (∀x ∈ u), and existential quantifiers (∃x). Thus, every
∆0 formula is a Σ formula, and every Σ formula is finitary.

The ∆0 and Σ formulas are of interest because of the following persistence
and absoluteness properties. Given a structure (A,E) with one binary relation
E, for each a ∈ A we let aE = {b ∈ A : bEa}. Intuitively, a person living in
(A,E) would consider aE to be the set of elements of a. An end extension of
(A, E) is an extension (B,F ) of (A,E) such that for all a ∈ A, aF = aE (that is,
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a gets no new elements). Note that if A and B are transitive sets, and A ⊆ B,
then (B,∈) is an end extension of (A,∈).

Now, consider an elementary first order theory T in the vocabulary of set
theory. For example, T can be the theory KP . A formula ϕ(u) is said to be
persistent with respect to T if whenever (A, E), (B, F ) |= T and (B, F ) is an
end extension of (A,E), (A,E) |= ϕ(c) implies (B,F ) |= ϕ(c), for all c in A. A
formula ϕ(u) is said to be absolute with respect to T if both ϕ and its negation
are persistent with respect to T .

Proposition 2.1.1. For every elementary first order theory T , every Σ for-
mula is persistent with respect to T .

Proposition 2.1.1 is proved by an easy induction on the complexity of formulas.
Feferman and Kreisel [27] proved a deeper converse result, saying that every
formula which is persistent with respect to T is T -equivalent to a Σ formula.
A formula ϕ is said to be ∆ over T if both ϕ and ¬ϕ are T -equivalent to Σ
formulas.

Corollary 2.1.2.
(a) Every formula that is ∆ over a theory T is absolute with respect to T .
(b) Every ∆0 formula is absolute with respect to every theory T .

Remark: Suppose that A,B are transitive sets, A ⊆ B, (A,∈), (B,∈) are models
of a theory T , and ϕ(u) is a finitary formula with parameters in A which is
absolute with respect to T . If C is the set defined by ϕ(u) in (B,∈), then C ∩A
is the set defined by ϕ(u) in (A,∈). Moreover, for each a ∈ A, the formula
u ∈ a& ϕ(u) defines the same set in (B,∈) as in (A,∈).

2.2. Axioms of KP . Kripke-Platek set theory, or KP , has the usual axioms
of extent, foundation, pairing, and union (as in ZF ), together with the following
separation and collection axiom schemes.
• ∆0-separation: Let ϕ(x, y) be a ∆0 formula with no free occurrence of v.

Then we have the axiom

(∀y) (∀v) (∃u) (∀x) (x ∈ u ↔ [x ∈ v & ϕ(x, y)]) .

• ∆0-collection: Let ϕ(x, y, z) be a ∆0 formula with no free occurrence of
v. Then we have the axiom

(∀z) (∀u) [(∀x ∈ u) (∃y)ϕ(x, y, z) → (∃v) (∀x ∈ u) (∃y ∈ v) ϕ(x, y, z)] .

Now that we have stated the axioms of KP , we can give a rigorous definition
of admissible set. An admissible set is a transitive set A such that (A,∈) is a
model of KP .

Remark: In the axioms of KP , we included collection for ∆0 formulas. Collec-
tion for Σ formulas follows, and is an important basic theorem of KP . Another
important basic theorem of KP is the Σ-reflection principle, which says that (in
KP ) every Σ formula ϕ is equivalent to (∃u)ϕ(u).

For an admissible set A, the least ordinal which is not an element of A is called
the ordinal of A, and is denoted by o(A). The ordinal o(A) plays a major role
in the subject. Note that o(A) is always a limit ordinal, and is equal to the set of
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all ordinals which are elements of A. Moreover, o(A) is a subset of A, definable
in (A,∈) by a ∆0 formula.

The smallest example of an admissible set is the set of hereditarily finite
sets HF = H(ω)—a set is hereditarily finite if its transitive closure is finite. The
set HF corresponds to classical computability theory, and it is the only admissible
set A such that o(A) = ω. A set X ⊆ HF is said to be computably enumerable
(or c.e.) if it is definable in (HF,∈) by a Σ formula with parameters in HF. A
set X is said to be computable if both X and its complement HF \X are c.e.
For X ⊆ ω, these definitions agree with the usual ones.

To highlight the analogy with classical computability theory, for an arbitrary
admissible set A, the elements of A are called A-finite sets. A subset of A
which is definable in (A,∈) by a Σ formula, with parameters in A, is called
A-computably enumerable, or A-c.e. A set X ⊆ A is called A-computable
if both X and A \X are A-c.e. For example, for any admissible set A, the set
o(A) is A-computable but not A-finite.

Proposition 2.2.1 (∆-separation). If A is an admissible set, S is A-finite,
and X ⊆ S is A-computable, then X is A-finite.

Proof. Using Σ-reflection and ∆0-collection, one can show that X is definable
by a ∆0 formula in (A,∈). Then by ∆0-separation, X ∈ A. a
Remark: If A is admissible and X is an A-c.e. subset of an A-finite set, X need
not be A-finite, or even A-computable.

Theories which are stronger than KP but weaker than ZFC are often used in
the literature. For example, the power set axiom can be added, or the Separation
or Collection schemes can be used with a wider class of formulas.

2.3. Examples of admissible sets. We have already mentioned the small-
est admissible set, the set HF of hereditarily finite sets. A really large example
of an admissible set, due to Kripke and Platek, is the set H(κ), consisting of all
sets whose transitive closure has power < κ, where κ is an uncountable cardinal.
The ordinal is o(H(κ)) = κ. An important special case is the set HC = H(ω1)
of hereditarily countable sets. Thus, o(HC) = ω1. Another example of an
admissible set is the uncountable set L(ω1). This admissible set satisfies full
separation and collection. As for HC, the ordinal is o(L(ω1)) = ω1.

Using the Downward Löwenheim-Skolem-Tarski Theorem, together with the
Mostowski Collapsing Lemma, we obtain from L(ω1) a whole family of countable
admissible sets, of the form L(α), for arbitrarily large countable ordinals α. Thus,
ω1 is an admissible ordinal, and there are arbitrarily large countable admissible
ordinals. For each admissible ordinal α, we have o(L(α)) = α.

