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0. Introduction 

For any separable metr ic  space X and a with 1 ~<e <~tol define the Borel 
classes ~o and !1~. Let  T-~ ~ be the class of open sets and for tx > 1 ~o is the class of 

countable unions of e lements  of U { I I~ : /3<a}  where I I ~ = { X - A : A ~ , , ° } .  
Erence ~ = open = G, I1~ ° = closed = F, 1~ = F,,, II~ = Ga, etc. Note  that ~o. = i1 o, = 

set of all Borel  in X subsets of X. The  Baire order  of X (ord (X)) is the least 
e <~ to1 such that every Borei in X subset of X is 1~o in X. Since the Borel subsets 
of X are closed under complementa t ion  we could equally well have defined 
ord (X) in terms of 11~ in X or A° = II ° fh ~o in X. Note  also that for X c_ • (the 
real numbers) ord (X) is the least a such that for every Borel  set A in ~ there is a 
~,~o', in R set B such that A f'l X = B N X. Also note that ord ( X ) =  1 if[ X is 
di,~crete, ord ( Q ) = 2  where Q is the space of rationals, and in general for X a 
countable metric space ord ( X ) ~  2 since every subset of X is ~2(F~)° in X. 

It is a classical theorem of Lebesgue (see [11]) that for any uncountable Polish 
(separable and completely metrizable) space ord ( X ) =  t0~. The same is true for 
any uncountable analytic ( ~ )  space X since X has a perfect subspace (see [11]) 

and Borel hierarchies relativize. 
The  Baire order  problem of Mazurkiewicz (see [19]) is: for what ordinals a 

does there exist X ~ ~ such that ord ( X ) =  ~. Banach conjectured (see [29]) that 
for any uncountable X c R the Baire order  of X is to~. In Section 3 we review the 

classically known results of Sierpinski, Szpilrajn, and Poprougenko.  We show that 

it is consistent with Z F C  that for each a ~ ~0t there is an X % ~ with oral (X) = a. In 
fact, we prove a theorem of Kunen's  that C H  implies this. We also show that 
Banach's  conjecture is consi,,,tent with Z F C  

Given a set X and R a family of subsets of X (R c_ P(X)) define for every 
a <~o~ R,~ ~ P(X) as follows. L~t Ro = R and for each a > 0 if a is even (odd) 
let R~ be the family of countable intersections (unions) of elements of 
U {Ra :/3 < a}. General izing Mazurkiewicz's  question Kolmogorov (see [8]) asked: 
for what ordinals ~ does there exist X and R c_ P(X) such that a is the least such 

* This paper appeared as Part I of my doctoral dissertation. I would like to thank Professor J.W. 
Addison for supervising thi's work. 
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that R,, = R,,,. Kolmogorov 's  question can be generalized by replacing P(X)  by an 
arbitrary ~-algebra  (a eountably complete boolean algebra). In Section 2 we 
prove that for any c~ ~< oJt there is a complete boolean algebra with the countable 

chain condition which is countably generated in exactly ~ steps. This answers a 
question of Tarski who had noticed that the boolean algebras Borel (2")  modulo 
the ideal of meager  sets and Borel(2 ~) modulo the ideal of measure zero sets are 
countably generated in exactly one and two steps respectively (see [4]). Theorem 
12 which is due to Kunen shows that the same answer to Kolmogorov 's  problem 
(every e~ <~ oJ~) follows from the solution of Tarski 's  problem. 

Let R = { A  x B : A, B ~ 2~}. In Section 4 we show that for any a. 2<~a < w t ,  it 
is consistent with ZFC that a is the least ordinal such that R~ is the set of all 
subsets of 2 ~ x 2 ~. This answers a question of M'~uldin [1]. 

For a ~<o~t a set X g 2  ~ is a O ,  set iff every subset of X is Borel in X and 
ord (X) = a. It is shown that it is consistent with ZFC that for every a < ~0~ there 
is a O~ set. In Section 4 we also show that there are no Q, ,  sets. However ,  we do 
show that it is cor, sistent with ZFC that there is an X g 2" with ord (X) = ~ot and 
every X-project ive set is Borel in X. This answers a question of Ulam [3 I, p. l(t]. 

Also in Sectior, 4 we show that it is relatively consistent with ZFC that the 
universal ~ set is not in R~, confirming a conjecture of Mansfield [13] who had 
shown that the universal ~ set is never in the ~-a lgebra  generated by the 
rectangles with ~ sides. 

Given R ~ P tX)  let K(R)  (the Kolmogorov number  of R) be the least a such 
that R , = R , o .  It is an exercise to show that tor ~ = 0 , 1 ,  or  2 there is an 
R c P({0, 1}) with K ( R ) = a .  

Proposit ion 1. Given R c_ P(X)  then (a) if R is finite or X is countable, then 
K ( R ) ~ 2 ,  and (b) there exists S~_ P(Y )  such that cardinality of S and Y is <~2 ~" 
and K(R)  = K(S).  

ProoL (a) Note 

If R is finite or X countable, then ~ f  ...... ~,, can always be taken to be a countable 
intersection. 

(b) Let V, be the sets of rank less than a. Choose c~ a limit ordinal of 
uncour~table cofinality so that R, X e Vs. Let (M.. e) be an elementary substructure 
of (V,,,e) containing R and X such that M ~ M  and IMI<~2 s,,. Now let Y =  
X N M  and S = { A A  Y : A e R G M } .  