There is a least admissible set with ω as an element, namely L(ωCK
1 ) (so ω

and ωCK
1 are the first two admissible ordinals). More generally, it is shown in

[18] that for each X ⊆ ω, there is a least admissible set A with X ∈ A; it is the
set A = L(X, ωX

1 ), the family of sets constructible over X by level ωX
1 , where

ωX
1 is the first ordinal not computable in X.
2.4. The admissible set L(ωCK

1 ). In this section we will look at the subsets
of ω that are L(ωCK

1 )-finite, and the subsets of ω that are L(ωCK
1 )-computably

enumerable. These sets are the first levels of the analytical hierarchy.
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Facts 2.4.1. (a) The subsets of ω which are L(ωCK
1 )-computably enumerable

are just the Π1
1 sets.

(b) The subsets of ω which are L(ωCK
1 )-finite are just the ∆1

1 sets.

Let us pause to give a quick review of the Π1
1 and ∆1

1 sets. The “analytical” re-
lations, on numbers n ∈ ω and functions f ∈ ωω, are built up from “computable”
relations by adding function quantifiers and number quantifiers. For an excel-
lent introduction, see [58]. Roughly speaking, a relation R(x, f), on numbers
and functions, is computable if we can determine whether it holds, for a given
x ∈ ω and f ∈ ωω, by applying some effective procedure to x and restrictions
f |t, for sufficiently large t. We may identify the restrictions f |t with their Gödel
numbers. Formally, we say that R(x, f) is computable if it has a pair of defi-
nitions of the forms (∀t) R1(f |t, x), and (∃t) R2(f |t, x), where R1(u, x), R2(u, x)
are computable relations, of the usual kind, on pairs of numbers.

Now, let S ⊆ ω. We say that S is Π1
1 if it has a definition of the form

(∀f)R(f, x), where R(f, x) is a computable relation on functions f and numbers
x. Similarly, S is Σ1

1 if it has a definition of the form (∃f) R(f, x), where R(f, x)
is a computable. Thus, S is Σ1

1 just in case its complement is Π1
1. A set S is ∆1

1
if it is both Π1

1 and Σ1
1. Unravelling the definition of a Π1

1 set, as Kleene did, we
see that a set S is Π1

1 if it has a definition of the form (∀f) (∃t)R(f |t, x), where
R(u, x) is a computable relation on pairs of numbers. From R(u, x), we get a
uniformly computable family (Tn)n∈ω of trees, subsets of ω<ω which are closed
under initial segments, such that for all n ∈ ω, n ∈ S if and only if Tn has no
path. We let Tn be the set of sequences v such that for all initial segments u ⊆ v,
R(u, n) holds. So, we have yet another definition of the class of Π1

1 subsets of ω.

Theorem 2.4.2 (Kleene). For S ⊆ ω, S is Π1
1 if and only if there is a uni-

formly computable sequence of trees (Tn)n∈ω such that S = {n : Tn has no path}.
There is a natural ordering on the elements of a tree T ⊆ ω<ω, the Kleene-

Brouwer ordering, such that the ordering is a well-ordering if and only if the
tree has no path. Under the Kleene-Brouwer ordering, for σ, τ ∈ T , σ < τ if
either σ ⊇ τ , or else there exist ν and m < n such that νm ⊆ σ and νn ⊆ τ . So,
Theorem 2.4.2 yields the following.

Corollary 2.4.3 (Kleene). For S ⊆ ω, S is Π1
1 if and only if there is a

uniformly computable sequence of linear orderings (Mn)n∈ω such that

S = {n : Mn is a well ordering}.
Kleene showed that the ∆1

1 subsets of ω are the same as the hyperarithmeti-
cal sets. Roughly speaking, these are the sets which are computable relative to
one of a family of sets H(a) obtained by iterating the jump function over com-
putable well orderings. For more about the hyperarithmetical sets, see [58].

Kleene constructed a computable tree T ⊆ ω<ω which has a path, but no
hyperarithmetical path (again, see [58]). Harrison [30], [31] showed that for
such a tree T , the Kleene-Brouwer ordering has type ωCK

1 (1 + η) + α, for some
computable ordinal α.

Theorem 2.4.4 (Harrison). There is a computable linear ordering of type
ωCK

1 (1 + η).
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Theorem 2.4.4 is clearly related to Theorem 1.1.1—the result of Morley and
Lopez-Escobar on undefinability of well orderings.

§3. Admissible fragments. We have now completed our survey of the land-
scape at the time that Barwise entered the picture, and we are ready to move
on. For simplicity, let L be a finite vocabulary. Let A be an admissible set. The
admissible fragment LA is the set of all L∞ω formulas that are elements of
A. In particular, if A = HF, the smallest admissible set, then LA is the classical
finitary logic Lωω. If A = HC, the set of hereditarily countable sets, then LA is
the infinitary logic Lω1ω. For any admissible set A, LA is an A-computable set
and is closed under basic syntactical operations such as finite connectives, finite
quantification, subformulas, and substitution.

3.1. Completeness and compactness. Most of the results in this section
appeared in Barwise’s thesis, which combines infinitary logic with admissible
sets. The monograph [37] describes the model theory of Lω1ω and its admissible
fragments shortly after the appearance of Barwise’s thesis, and illustrates the
large and immediate impact that this work had on the subject.

Barwise re-worked the proof system for Lω1ω used by Lopez-Escobar, a sequent
calculus, in such a way that the notion of a proof in LA is ∆ over KP , so for
each admissible A, the set of proofs in LA is A-computable. This required some
ingenuity—the usual notions of a proof as a sequence of formulas, or a tree of
sequents, did not work. In this way, Barwise arrived at the following version of
Completeness for countable admissible fragments.

Theorem 3.1.1 (Completeness I). Let A be a countable admissible set. Any
logically valid sentence in LA has a proof in A. Moreover, the set of logically
valid LA sentences is A-c.e.

This is satisfying. The statement that the set of logically valid sentences is c.e.
implies that there is a nice proof system, without referring to any particular one.
A second version of Completeness produces models for some infinitary theories.

Theorem 3.1.2 (Completeness II). Let A be a countable admissible set. If Γ
is an A-c.e. set of LA sentences, and there is no proof of a contradiction from
Γ, then Γ has a model.

This version of Completeness immediately yields the following.

Theorem 3.1.3 (Barwise Compactness). Let A be a countable admissible set,
and suppose Γ is an A-c.e. set of LA sentences. If every A-finite subset of Γ has
a model, then Γ has a model.

Barwise’s original arguments for these results were proof-theoretic. Later,
Makkai [48] used consistency properties to give Henkin-style proofs.

Here is Kreisel’s Compactness Theorem for ω-logic. The result appears as a
footnote in [39].

Theorem 3.1.4 (Kreisel Compactness). Let Γ be a Π1
1 set of L-sentences. If

every ∆1
1 subset of Γ has an ω-model, then Γ set has an ω-model.
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Theorem 3.1.4 looks as though it could have suggested the Barwise Compact-
ness Theorem, but it did not do so directly.1

The next result is a special case of Barwise Compactness which has had a num-
ber of recent applications in computable structure theory (see [2]). Computable
infinitary formulas are essentially formulas in LA, where A = L(ωCK

1 ), but
the formulas are assigned indices so that they can be identified with natural
numbers.

Theorem 3.1.5 (Kreisel-Barwise Compactness). Let Γ be a Π1
1 set of com-

putable infinitary sentences. If every ∆1
1 subset of Γ has a model, then Γ has a

model.

We have been looking at countable admissible sets, and countable admissible
fragments. Compactness is also interesting for uncountable admissible fragments.
Let A be an admissible set of arbitrary cardinality. The strict Π1

1 subsets of A
are those definable by formulas of the form (∀R) ϕ(R, x), where ϕ is finitary, in
a vocabulary that includes the predicate R, addition to ∈. In [5], building on
work of Kunen, Barwise showed that his Compactness Theorem holds for LA if
and only if A satisfies reflection for these formulas.

Barwise [6] extended Lopez-Escobar’s Interpolation Theorem to admissible
fragments.

Theorem 3.1.6 (Interpolation). Let L1 and L2 be vocabularies with
L = L1 ∩ L2. Let A be a countable admissible set. If ϕ ∈ L1

A and ψ ∈ L2
A

are sentences such that |= ϕ → ψ, then there is a sentence θ ∈ LA such that
|= ϕ → θ and |= θ → ψ.

3.2. Computable structures via Barwise compactness. We could never
produce computable models using the ordinary Compactness Theorem, but with
Barwise Compactness, we can.

Theorem 3.2.1 (Computable Compactness). Let A be a countable admissible
set with ω ∈ A. Let Γ be an A-c.e. set of LA-sentences. If every A-finite subset
of Γ has a computable model, then Γ has a computable model.

Proof. Let C be an infinite computable set of new constant symbols, one for
each natural number. Then there is an (L ∪ C)A sentence ϕ whose models are
just the computable L-structures, with elements named by the constants in C.
We obtain the desired computable model by applying Barwise Compactness to
the set of sentences Γ ∪ {ϕ}. a

Theorem 3.2.1 can be varied. For example, we may replace computable by
arithmetical, or X-computable, for some A-finite set X ⊆ ω.

We can now obtain Harrison’s Theorem (Theorem 2.4.4), and a natural gen-
eralization.

Theorem 3.2.2 (Harrison, Barwise). 1. There is a computable linear or-
dering of type ωCK

1 (1 + η).

1Barwise was unaware of Kreisel’s result until after he had proved his own Compactness
Theorem. However, Kreisel’s result may well have had an indirect influence, since Kreisel
already had his result when he was one of Barwise’s research advisors at Stanford.
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2. Suppose X ⊆ ω, and let α = ωX
1 . Then there is an X-computable linear

ordering of type α(1 + η).

Proof. We shall give the proof for Part 1—the proof for Part 2 is essentially
the same. Let A = L(ωCK

1 ). Showing that there is a computable ordering with
an initial segment of type ωCK

1 is simpler, and we do that first. Let Γ be an
A-c.e. set of sentences saying that < is a linear ordering of the universe, with an
initial segment of type α, for each computable ordinal α. Every A-finite subset
of Γ has a computable model. Therefore, by Barwise Compactness, Γ has a
computable model.

To get a computable ordering of type ωCK
1 (1 + η), we must do a little more.

We add to the vocabulary an infinite computable set B of constants, one for
each element of the universe of our ordering. We add to Γ sentences saying
that B is the universe, < is a computable linear ordering of B, and there is no
hyperarithmetical sequence of elements of B which is <-decreasing. a

Barwise’s ideas continue to find new and unexpected applications. Arana, in
his soon-to-be completed Ph.D. thesis, used Barwise Compactness to produce
infinite families of sentences with special independence properties.

Theorem 3.2.3 (Arana). For each n ≥ 1, there exist a computable ordering
(H, <H) of type ωCK

1 (1+η) (the type of the Harrison ordering) and a computable
function F from H to the set of finitary Πn sentences, in the vocabulary of
arithmetic, such that
• for any set Γ of Σn−1 and Πn−1 sentences, if PA∪Γ is consistent, then so

is PA ∪ Γ ∪ {F (a) : a ∈ H},
• for all a ∈ H, and all sets Λ of Σn sentences, if PA ∪ Λ ∪ {F (b) : b <H a}

is consistent, then so is PA ∪ Λ ∪ {F (b) : b <H a} ∪ {¬F (a)}.

If M is a nonstandard model of PA and n ∈ ω, then the set Tn of finitary
Σn sentences true in M is coded in M in a natural way. Arana’s independent
sentences can be used to show that this property of nonstandard models of PA
fails for various weak fragments of PA.

The Harrison ordering is a computable structure with 2ℵ0 automorphisms, but
with no non-trivial hyperarithmetical automorphism. Morozov [52] used Barwise
Compactness to produce other examples with this feature.

3.3. Other applications of Barwise compactness. In his doctoral disser-
tation [3], Barwise used his Compactness Theorem to compute the Hanf numbers
of countable admissible fragments.

Theorem 3.3.1 (Barwise). If A is a countable admissible set with A 6= HF,
the Hanf number for LA is io(A).

In the case where A = HF, LA is just the finitary logic Lωω, and the classical
Löwenheim-Skolem-Tarski theorem tells us that the Hanf number of LHF is ℵ0.
In the case where A = L(ωCK

1 ), Theorem 3.3.1 says that the Hanf number for
LA is iωCK

1
, the same as in Morley’s result for ω-logic.

The paper [20] gives a result on Hanf numbers for uncountable admissible sets.
Stating it requires another definition. Let A be an arbitrary admissible set. An
ordinal α is pinned down by A if there is a sentence ϕ of LA whose models are
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orderings with an initial segment of type α. Let h(A) be the first ordinal not
pinned down by A. If A is countable, then o(A) = h(A). For any admissible set
A, we have o(A) ≤ h(A), and there are examples of uncountable admissible sets
A such that o(A) < h(A).