Mazurkiewicz's problem is equivalent  to Kolmogorov 's  problem for R a 
countable field of sets (that is closed under finite intersection and complementa-  
tion). 
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Proposition 2. (Sierpinski [23] also in [30]). Given R c_ P(X)  a countable field of 
sets there exists Y c _ 2  ~ such that K ( R ) = o r d ( Y ) .  (That is we may reduce to 
considering subsets Y of 2 '° and relativizing the usual Borel hierarchy on 2" to Y.) 

Proof. Let R = {A. : n c to} and define F: X-~, 2" by F ( x ) ( n )  = 1 iff x ~ A,, .  Put 
Y = F"X. 

Define K = {/3 : 2 <~/3 < to~ and there is X c_ to'o uncountable with ord (X) =/3}. 
What  can K be? 

Proposition 3. K is a closed subset of to~. 

Proof.  Given A t _ t o "  and n c t o  define n A = { x e t o ' O : x ( , l ) = n  and 3 y ~ A V n  

( x ( n + l ) = y ( ~ ) ) .  If x = u  ....... nX,,  then it is readily seen that o r d ( X ) =  
sup {ord (X,,): n E to}. 

Note that K is the same set of ordinals if we replace to" by E the real numbers 
or  2 '°. This is true for .~ because if X ~ E and R -  X is not dense, then X contains 
a nonempty interval, hence ord (X)=to~;  but ~ - X  dense means we may as well 
assume X % irrationals ~- to'L 

In the definition of K ( R ) =  to for R c_ P ( X )  we ignored the possibility that the 
hierarchy on R might have exactly to levels, i.e. R~  = U {R,, : n < to} but for all 
n < to  R , ~  R~,. In fact a Borel  hierarchy of length less than to~ must have a top 
level. 

Proposition 4. It' R c_ P ( X )  is a field of sets, ;~ is a countable limit ordinal, and 
R~, = U {R,~ : a <)t}, then there is c~ < A such that R~ = R.,,. 

Proof.  Using the proof of Proposition 2 we can assume X g 2 K for some K and 

R = {[s] n X :  3 D  ~ [ r ]  <~ (s ~ 2 D)} where [s] = {(f ~ 2 ~ : f extends s}. For each A in 
Ro, there is Tc_K countable such that for any f and g in X if [ I T = g I T ,  then 
f ~  A iff g~  A. In this case we say T supports A. Choose Tc_ ~ countable so that 
for any D c T finite and s : D --~ 2 if ord (X N [s]) -- A, then for any ct < A there is 

an A c_ Is] in R,~ ~ - R ,  such that T supports A. By taking an au tohomeomorph-  
ism of 2 ~ we may assume T = to. Define L to be {s ~ 2 <°' :ord ( [ s ]n  X ) =  A}. 

Claim. For any s in L there are t and i in L incompatible extensions of s. 

Proof.  Without  loss of generality assume s = 0  and there is f 6 2  °" such that for 
every s6  L s _ f .  For each n < to  define t. in 2 "+~ by t . ( m ) = f ( m )  for m < n and 
t. (n) = 1 - f(n). Then [/] U U {[ t,~] : n < to} is a dis joint union covering 2 K. If there 
is a /3o<A such that for all n < t o  o r d ( [ t . ] N X ) < / 3 o ,  then for all A in R~o, 
supported by to A is in Ru,,+l. This is because A N [ f ] = 0  or x n [ / ] c  A. But this 
contradicts the choice of to. 
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On the other  hand, if there is no such bound Bo, choose Z .  G [t .]  with Z .  ¢ R~, 
so that for every/3  < h there is n < oJ with Z .  ~ R e. But then U {Z. : n < 60} is not  
in U {Re :/3 < h}. This proves the claim and this last argument  also proves the 
proposition flOra the claim. 

Remark. If Rc_--_P(X) and R,,,,= U {R, , :n<c0} and there is n o < o  such that 
{ X -  A : A ~ R} G R,,,, then there is n~ < to such that R~,, = R,~. WiUard [32] shows 
that for any c~ < to~ there are R and X with R ~_ P(X) such that a is the least 
ordinal such that { X -  A : A ~ R} ~_ R~. 

1. Some basic definitions and lemmas 

For T c_ co <~ T is a well-founded tree iff T is a tree (if t ~ s ~ T, then t ~ T) and 

is well-founded (for any f~ to~  there is an n < to  such that f I n ~  T). For s~ T 
define [sir (the rank of s in T) by Islr = sup {Itl-r + l : s  c_t~ T}. Often we drop T 
and let Isl = Is[T. T is normal of rank a means that: 

(a) T is a well-founded tree;  

( b )  I¢1 = a (9) is the empty sequence);  
(c) (s~ T and Is!>0)---~ (Vi< to  ( s - i ~  T)); 

(d) (s~ T and Isl---/3+ l)---~(Vi<o~(ls-il=/3)); 
(e) (s c T and I sl = h where h is a limit ordinal) ~ (g/3 < h {i : l s - i i  </3} is finite 

and V i < t o  Is-il>~2). 
Note that for any n < to the tree to~" is normal of rank n. If an for n < to are 

strictly increasing to a (or a,, =/3 where a =/3 + 1) and for each n < to  7",, is 
normal of rank a,, t> 2, then T = {9)} U { n - s : n < to and s ~ T,} is normal of rank a. 

We often use T~ to denote some fixed normal tree of rank a. Let  M be the ground 
model  of ZFfJ. Working in M for any a < ~ o l  and Y~_Xc_to '~ define the partial 
o-der  P,~(Y, X) (the order is given by inclusion). Fix some T normal of rank ~. 
p c I ~ ( Y ,  X) iff p c (T-{9)})>', ( X U t o  ~ )  and (1) through (5) hold. 

(1) p is finite. 

(2) [sI=O implies that if (s ,x)~p,  then x ~ t o  .... and if (s ,y)~p,  then x = y .  (So 
if T* = {s c T:ls I = 0}, then p ' (T* × (X U to<~)) is a function from a finite subset 
of T* into to<'.)  

(3) If [ s l>0  and (s ,x)~p,  then x ~ X .  

(4) If s and s ~ i E T  and x=~X, then not both (s ,x)  and ( s~ i , x )  are in p, or if 
I s - i j = 0 ,  there is no k~ to  such that both (s ,x)  and ( s ~ i , x [ k )  are in p. 

(5) If s of length one and (s, x)~ p, then x is not in Y. 
Let  G be D.(Y ,  X)-generic  over  M. Working in M[G]  define for each s~  T, 

,.7~ c_ to~. For Is I = 0, let 

G~ = {x ~ to~ :3t  ~ to<,o t ~ x and {(s, t)} ~ G}. 
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For Is l > 0, let Gs = I~ {to~ - G,,-~ : i < to}. Note that for each s e T, G~ ~ II~l. 

Eemma 5. For each x in X and s in T-{O} with Isl>O[xeG~ iff {(s, x)}~ G]. 

Proof. Case 1. Is[ = 1. (This is the argument  from almost-disjoint-sets forcing.) 
If x ~ G , ,  then xg~ G,-~ for all i~oJ. Hence for all k and i in to (s- i ,  x l k ) ¢ G .  

Let D = { p : ( s , x ) ¢ p  or there exist k and i such that ( s~ i ,x[k )~p} .  D is dense 
since if (s, x) 9~ P if we let {x~, x2 . . . . .  x,,} c_ X be all the elements of to ~ mentioned 
in p other than x, we can choose k sufficiently large so that x t k #  x~Ik for all 
i <~ n. Also we can choose ] sufficiently large so that ( s - j )  is not ment ioned in p 
and then p U { ( s - ] , x l k ) } E ( P , , ( Y , X ) n D ) .  Since G N D  is non-empty and 
x6 G~-~ all i; we conclude that (s, x)~ G. 

If x¢[ G,, then x s G~-~ for some i. Hence there exist k such thlet (s~i, x I k)~ G 
so (s, x)6 G by clause (4). 

Case 2. Isl> 1. 
If x ~ G~, then x6 G,-~ for all i, and hence by induction (s~i, x)6 G for all i. 

Let D ={p: (s ,  x)~ p or there exist i such that (s- i ,  x)~ p}. D is dense hence 
(s ,x )eG.  

If x¢ G.~, then (s~i, x)e G for some i (by induction). Hence (s, x)~ G by clause 
(4). 

Corollary 6. G o N X =  Y ( a ~ 2 ) .  

Proof. If x c Y, then for every n, ((n), x )6  G (by clause 5). Hence by Lemma 5 
for every n, x6 G~.~ and so x~  G o . If x6 Y, then {p: there exists n such that 
( (n ) ,x )~p}  is dense hence there exists n such that x ~ G , .  (by Lemma 5) so 

x~Go. 

Remarks: (1) Po(Y, X) is trivial (the empty set). 
(2) P~(Y,X) has nothing to do with X and Y and is isomorphic as a partial 

order to the usual Cohen partial order for adding a map from ~o to to, 
(3) P2(Y, X) is another way of viewing Solovay's "almost-disjoint-sets forcing" 

(see [6]). 

Lemma 7. P~(Y, X) has the countable chain condition. 

Proof. Suppose by way of contradiction that there exist F included in P ,  (Y, X) of 
cardinality 1,¢~ of pairwise incompatible conditions. Since there are only countably 
many finite subsets of T, we may assume there exist H_c T - { 0 }  finite so that 
every p ~ F is included in H × (X U to<u). We may also assume that for every p ~ F 
and q ~ F and s ~ H with Isl = 0 and t ~ to~" that [(s, t) ~ p iff (s, t) ~ q]. Now let 
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(x~ :/3 <N~) be all the elements of X occurring in members  of F. For each p in F 

let p* : G o --~ P(H) be defined by G o = {/3 :~there exists s, (s, xo) c p} and for/3 ~ G o 
p*(/3) = {s : (s, x B) ~ p}. {p* : p ~ F} is a family of N~ incompatible conditions in the 
partial order  ~ ,  where Q = {p :domain of p is a finite subset of N~ and range of p is 
P(H)}, ordered by inclusion. Since it is well-known that (~ has the countable chain 
condition we have a contradiction. 

Remarks: (1) If P = P ~ ( Y ,  X)  for any a, X, and Y, then P is absolutely c.c.c. 
That is to say if P ~ M ~ " Z F C " ,  then M~"IP has c.c.c.". It follows that the direct 
sum of any combination of the P~ ' s  has the c.c.c. 

(2) We assume the fact that i ,erated c.c.c, forcing is c.c.c. (Solovay- 
Tennenbaum [26]) and occasionally use notat ion and facts from [26]. 

I would like t~ prove next an heuristic proposition. Roughly, if we add a generic 
l I  ° set, then it will not be Xo. This is a special case of more difficult arguments 
later with generic lI~ sets. 