Theorem 3.3.2 (Barwise-Kunen). For an admissible set A 6= HF of arbitrary
cardinality, the Hanf number of LA is ih(A).

In the paper [8], Barwise shows that the Hanf number for second order logic is
“badly behaved”, and its existence requires very strong instances of the replace-
ment axiom scheme.

Given an L-structure M and another vocabulary L′ ⊇ L, an expansion of
M to L′ is an L′-structure M′ which has the same universe, and the same inter-
pretation of each symbol of L, as M. A finite extension of L is a vocabulary
L′ ⊇ L such that L′ \ L is finite. Here is another simple application of Barwise
Compactness.

Theorem 3.3.3 (Expansions). Let A be a countable admissible set. Suppose
L is an A-finite vocabulary, L′ is a finite extension of L, and M is an A-finite
L-structure. Suppose Γ is an A-c.e. set of L′A-sentences such that for each
A-finite Γ′ ⊆ Γ, M can be expanded to a model of Γ′. Then M can be expanded
to a model of Γ.

Proof. We add to the vocabulary L a constant symbol m for each m ∈ M .
Let ϕ be the conjunction of the atomic and negated atomic sentences true in M,
together with the sentence

(∀x)
∨

m∈M

x = m .

The models of ϕ represent the expansions of M. Now, we obtain the desired
model by applying the Barwise Compactness Theorem to Γ ∪ {ϕ}. a

Theorem 3.3.4 (Uniqueness). Let A be a countable admissible set. Suppose
that L is an A-finite vocabulary, and M, N are A-finite L-structures. If M and
N satisfy the same LA sentences, then M∼= N .

Proof. Let F be the set of finite partial isomorphisms from M to N pre-
serving satisfaction of LA formulas. We can show that F is a back-and-forth
family. Suppose (a, b) ∈ F , and let c be a further element of M . We want d ∈ N
such that (ac, bd) ∈ F . We add to L constants representing the elements of b
and a further new constant e. We apply Theorem 3.3.3 to the structure (N , b)
and the set of sentences ϕ(b, e), where M |= ϕ(a, c). The interpretation of e in
the expansion is the desired d. a

Theorem 3.3.5 (Homogeneity). Let A be a countable admissible set, and let
L be A-finite and M be an A-finite L-structure. If a, b are tuples in M satisfying
the same LA formulas, then there is an automorphism of M taking a to b.

The proof is the same as for Theorem 3.3.4, where the back-and-forth family
consists of extensions of the partial automorphism (a, b).
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Theorem 3.3.5 has important consequences for the Scott height of a structure.
IfM belongs to a countable admissible set A, then for any tuple a in M , the orbit
of a is defined by the conjunction of the LA formulas true of a. One consequence
is the following result of Nadel [54].

Theorem 3.3.6 (Nadel). Let A be a countable admissible set, and let L be
A-finite and M be an A-finite L-structure. Then the Scott height of M is at
most o(A).

Let A = L(ωCK
1 ). In this case, Theorem 3.3.6 says that every computable,

or even hyperarithmetical, structure has Scott height at most ωCK
1 . Recall the

Harrison ordering, from Theorem 3.2.2. This is a computable ordering H of
type ωCK

1 (1 + η). The Scott height of H is ωCK
1 , maximum possible for a

hyperarithmetical structure. Moreover, this Scott height is attained, for if a is
not on the initial copy of ωCK

1 , then the orbit of a is definable by the conjunction
of all LA formulas true of a, but not by any single LA-formula, so the local height
of a is ωCK

1 . There are other examples of computable structures where the Scott
height ωCK

1 is attained, including certain computable Abelian p-groups, Boolean
algebras, and fields.

It is natural to wonder about structures whose Scott height is ωCK
1 , and is

not attained. We have already remarked that a well ordering of type (ωCK
1 , <)

has Scott height ωCK
1 , which is not attained. This structure is not A-finite, so it

is not hyperarithmetical. It is not easy to think of examples of computable, or
hyperarithmetical, structures where the Scott height is ωCK

1 and is not attained.
Such a structure must have the feature that for each tuple, the orbit is defined
by an LA-formula, but there is no set in A containing definitions for all of the
orbits. However, Makkai [49] showed the following.

Theorem 3.3.7 (Makkai). There is an arithmetical structure whose Scott height
is ωCK

1 and is not attained.

The proof uses Theorem 3.2.5. The structure is an expansion of the an ordering
of type (ω∗ + ω)ω, and it is absolutely characterizable.

Related to Theorem 3.3.6 is the fact that for a computable, or hyperarithmeti-
cal, Abelian p-group, the length (that is, the length of the Ulm sequence) is at
most ωCK

1 . If the group is reduced, then the length is a computable ordinal.
Similarly, for a computable, or hyperarithmetical, superatomic Boolean algebra,
the isomorphism type must be I(ωαn), for some computable ordinal α and some
n ∈ ω—this means that the Boolean algebra is a join of n α-atoms. In [21],
Barwise and Moschovakis gave abstract principles behind these results.

In [7], Barwise proved the following surprising fact.

Theorem 3.3.8 (Barwise). Any countable model of ZF has a proper end ex-
tension satisfying ZF + V = L.

Absoluteness was an important theme in Barwise’s work. Theorem 3.3.8 seems
to say that being constructible is not absolute. The proof uses Barwise Compact-
ness, together with the Levy-Shoenfield Absoluteness Theorem, which says that
a Σ sentence true in V (the real world of sets) is also true in L (the constructible
world).
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§4. Admissible sets over M. The admissible sets we have considered up
to this point are sometimes called pure admissible sets. We now introduce a
larger collection, the admissible sets over an L-structure M. The axioms of
KP , like those of ZF , were based on the idea that everything should be a set
built up from ∅. We have seen that there is useful information to be gotten by
locating a structure in an admissible set. However, membership of a structure
in an admissible set is influenced very much by the way the structure has been
built up. Barwise realized that it is possible to gain information about properties
intrinsic to M—properties such as the Scott height—by taking the elements of
M as “urelements” and building an admissible set over M.

Barwise fully developed his theory of admissible sets over a structure in the
book [12]. An exposition of some basic results is given in [10], and the first
general treatment of admissible sets with urelements is in [11].

4.1. KP with urelements. For simplicity, we fix once and for all a finite
vocabulary L with only relation and constant symbols. The theory KPU is
intended to describe two-sorted structures of the form

AM = (M, A,∈, (RM)R∈L) ,

where M is the collection of urelements,M = (M, (RM)R∈L) is an L-structure,
the family of sets A is disjoint from M , and ∈ is the membership relation
restricted to (M∪A)×A. We allow the possibility thatM is the empty structure,
and in this way, we get the pure admissible sets.

In writing the axioms, we need to distinguish between urelements and sets.
Following Barwise, we use variables p, q, r . . . for urelements, a, b, c, . . . for sets,
and x, y, z, . . . when we do not wish to distinguish between urelements and sets.
Built into the definition of the two-sorted structures we are considering is the
fact that (M, (RM)R∈L) is a structure for the vocabulary L. The classes of ∆0

and Σ formulas are defined exactly as before, except that one starts with atomic
formulas in the two-sorted vocabulary L∪{∈}. Quantifiers are allowed over both
sorts of variables.

We will also need to allow structures (M,A, E, (RM)R∈L), where the binary
relation E ⊆ (M ∪ A) × A is not the ∈ relation, and perhaps not even well-
founded. The theory KPU is a first-order theory in the two-sorted vocabulary
L∪{∈}. The axioms, describing the family of sets and the membership relation,
are given below.

Axioms for KPU

Extent: For all sets a, b, (∀x) (x ∈ a ↔ x ∈ b) → a = b.

Foundation: For each finitary formula ϕ(x, u) with no free occurrence of y, we
have the axiom

(∀u)(∃x)ϕ(x, u) → (∃x) [ϕ(x, u) & (∀y ∈ x)¬ϕ(y, u) ].

Pairing: For all x, y, there is a set a such that x ∈ a & y ∈ a.

Union: For any set a, there is a set b such that (∀y ∈ a) (∀x ∈ y)x ∈ b
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∆0-separation: For each ∆0 formula ϕ(x, y) with no free occurrence of b, we
have an axiom saying that for all y and for all sets a, there is a set b such that
(∀x) [x ∈ b ↔ (x ∈ a & ϕ(x, y))].

∆0-collection: For each ∆0 formula ϕ(x, y) with no free occurrence of b, we
have an axiom saying that for all y and all sets a, if (∀x ∈ a) (∃y)ϕ(x, y), then
there is a set b such that (∀x ∈ a) (∃y ∈ b) ϕ(x, y).

We wish to generalize the notion of an admissible set to the notion of an
admissible set over M. Intuitively, an admissible set over M should be a model
of KPU which is “transitive over” M. As a first step, we say that

AM = (M, A, E, (RM)R∈L)

is a model of KPU over M if AM is a model of KPU , with M as its built-in
L-structure. Next, we need to say what it means for the set A to be “transitive
over” the set M . For this purpose, we introduce the cumulative hierarchy of
sets over M .

(i) VM (0) = ∅,
(ii) VM (α + 1) = P (M ∪ VM (α)),
(iii) for limit ordinals α, VM (α) = ∪β<αVM (β).

Let VM = ∪αVM (α). Now, a set A is transitive over M if it satisfies the
following conditions.
• A ⊆ VM ,
• x ∈ y ∈ A implies x ∈ M ∪A.
Finally, we say that AM = (M, A, E, (RM)R∈L) is an admissible set over

M if AM is a model of KPU over M, A is transitive over M , and E is the
restriction of the ∈ relation to (M ∪ A) × A. If AM is an admissible set over
M, we use the notation o(AM), called the ordinal of AM, to denote the first
ordinal that is not an element of A. As before, o(AM) is equal to the set of all
ordinals in A.

There is a least admissible set HFM over a given structure M, consisting
of the hereditarily finite sets in VM . This has some mathematical interest. In
[16], Barwise and Eklof considered a principle stated by Lefschetz, saying that
there is essentially only one algebraic geometry of each characteristic, not a
different one for each domain. Over an algebraically closed field of a particular
characteristic, Barwise and Eklof built a structure which seems to include all
of the important objects occurring in algebraic geometry for that characteristic.
There are separate sorts for integers, field elements, n-tuples of field elements,
subfields finitely generated over the prime field, algebraic closures of finitely
generated subfields, polynomials in various fixed tuples of variables, polynomial
ideals, etc. All of the elements—of all sorts—come from the least admissible
set over a certain two-sorted structure, with one sort for field elements, and the
other for integers.

4.2. Truncation lemma. The Truncation Lemma is a valuable tool for
building an admissible set over a given structure M by restricting an arbitrary
model of KPU over M to its “well-founded part”. To prepare the way, we need
some definitions. A model AM = (M,A, E, (RM)R∈L) of KPU over M is said
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to be well-founded if the relation E is well-founded. One can readily check
that every admissible set over M is well-founded, and every well-founded model
of KPU over M is isomorphic to a unique admissible set over M.

Given a pair of modelsAM = (M, A, E, (RM)R∈L), BM = (M, B,F, (RM)R∈L)
of KPU over M, we say that AM is an end extension of BM if (A, E) is an
end extension of (B, F ).

Lemma 4.2.1. For every model AM = (M, A, E, (RM)R∈L) of KPU over M,
the class of well-founded models BM = (M,B,F, (RM)R∈L) of KPU , over M,
such that AM is an end extension of BM, has a unique largest element with
respect to the end extension relation. This is called the well-founded part of
AM.

Theorem 4.2.2 (Truncation Lemma). If AM is a model of KPU over M,
then its well-founded part is an admissible set over M.

The idea of the proof of Theorem 4.2.2 is clear—restrict to the well-founded
part of AM, and apply the appropriate version of Mostowski’s collapse. The
details are tricky. While special cases had been proved earlier, the most general
version appears first in the book [12].

4.3. Admissible sets above M. Among the admissible sets over M, those
which contain M as an element are of particular interest. These admissible sets
are the intended models of the theory KPU+.

Axioms for KPU+: This system has the axioms of KPU , plus an axiom
saying that M is an element of A, that is, there is a set a whose elements are
just the urelements p. Formally, the axiom is

(∃a)(∀x)[x ∈ a ↔ (∃p)x = p ].