Define 0 ~ a partial order: p ~g~ iff p is a finite consistent set of sentences of the 
form " [ s i c  G,~", "x~  G,~", or "x  E n ...... G,," (where s ~ o~ .... and x ~ ~°').  Order  
P by inclusion. Any G tl~-generic determines a II~ set n,~_~ G,,. 

Proposition. I f  G is P-generic over M (transitive countable model of ZFC), then 

• ( ) M[G]~"VF~F~ FnM~ N G. n M  ". 
- -  n c t o  

ProoL Suppose not and let p ~ G and C,  be names such that p Ik"C,~ is closed" 
and such that 

p~"U C,,nM= N QnM" .  
r ~ t o  n ~ o  

It is easily scen that P has c.c.c. (see the proof of Lemma 7). Thus working in M 
we can find Q ~_~ countable such that for any G P-generic ,  n ~ ~o, and s ~ ~o <~, if 

M[G]~"[s]NC, ,=W' ,  then 3 q e Q M G  such that q lk"[ s ]OC,=O" .  Since Q is 
countable, we can find z ~ oJ~°n ; , l  not ment ioned in p or  any condition in Q. 
Since 

pu/z n zou c 
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we can find h ~ co and /~ >/p and not  ment ioning z so that  

~ U { z ~  N G,,}lk"z~C~", 

because the only other  way to mention z is " z ¢  G , " .  By taking r~ large enough 
0 U{z¢  G,a} will be consistent,  and since it extends p it forces " z ¢  Ca". Let  G be 
~-gener ic  with 16U{z¢G~} in G. Let  k6co  and q e G N Q  be so that  
q IF"[z I k] I"1 Ca = 0"- But  /~ U q U {z 6 ~,~,o G,} is consistent because q e O and 
so doesja't mention z. This is a contradict ion since q l l -"z¢ C , "  and 

15U {"z ~ U G,,"}It-"z~Ca". 

Define for Fc_ to" and p e p  = ~ , , ( Y , X ) ,  

]Pl (F) = max ({isl:there is x¢~ F with (s, x) e p}). 

This is called the rank of p over  F. 

L e m m a  8. For all f3>~l and pel~ there is ~ ) ~  compatible with p and [ / ) I (F)< 
{3 + 1 so that for any q ~ ~ with [ql (F) < [3, if ~ and q are compatible, then p and q 
are compatible. 

Proof. First find an extension po~  p so that  for all (s, x) ~ p and i < co if Isl = A is a 
limit ordinal  and I s - i l  ~</3 + 1 <,~ (there are only finitely many such s - i ) ,  then 
there is a j < t o  such that  ( s - i - j , x ) ~ p o .  Now let ~={(s , x )~po: l s [<[3+l  or 
x ~ F } .  We check that  /5 has the requisite property.  Suppose p and q are 
incompatible,  10 and q are compat ible ,and Iql (F) </3. Since/3/> 1 for all (s, x) ~ p 
if I s l~  1, then (s, x)~/5, hence sir,~ce /5 and q are compatible there are s~ tE to <w, 
i<co,  and x e t o  ~ such tha~: ( s ,x )~p ,  ( t , x ) eq ,  and s = t ~ i  or t = s - i .  

Case 1. If x e F or [sl < f3 + 1, then (s, x )~  10 and so/~ and q are incompatible.  
Case 2. If x ~ F  and I: ~ 3 + 1 ,  then by definition of Iq l (F)</3 ,  Itl<[3. So 

t = s ~ i .  If I s l = v + l  for some % then I t l=~,~/3 ,  contradiction. If ]sl=,~ is an 
infinite limit ordinal,  then by the construction of Po there is j < co with ( t - j ,  x) ~ Po 
and hence ( t - j ,  x ) e  ~ and so q and 15 are incompatible.  
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2. Boolean algebras 

For B a complete boolean algebra, C included in ~, and a I> 1 &f ine  ,~,(C), 
rL(c): 

J21(C)={~,S:Sc_C}, 
I~ , (C)={~S:Sc_  U lie(C)} for t ~ > l ,  

and 
H~(C)= { -a  : a e 2~(C)} 

Define K(B) to be the least ordinal a such that there exists a countable C 
included in ~ with X~ (C)=  lB. 

Theorem 9. For each a<~to~ there exists a complete boolean algebra ~ with 
countable chain condition and K(I~)= a. 

Proof. For  a = 0 take B to be any finite boolean algebra. For a = 1 t, , .3 B to be 
(P(oJ), n,  u)  (or more appropriately the regular open subsets of to ~ since this 
corresponds to Cohen real forcing). 

For a, 2~<a<to~,  ~ will be the complete boolean algebra associated with 
ll~-forcing. Let P = P~ (0, X). Given a partial order P there is a canonical way of 
constructing a complete boolean algebra B in which P is densely embedded (see 
[5]). Let [p] denote the image of pelP under  this embedding. If p~>q, then 
[p]~[q] .  For every a eB if a e: 0, then there is a p cl~ such that [p]~< a. 

Lemma 10. Suppose Fc_X ana C = { [ p ] : p e ~  and [p[(F)=O}. For any f 3 ~ l ,  
p c ~ ,  and a in Y.6(C), if [p]<~a, then there is cleP such that Iq[ (F)</3,  q and p 
are compatible, and [ q ] ~  a. 

Proof. The proof is by induction on /3. 
Case 1. /3 = 1. Suppose a = V { [ q ] : q e / 3  for some F ~ C .  If [p]~<a, then for 

some q e F, p and q are compatible. 
Case 2. ~ a limit ordinal. Suppose a = Y _ { b : b ~ / 3  for some F g  

U {,Y~(C):a </3}. Then there is ~5~p and beFN2~,,(C) for some a<~3  so that 
[/3]~<b. Now apply the inductive hypothesis to 1~. 

Case 3. /3 + 1. Suppose [p]~<~ {b:b e / 3  for some Fc_ He(C ). Choose/~ ~< p so 
that for some b e / ' ,  [1~] ~ b. By Lemma 8 of Section 1, there exists q compatible 
with/~ with Iql (F)</3  + 1 and for any r with Irl (F)</3,  if r and q are compatible, 
then r and 13 are compatible. This q works since if [q] 5~ b, then there exists qo >~ q 
with [q.]~<-b.  Since - b  e .Z6(C) by induction there is q, compatible with q.  with 
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Iq~l ( F ) < / 3  and [q l ]~<-b .  But  then q~ would be compatible  with ~, contradicting 
[#]~b. 

Now if X = to'~, for example,  the lemma shows that  ~ cannot be generated by a 
set of size less than the continumn in fewcr than t~ steps. For  suppose D c B has 
cardinali ty less than [too I, then there exists F~_to '~ with X - F # O  and D c  
Xd[p]:lpl(e)=0}. Let  13<a,  z ~ X - F ,  and s ~ T - { 0 }  with ISlT=13 (where T is 
the normal  a - t r e e  used in the definition of P , (O,  X)). [{(s, z)}] is not in I~o(D). 
Because if it were it would be in 2~(C)  and so by the lemma there exists q with 
Iql (F) < IS and [q] G [{(s, z)}]. But since Isl~ -- 13 and z ¢ F we know (s, z) ¢ q. Thus 
there are n (and m) such that  q U{(s~n ,  z)} ( q U { ( s ~ n ,  z Ira) in case ISlT = 1) is 
in P ,  but  this is a contradiction. 

Next  we show B is countably generated in a steps. Let  C = {[p]: [p[ (0 )=  0}. 

Claim. For all x e X and s ~ T - { 0 }  if  [sir = (3 >~ 1, then [{(s, x)}] is in H~(C). 

Proof .  If Isir = 1, then 

[{(s, x)}] = l-I { - [ ~ ( s - n ,  x [ re)l]: n, m e to}. 

If Js[> 1, then 

[/(s, x)}] = I ' I  { - [ { ( s  ~ n ,  x)}]: n ~ to}. 

For A ~ B, - A  = {p ~ P : [ p ]  n A = 0}. If (s, x) ~ p, then [p] Cl [{(s ~ n, x)}] = 0 all n. 
On the other  hand if [p]fq[{(sn, x)} ]=0  for all n, then easily (s, x)E p. 

Now for any p ~ P [p] = I-I{[{(s, x)}]: (s, x) ~ p}, so [p] ~ ~ (0) .  For  any A ~ B 
A = • {[p]: p e A} so A ~ ~ ,  (C). Thus K(•) ~< a. 

We  are now ready to consider the case of a = col. Let  P = ~  . . . .  P , ( 0 ,  tow). 
Now the complete  boolean algebra associated with P does take co~ steps to close 
(for suitable generators),  however,  P is not countably generated.  So we do as 
follows: Let  ( x , : a  < t o o  be any set of to~ distinct elements of tooL Let  *:to<~ × 
to<o,_~to be a 1-1 map. Let  T,  be the normal tree of r a n k a  used in the 
construction of P ,  =P , (~ , '%0) .  Any G which is P , - g e n e r i c  is determined by 
G N{(s, t )EP~ :lslTo = 0  and / ~ to<o,}. That  is a map y from T * = { s ~  T~:IsITo =0} 
to ~<~. Now imagine G P-gener ic  and let  y~ : ~ ~ oJ <~ be the maps determined 
by G. Let  Y = {(*(s, t ))~x~ : y~(s) = t and a < to~}. Form in the generic extension 
P2(to °' - Y, to'~) = O (in both cases we mean too, formed in the ground model).  The 
part ial  order  we are interested in is R = P * Q .  P * Q = { ( p , q ) : p ~ P  and 
p Ik"q E O"}. (0, c~) ~> (p, q) iff (/3 >~ p and ~ >~ q). p Ik"q ~ O "  just in case whenever  
((n), (*(s, t )~ 'x , )  is in q, then (s, t )e  p(a) .  Now let B be the complete  boolean 
algebra associated with R. Since R has the countable chain condit ion so does B. 
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Claim. [B is countably generated. 

Proof. The idea is that once you know what the real is gotten by Q you know all the 
reals gotten by P - - a n d  hence everything. Let C = {[(¢, q)]: Iql (0)=  0}. Then C is 
countable and generates [~. 

For C__.to ~ and ( p , q ) ~ R  define 

I(P, q)[ (C) = max {IslT~ :there exists x ¢~ C, (s, x) e p(t~) and a < oh} 

Lemma 11. Given F c_ to ~ Vp e R V/3 ~ 1 3~ e R compatible with p, IPl (F)</3  + 1 
and Vq Iql (F) </3 ( ff ~, q compatible, then p, q are compatible). 