We say that AM is an admissible set above M if AM is an admissible set
over M and M ∈ A; i.e., AM satisfies the axioms of KPU+. The Truncation
Lemma is used to prove the following key existence theorem in [12].

Theorem 4.3.1 (Existence of HY PM). For any countable L-structureM, there
is a least admissible set above M.

The least admissible set above M is denoted by HY PM. The least admissible
set HY PM above M is of more interest than the least admissible set HFM over
M. Theorem 3.3.6 of Nadel can be generalized to show the following.

Theorem 4.3.2. For a countable structure M, the Scott height is at most
o(HY PM).

A central idea in the book [12] is to use infinitary logic on the admissible
fragment LA, where A = HY PM, as a tool for the study of a structure M.

4.4. Inductive definitions. An inductive definition on a set X is a func-
tion Γ, from relations on X to relations (of the same arity) on X, such that Γ
is monotone; that is, R ⊆ S implies Γ(R) ⊆ Γ(S). A fixed point for Γ is a
relation R on X such that Γ(R) = R. A least fixed point of Γ is a fixed point
of Γ which is a subset of every other fixed point of Γ.

Lemma 4.4.1. Every inductive definition Γ has a unique least fixed point.
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Proof. Uniqueness is trivial. Starting with ∅, we iterate Γ through steps
corresponding to ordinals. Let Γ0 = ∅, and for α > 0, let Γα = Γ(∪β<αΓβ).
There is a least ordinal α such that Γα+1 = Γα. Then Γα is the least fixed point
of Γ. a

In the proof above, the ordinal α is called the closure ordinal for Γ, and is
denoted by ‖Γ‖.
Example: Let X be the set of all sentences in an admissible fragment LA. Let Γ
be the operation taking a set R ⊂ X to the set S of sentences LA-provable from
the set R in a single step. The least fixed point of Γ is the set of all sentences
ϕ ∈ LA which are provable from the empty set.

In the book [53], Moschovakis developed a general theory of inductive def-
initions of the following kind. Let R be a relation symbol outside the finite
vocabulary L, and let L(R) = L ∪ {R}. A finitary formula ϕ(R, x) is said to
be positive in R if ϕ is built from atomic formulas of L(R) and quantifier-free
formulas of L using finite conjunction, disjunction, and quantifiers. Given an L-
structure M, a formula ϕ(R, x) which is positive in R, and an expansion (M, P )
of M to L(R), let Γϕ(P ) be the set of tuples a in M such that (M, P ) |= ϕ(R, a).
It is clear that Γϕ is an inductive definition on M . By unravelling the definition,
we see the following.

Proposition 4.4.2. For any L-structure M, and any formula ϕ which is pos-
itive in R, the least fixed point of Γϕ is a Π1

1 relation on M.

The supremum of the closure ordinals ‖Γϕ‖, over all formulas ϕ positive in R,
is called the closure ordinal of M, and is denoted by κM. Moschovakis [53]
established a connection between closure ordinals of structuresM and admissible
ordinals (see also [12]).

Theorem 4.4.3 (Moschovakis).
1. For every admissible ordinal α there exists a structure M with closure or-

dinal α = κM.
2. For each structureM, the closure ordinal κM is either an admissible ordinal

or a limit of admissible ordinals.

Moschovakis asked whether every closure ordinal of a structure is admissible.
In [13], Barwise answered the question negatively, showing the following.

Theorem 4.4.4 (Barwise). If α is a limit of admissible ordinals, and α has
cofinality ω, then there exists a structure M with closure ordinal α = κM.

Another result in [13] shows that the closure ordinal of a structure M can
differ radically from the ordinal o(HY PM).

Theorem 4.4.5 (Barwise). Let α, β be countable admissible ordinals such that
ω ≤ α ≤ β. Then there exists a structure M, in a finite vocabulary, such that
κM = α and o(HY PM) = β. Moreover, κM = ‖ϕ‖ for some formula ϕ positive
in R.

The paper [13] is notable for another, quite different, reason. In that paper,
Barwise first introduced infinitary logic with finitely many variables. For each
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finite n, Ln
∞ω is the sublanguage of L∞ω consisting of those formulas with at

most n bound variables, and Lω
∞ω is the set of formulas with finitely many

bound variables. Barwise needed the following extension of Karp’s Theorem
(Theorem 1.2.1).

Theorem 4.4.6 (Barwise). Two structures M, N satisfy the same sentences
of Ln

∞ω if and only if there is a nonempty set F of partial isomorphisms from
M to N such that

• The empty pair (∅, ∅) belongs to F ,
• For each (a, b) ∈ F with |a| < n and c ∈ M , there exists d ∈ N such that

(ac, bd) ∈ F ,
• For each (a, b) ∈ F with |a| < n and d ∈ N , there exists c ∈ M such that

(ac, bd) ∈ F .

The logic Lω
∞ω and its sublanguages have become important in the model

theory of finite structures. There are two reasons for this. On the one hand,
Lω
∞ω is expressive enough on finite structures to subsume logics with fixed point

operators and closure operators. But on the other hand, for every formula
ϕ ∈ Lω

∞ω, there is a finitary formula ψ which is equivalent to ϕ on “almost
all” finite structures. For more on these matters, see [32], [24].

§5. Saturation properties. Saturated structures have long played a promi-
nent role in classical model theory. In this chapter we consider newer notions of
saturation which have a computable flavor and arise in the theory of admissible
sets.

5.1. Computable saturation. We assume throughout this section that L is
a computable vocabulary. Vaught [65] introduced the notions of ω-homogeneous
and ω-saturated structures. A structure M is called ω-homogeneous if the
set of all pairs of tuples (a, b) in M which satisfy the same finitary formulas is
a back-and-forth family for M,M. A structure M is ω-saturated, provided
that for every tuple c in M and every set of finitary formulas Γ(c, x), if every
finite subset of Γ(c, x) is satisfied in M, then the whole set is satisfied in M. In
[23], Barwise and Schlipf defined a structure M to be computably saturated
if the condition above holds for every computable set of finitary formulas Γ(c, x).
Thus every ω-saturated structure is computably saturated. Barwise and Schlipf
proved the following.

Theorem 5.1.1 (Barwise-Schlipf). Every computably saturated structure is
ω-homogeneous.

Proof. The main point is that for any pair of tuples (a, b) in M and any
element c ∈ M , there is a computable set of formulas Γ(a, b, c, x) which says that
ac and bx satisfy the same finitary formulas in M. a

For countable structures, Barwise and Schlipf gave an elegant characterization
of computable saturation in terms of the ordinal o(HY PM).

Theorem 5.1.2 (Barwise-Schlipf). Let M be a countable structure. Then M
is computably saturated if and only if o(HY PM) = ω.
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Recall that HF is the only pure admissible set with ordinal ω. Theorem 5.1.2
implies that there are many admissible sets over structures with ordinal ω;
o(HY PM) = ω for every countable computably saturated M.

Corollary 5.1.3. Every countable computably saturated structure has Scott
height ≤ ω.

Here is another connection between a computably saturated structure M and
HY PM.

Theorem 5.1.4 (Barwise-Schlipf). If M is computably saturated, then the
subsets of M which are elements of HY PM are just those definable in M by
finitary formulas with parameters in M .

Countable computably saturated structures have the nice property in the next
theorem, called resplendence (Barwise-Schlipf [23] and Ressayre [58]).

Theorem 5.1.5 (Resplendence). Let M be a countable computably saturated
structure, let L′ = L ∪ {R1, . . . , Rn} be a finite extension of L, and let Γ be
a c.e. set of finitary L′-sentences. If Γ ∪ Th(M) is consistent, then M can be
expanded to a (computably saturated) model (M, S1, . . . , Sn) of Γ.

The advantage of countable computably saturated models over countable
ω-saturated models is that they exist for every consistent elementary first or-
der theory (Barwise and Schlipf [23]).

Theorem 5.1.6 (Existence). Every structure has a computably saturated ele-
mentary extension of the same cardinality.

Computable saturation is also preserved under unions of elementary chains.

In applications of computable saturation, it is often useful to form the model
pair (M,N ), which is the two-sorted structure built from M and N in the
natural way. If the model pair (M,N ) is computably saturated, then each of
the single structures M and N is computably saturated. However, it is possible
for both single structures to be computably saturated while the model pair is
not.

Schipf [61] demonstrated that computable saturation makes it possible to sim-
plify many arguments in classical model theory by replacing a transfinite induc-
tion (often a back and forth construction) by an induction with just ω steps on
countable structures. For example, he used computable saturated model pairs to
give easy proofs of the Robinson consistency theorem and the Lyndon homomor-
phism theorem. He also gave a result which yields easy proofs of completeness
for many particular elementary first order theories.

Theorem 5.1.7 (Schlipf). An elementary first order theory T is complete if
and only if for every countable computably saturated model pair (M,N ) of models
of T , M is isomorphic to N .

Proof. If T is complete and (M,N ) is a countable computably saturated
model pair of models of T , then the Resplendence Theorem 5.1.5 shows that
(M,N ) can be expanded by adding an isomorphism from M to N . If T is
not complete, there is a pair (M′,N ′) of countable models of T which are not
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elementarily equivalent. By the Existence Theorem 5.1.6, there is a countable
computably saturated elementary extension (M,N ). The models M and N
cannot be isomorphic because they are not even elementarily equivalent. a

The following similar result can often be used to show that particular theories
admit quantifier elimination.

Theorem 5.1.8. A complete elementary first order theory T admits quantifier
elimination if and only if for every countable computably saturated model M of
T , the set of partial automorphisms of M is a back-and-forth family.

Proof. Suppose T admits quantifier elimination, let M be a countable com-
putably saturated model of T , and let (a, b) be a finite partial isomorphism.
By quantifier elimination, a and b satisfy the same finitary formulas. By the
Resplendence Theorem 5.1.5, M has an automorphism sending a to b, so the
back-and-forth property holds.

For the converse, suppose every countable computably saturated model M
of T has the property above. By Karp’s Theorem, every partial automorphism
of M can be extended to an automorphism. Consider a finitary formula ϕ(v)
and let ∆(v) be the set of all quantifier-free consequences of T ∪ {ϕ(v)}. By
the Compactness Theorem, it suffices to show that ϕ is a consequence of T ∪∆.
Suppose not. Then there is a countable model (M, a) of T ∪∆(a) ∪ {¬ϕ(a)}.

By the Existence Theorem 5.1.6, we may take this model to be computably
saturated. Let Γ(v) be the set of all quantifier-free formulas satisfied by a in M.
Then T ∪Γ(v)∪ {ϕ(v)} is consistent, because otherwise, by Compactness, there
would be a finite Γ0 ⊆ Γ such that T ∪{ϕ} implies ¬

∧

Γ0 and hence ¬
∧

Γ0 ∈ ∆,
a contradiction. Since T is complete and M is computably saturated, there is
a tuple b in M such that (a, b) is a partial automorphism of M but b satisfies
ϕ(v), contradicting the fact that every partial automorphism can be extended
to an automorphism. a

The third edition of the book [26] took advantage of computably saturated
structures to simplify several proofs from the earlier editions.

In [22], Barwise and Schlipf studied computably saturated models of PA.
They showed that for a countable model of PA, being computably saturated
is the same as being expandable to a model of analysis; i.e., Induction plus
∆1

1 Comprehension. Lipschitz and Nadel [44] used the notion of computable
saturation to characterize the additive parts of countable models of first order
Peano arithmetic (PA). The set of axioms of PA which are sentences in the
vocabulary with just + is known as Pressburger arithmetic.

Theorem 5.1.9 (Lipschitz-Nadel). A countable structure M = (M, +) can
be expanded to a model of PA if and only if either M ∼= (ω, +), or M is a
computably saturated model of Pressburger arithmetic.

Schlipf [61] gave some amusing properties of countable computably saturated
models of ZF .

Theorem 5.1.10 (Schlipf). Let M be a countable computably saturated model
of ZF . Then there is an indiscernible set I of ordinals of M such that (M, I)



26 H. JEROME KEISLER AND JULIA F. KNIGHT

is computably saturated and satisfies the replacement and separation schemes
relative to I, and for each α ∈ I, (Vα,∈)M ≺M and (Vα,∈)M ∼= M.

5.2. ΣA-saturation. Ressayre [58] developed a notion of saturation corre-
sponding to an arbitrary countable admissible set A. Schlipf [60], independently,
described the special case where A has the form L(α). Given an admissible set A
and a structure M, we say that M is ΣA saturated if it satisfies the following
conditions:

1. For any tuple a in M and any A-c.e. set Γ(a, x) of formulas γ(a, x) ∈ LA, if
every A-finite subset of Γ(a, x) is satisfiable in M, then Γ(a, x) is satisfiable
in M.