Proof. This is proved similarly to Lemma 8. Given P=(Po, Pl) extend each 
po(a)~-p~(ct) as in Lemma 8, then take /)=(/)o, 1O,), /~,=p, ,  1Oo(a) = 
{<s, x>~ p~,(~):lsl</3 ÷ 1 or x ~ C}. Note that /~olF"lOl e Q "  because requirements 
in Q are decided by rank zero condition in I/~. 

From this lemma it is easily shown as before that K(B)~to~. Since B is 
countably generated and has the countable chain condition we have K(IB)<~to~, 
hence K(B) = col. 

For any ~r-complete boolean algebra ~ the Sikorski-Loomis theorem [25, p. 
93] says that IB is isomorphic to a tr-field of subsets of some X modulo a a- ideal  
of subsets of X. 

Theorem 12 (Kunen). Va <~to~ 3X,  R with R ~_ P(X)  such that K ( R )  = a. 

Proof. By the Sikorski-Loomis theorem and Theorem 9 we can find/~, X, and I 
with /~ c_P(X)/I  where I is a cr-ideal and ~ is the least ordinal such that 
/ ~  = / ~ .  Define R c P(X)  by (A e R iff A / I ~  R).  It is easily shown by induction 
on /3 ~tol  that (A e Ra iff A / I ~  R~). Hence we have K ( R )  = a. 

Let BM be the complete boolean algebra Borel(2") modulo the ideal of meager 
sets. 

Theorem 13. For any a, 1 <~ ct < to1, there is a countable C c_ BM which is closed 
under finite conjunction and complementation so that ct is the least ordinal such that 

. ~  (C) =BM. 

Proof. Let x e ~o °' be arbitrary and B be the complete boolean algebra associated 
with P~(0,{x}). Note that if Ip l (0)=0,  then - [ p ] = Z { [ q ] : l q l ( 0 ) = 0  and q is 
incompatible with p}. Let C be the closure of {[p]: Ipl (0)=  0} = ~ under finite 
boolean combinations. Note that since C is closed under finite intersections and 
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- [ p ]  is in .~(t~) for any p in (?, we have that .~a(C)=~a( t~)  for all ~ 1 .  By 
Lemma 10 a is the least such that .~( t~)  =B.  Since I~(O,{x}) is countable and 
separative, B is separable and nonatomic and hence isomorphic to BM. 

Remark. The theorem above is false for u = tom since for any countable C which 
generates BM, at some countable stage every clopen set is generated and after one 
more step all of I~ M. 

3. Countably generated Borel hierarchies 

A set X c_ 2 ̀0 is called a Luzin set iff X is uncountable and for every meager 
M, M N X is cou,~ltable. The analagous definition with measure zero in place of 
meager is of a Sierpinski set [30]. For I a tr-ideal in I?;orel(20,) say X is I -Luzin iff 
[VA ~ Borel(2 °') (IA n x I < 2 ~,, iff A ~ I)]. The following the orem was first proved 
by Luzin [12] assuming I is the ideal of meager sets and CH. 

Theorem 14. (MA). I f  I is an to~ saturated tr-ideal in Borel(20,) containin~ 
singletons, then there exists an I -Luz in  set. 

Proof.  Let K = 12 ~1, {A~ : a  < ~} = I, and {B, : a  < K} = Bore l (20 , ) - I  each set re- 
peated K-many times. Choose x~ for a < K ,  so that for every ~ x~ is in 
B , ~ - ( I J { A a : [ 3 < a } U { x o : ( 3 < c t } ) .  Clearly if this can be done, then X =  
{x~ : a  <K} is I-Luzin.  If ~," =to~, then it is trivial, and if MA, then this follows 
from [14, Lemma 1, p. 158]. 

The next theorem was proved by Poprougenko [19] and Sierpinski (see [29]). 

Theorem 15, I f  ~4 c 2 °, is a Luzin  set, then ord ( X ) =  3. 

Proof. Si~ace every Borel set B has the property of Bake,  B = G A M  where G is 
open and M is meager. But M O X = F  is countable hence F~,, so B O X - -  
( G A F )  O X showing ord (X) ~< 3. Now choose s e 2 <~ so that [s] n x is uncounta-  
ble and dense in [s]. If D c [s] O X is countable and dense in Is], then D ~  G n X 
for all G ~ G~, so ord (X) ~ 3. 

A modern example of a Luzin set arises when one adds an uncountable (in M) 
number  of product generic Cohen reals X to M a countable transitive model of 
ZFC. M [ X ] k " X  is a Luzin set". See also Kunen  [10] for more on Luzin sets and 
MA. 

In contrast to the boolean algebras Szpilrajn [29] showed: 

Theorem 16. I f  X ~_ 2 ̀0 is a Sierpinski set, then ord ( X ) =  2. 
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Proof. The proof is similar except  note that any measurable set is the urdon of an 
F~ set and a set of measure zero. 

The following theorem generalizes these classical results using a lemma of 

Silver (see [14, p. 162]) that assuming MA every X c _ 2  °' with Ixl<12°'l is a O set, 
i.e. every subset of X is an F,  in X. 

Theorem 17. (MA). There  are uncoun tab le  X ,  Y c_ 2 ̀ 0 such  that  ord ( X ) =  3 a n d  

ord (Y) = 2. 

Proof. Let  X be I-Luzin where I is the ideal of meager  Borel  sets. For  any 
meager  set M choose F a meager  F~ with M c F. By Silver's Lemma there exists 

Fo an F,~ set such that Fo ¢7 F f7 X = M f7 F f7 X = M f7 X. Thus every meager  set 
intersected with X is an F~, set intersected with X and this shows as before 

ord (X) = 3. For  I the ideal of measure zero sets analagous arguments work. 