2. For every tuple a in M , A-finite set I, and A-c.e. set Γ of pairs
(i, γ(a, x)) ∈ I×LA, if for each A-finite Γ′ ⊆ Γ, there exists i ∈ I such that
the set of formulas

{γ(a, x) : (i, γ(a, x)) ∈ Γ′}
is satisfiable in M, then there exists i ∈ I such that the set of formulas

{γ(a, x) : (i, γ(a, x)) ∈ Γ}
is satisfiable in M.

The following result was proved in a special case by Schlipf [60], and in general
by Adamson [1] and Ressayre [58].

Theorem 5.2.1. Let A be a countable admissible set. A structure M is
ΣA-saturated if and only if A can be extended to an admissible set B above
M such that o(B) = o(A).

Ressayre [58] proved the following.

Theorem 5.2.2 (Existence and Resplendence). Let A be a countable admis-
sible set.

1. Every consistent A-c.e. set of LA-sentences has a ΣA-saturated model.
2. Suppose M is a countable ΣA-saturated L-structure, L′ is a finite extension

of L, and Γ is an A-c.e. set of L′A sentences. If every consequence of Γ in
LA is true in M, then M can be expanded to a ΣA-saturated model of Γ.

In Theorem 5.2.2, Part 1 is a special case of Part 2, where M is taken to be
just an infinite set. The proof of Part 2 involves a consistency property S whose
elements are A-c.e. sets of sentences Λ(a), where a is a tuple in M which satisfies
all the consequences of Γ(x) in LA.

Just as for computably saturated structures, for each countable admissible set
A, the ΣA-saturated structures are closed under unions of LA-elementary chains.
We conclude the chapter with some proofs that use ΣA-saturated structures.
Here is proof of Barwise’s Interpolation Theorem (Theorem 3.1.6).

Proof of Theorem 3.1.6. Let Γ0 be the set of sentences of the common
language LA which are consequences of ϕ. This is an A-c.e. set. If ¬ψ is consis-
tent with Γ0, then in the vocabulary L2, Γ0 ∪ {¬ψ} has a ΣA-saturated model
M, by Part 1 of Theorem 5.2.2. By Part 2 of Theorem 5.2.2, M can be expanded
to a model N of ϕ in the vocabulary L1 ∪ L2. This contradicts the fact that
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|= ϕ → ψ. Therefore, ¬ψ is not consistent with Γ0. By Barwise Compactness, ψ
is a consequence of an A-finite subset of Γ0, and the conjunction of this subset
is the desired sentence θ. a

The next result is of the earliest applications of Barwise Compactness.

Theorem 5.2.3 (Sacks [59], Friedman-Jensen [28]). For any countable admis-
sible ordinal α > ω, there exists X ⊆ ω such that α = ωX

1 .

Proof. Take a countable admissible set A such that α = o(A) and ω ∈ A.
There is an A-c.e. set Γ of LA sentences describing a structure of the form
(M, X, R), where M is a model of KP including all of the ordinals in A, X ⊆ ω,
and R is a linear ordering of ω which is computable in X and has an initial
segment of order type α. By Theorem 5.2.2, there is a ΣA-saturated model
(M, X, R) of Γ. Now, for β < α, the initial segment of R of type β is computable
in X, so α ≤ ωX

1 . To complete the proof, it is enough to show that no ordering
of type α on ω is computable in X, for then ωX

1 ≤ α.
We suppose there is such an ordering S and arrive at a contradiction as follows.

Consider the A-c.e. set of formulas Θ(y) saying that y ∈ ω and for each β < α
there is a z ∈ ω such that S(z, y) and the initial segment of S below z has
order type β. Every A-finite subset of Θ(y) is satisfied in (M, X,R), so by
ΣA-saturation the whole set Θ(y) is satisfied in (M, X, R) by some element
y ∈ ω. Therefore S cannot have order type α. a

We now give a proof of Barwise’s strengthening of the theorem of Lopez-
Escobar and Morley on non-axiomatizability of the class of well orderings (The-
orem 1.1.1).

Theorem 5.2.4 (Barwise). Let A be a countable admissible set, and let σ be
a sentence in LA such that for each ordinal α in A, σ has a model of order type
α. Then σ has a model which is a linear ordering with a subset of order type η.

Proof. Let Γ be an A-c.e. set of sentences in LA, consisting of σ, axioms for
linear orderings, and for each ordinal α ∈ A, a sentence saying that the ordering
has an initial segment of type α. By Theorem 5.2.2, Γ has a ΣA-saturated model
M = (M, R). Now, we can build an embedding f from the rationals into M by
induction, making sure as we go along that for any finite subset of ran(f), the
intervals to the left of the first element, between two successive elements, and to
the right of the last element, all have sub-intervals of type α for all α ∈ A. a

§6. Conclusion. Barwise’s work in infinitary logic and admissible sets cut
across the usual divisions in logic. When it appeared, the work was seen as
unifying important parts of model theory, computability theory, and set theory.
Right away, there were many applications. We have described some of them.

Barwise and others have shown that many of the methods developed for ad-
missible fragments of the logic L∞ω carry over to non-classical logics. See, for
example, the paper of Barwise [14] on monotone quantifiers, the paper of Bar-
wise, Kaufmann, and Makkai [19] on stationary logic, and the survey article of
Nadel [55], which includes a section on logic with extra propositional connectives.

The landscape of logic has changed in the past 30 years. The growth in the
popularity of classification theory and o-minimal structures has left infinitary
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logic with a much diminished place in model theory. As a result, Barwise’s idea
of using HY PM to study a structure M has remained on the back burner. Per-
haps this attractive idea will be taken up again by some future logician. On the
other hand, infinitary logic is of growing importance for computable structure
theory, finite model theory, and certain parts of theoretical computer science.
The result of Arana, Theorem 3.2.3, is just one of many recent applications of
Barwise Compactness in computable structure theory. It seems likely that there
will be further applications in pure computability. There is general machinery,
developed by Harrington, Ash [1], and Lempp and Lerman [42], for carrying out
∆0

α priority constructions, for an arbitrary computable ordinal α. Harrington
asked, in a casual conversation in 1984, whether there might be general machin-
ery which is the limit of such constructions. The Barwise Compactness Theorem
does exactly this.
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