After  I had shown that it is consistent with Z F C  that V a ~ t o t 3 X c _ t o "  

ord (X) = a, Kunen showed that in fact CH implies Va <~ to~ 3 X  ~_ to '~ ord (X) = a. 
The following theorem sharpens his result slightly. 

Theorem 18. I f  there exists a L u z i n  set, then for  a n y  ct such  that  2 < el <~ to~ there is 

an  X c_ 2 ~ such  that  ord (X) = ct. 

Proof'. Let  Y be a Luzin set ~vith the property that for every Borel  set A _c 2 ~ 
(A f7 Y is countable iff A is meager). Such a set always exists if a Luzin set does. 
By Th,-.orem 13 there is a C c_ frOM countable such *hat C generates ~M in exactly 
a steps and C is closed under finite Boolean combinations. Let  C ={[Cn]: n ~ to} 

~vhere the C,  are Borel subsets of 2 ~' and [C,,] is t'ae equivalence class modulo 
meager  of C,,. For x , y ~ 2  °" define x ~ y  iff for all n- ' , ,~ ( ~ C ,  iff ,~E C,).  We 
claim that for each x ~ 2 '~ the ~ equivalence class r.f x is meager.  N,,te that any 
element  of the a -a lgebra  generated by {C, : n < t o .  is a union of ~ equivalence 
classes. If s6me ~ equivalence class E is not meager,  then there are Ko and K~ 
disjoint nonmeager  Borel sets such that E = KoU K~. Since {[C,]:  n < to} gener- 
ates BM there are Lo and L~ in the tr-algebra generated by {C,, : n < to} such that 

[Lo]=[Ko] and [L1]=[K1].  For  some i, Li is disjoint from E, but  then L~ is 
meager,  contradiction. By shrinkin~ Y if necessary we may assume that for all 
x, y ~ Y (x = y iff x ~ y). Let  R = {C, n Y : n < to}, then R2 contains every counta- 
ble subset of Y. It is easily seen that K ( R )  = a, so by Proposit ion 2, we are done. 

Theorem 19o (MA). For a n y  et < to1 there is an  X c_ to w such  that  a <~ ord (X) 
~ + 2 .  

Proof.  For tx<to~ let ~ ,  be the partial order  P~(0,  to~). Let  T~ be the normal 
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tree of rank c~ used in the definition of P . .  T~={seT,,:ISlT,=O}. If G is 
P . -gene r i c ,  then G is completely determined by the real y~ : T~ ---. to <~ defined 
by Yc(S)= t iff {(s, t)}e G, Each condition p ~ P~ can be thought of as a statement 
about  yc~. Let q ,  ={y e ca°' :y codes a map ~:T~* ~ oJ <~ and p(~) is true}. It is 

easily seen that for any pelP~ there is i B < u  such that Ct, is I1~/~. 

Lemma  20. If B,~ is the complete boolean algebra associated with P,, and X .  is ¢o" 
with the topology generated by basic open sets {C, :p ~ } ,  then B,, is isomorphic to 
the boolean algebra of regular open subsets of X,.. 

Proof. Given A c X , ~  a regular open set let Dp,={pe lP . :C ,  c A}. The map 

A ~ Da  is an isomorphism. 

Define I~ to the or-ideal generated by II~,~ sets of the form ¢0 °' - U {C~ : p e D} 

where D is a maximal antichain in IDa. 

Lemma  21. a is the least ordinal such that for every Borel A there is a lf,~ B such 
that A A B  e I,. 

Proof.  Note first that !~ is the ideal of meager  subsets of X~. If D is a maximal 
antichain in P . ,  then U {Co : p ~ D} is open dense in X, .  so every element  of I .  is 
meager  in X. .  If C is closed nowhere dense in X~, then let Q =  
{p e P : C, o C = O}. Since Q is open dense in P~, we can pick D _¢ Q a maximal 
antichain. Thus C ~_ ¢o ~ - U {Co : p e D} and every meager  subset of X .  is in I~. 

Since A is Borel in X~ there is a regular open set B in X~ such that ( A A B ) s  I~. 
Let  Q = {p cD~ : C  o c_ B}. Pick D __q Q an antichain which is maximal with respect 
to being contained in Q. Since B is regular open, B = U {Co : p ~ D}, so B is !;~ in 
¢o". To see that a is minimal note that for s ~ T~ with Isl-r,, =/3 there is no B I;~ in 
o) '° with (C~.~IdxB)~ I,. 

Now let X c  ¢o °' be I . -Luzin .  Then ord ( X ) ~ a  since for any A and B Borel  in 
o) ~ ((AA13)e L iff I(AAN)nXI<IXt). But ord (X)<~a +2  follows from the fact 
that for all B in I .  there exists C in I~ N ~ +t with B _c C, just as in the proof of 
Theorem 17. This concludes the proof  of Theorem 19. 

Remarks. (1) If V =  L, then using the ~ well-ordering of L n 2  ~ we can get 
X ~ 2  ~ a A~ set with o r d ( X ) = a  for any a~¢o~.  If X is I1~1 (or I~I), then 
X = A A M  where A is I1 ° and MeI,~, so X cannot be l . -Luzin .  

(2) A finer index can be given to a set X ¢_ ~o '~ by considering the classical 
Hausdorff difference hierarchies. A set C__c_ ca '° is a /3-11~', set iff there exists 
D~ ell°~ for 3~</3 such that the D~'s are decreasing and D~ = U..,,<,,, D~ for A limit 
and C = U  { D ~ - D , + ~ : , / < / 3  and 3, even}. It is a theorem of Hausdorff  that 
~ + ~ =  U { /3 -U° :B<~o~}  (see [11, pp. 417, 448]). It is also not  hard to show, 
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using a universal set argument, that there exists a properly /3-11~ set for all 
a,/3 < to~. Accordingly define H ( X )  to be the lexicographical least pair (a , /3 )e  oJ~ 
such that for any Borel set A there exists B a/3 - I ! ~  set such that A f i X = B  f i X .  
If X is a Luzin set (Sierpinski set), then H ( X )  = (2, 2) (H(X)  = (2, 1)). It is easily 
shown that in Theorem 22 N ~ " H ( X , .  ~) = (a + 1, 1)". It is not hard to see that for 
C a countable closed set H(C)  = (1, a)  where a is the Cantor-Bendixson rank of 
C. 

Theorem 22. It is relatively consistent with ZFC that for any uncountable X c_ 2 °, 
ord (X) = tot. This can be generalized to show that for any successor ordinai /30 such 
that 2~</3o<to3, it is consistent that 

{13:3X g 2 ~ uncountable ord (X) =/3} = {/3 :/3o ~/3  <~ tot}. 

Remark. It is true in the model obtained that for any uncountable separable 
metric space X the Boret hierarchy on X has length ~ol. This is true, since if 
[Xl=to~, then since 12~l>~to~ and X can be embedded into I~', X must be zero 
dim6nsional. But any zero dimensional space can be embedded into 2 ~. 

To prove Theorem 22 let M be a countable transitive model of Z F C + G C H .  
Choose (aA :,~ <to2) in M so that fo:r all /3 <to1 {A :ax =/3} is unbounded  in to,_. 
Define P~ for Y~to2 by induction IP° =IP.,,(4~, 2 " f iM) ,  p .+ t  = p ~ .  O .  where O~ 
is a term in she forcing language of IP" denoting P~.(~, M [ G v ] f i 2  ~) for any Ga 
P ' -gene r i c  over M and at limits take the direct limit. 

Call p e P  ~: nice if it has the following properties for all V </3. 
(1) P(3') is a canonical name for p* U {(s, z) : s e F} where p* is a function from 

some finite subset of {s e T~:  [sl =0}, F is some finite subset of Is e T~ :  Isl >0}, 
and each ~- is forced with value one to be an element of 2". 

(2) For each ( s , r )ep (3 , )3 t ,  e 2  <~ such that p ITI t - "{ ,c_r"  and if (s,~), 
( s~n ,  .r') are in P(T) (or ( s~n ,  t )ep*) ,  then t, and t,'(t) are incompatible. 

It is not  hard to see by induction on/3  that the nice p are dense. For the rest of 
the proof we assume all p are nice. 

For Q _tip and 0 a sentence we say that O decides 0 iff {p ziP: there is a q e O 
such that p~>q and (ql~-"O'" or qlr-"--n 0")} is dense in 1~. For any H~_ 2 ̀0 define 
IPl (H) and Ir[ (H, p) for p ei~" and 1- a P" term for an element  of 2 ~ by induction 
on T. 

(1) For pcP°=P~ , , (~ ,  2 ~ f i M )  define 

IPl (H) = max {Is IT.0:3x e 2 . . . .  H (s, x ) e  p}. 

(2) For p ~ W ~ define 

IPl (H) = max {Ip I T[ (H), Iv[ (H, p IT):  (s, T)~ P(T)}- 
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(3) For p ~ Ph define 

IPl ( n )  = sup {IP I 3'1: v < X}. 

(4) Define 1~'1 (H, p) is the least/3 such that for any n e ~0 {q e P  ~ :q incompati- 
ble with p or [q[ (H)<~/3} decides '9"(n)= 0" 

p,o~=p is not  a lattice, however, it does have one similar preperty: 

Lemma 23. Suppose G is P~' -generic over M and for i < n < to q~ e G and Iq~l (H) < 
[3, then there is a q ~ G  with Iql (H)< /3  and q~q~ for all i < n .  

Proof. The proof is by induction on a. For ct = 0 or a a a limit it is easy. So 
suppose ot = ( 3 +  1 and Gt~ x G ~ where G o is Pa-gener ic  over M. Find Fc_ G o 
finite so that for any q ~ F  with Iq l (H)< /3  and for any i and j less than n if 
(s, z) e qi((3) and (s ~ k, ÷) e q~(/3) (or ( s -  k, t) ~ qj((3) where t e 2<~), then there is 
r e  F such that r l l - ' :~¢ ÷(t~ ~')". By induction there is q in Ga such that Iql ( H ) <  
/3, for all t ~ r  q > ~ ,  and for all i < n  q>~q~l(3. Define q(/3) to be equal to 

U {q,((3): i < n}. 

Lemma 24. Given Po a countable subset of I~ ~ and Qo a countable set of ~ terms 
for elements of 2 '~, there exists H countable such that for every p e Po and T ~ Qo 

Ipl (H)  = I~1 (H, O) = 0. 

Proof. This is easy using c.c.c, of IP ~. 

Let IP[ = p(H) and Ir I ( p )=  izl (H, p). for some fixed H. 

Lemma 25. For each p ~1~ ~ and [3 there exists ~ e P "  compatible with p, ]Pl < (3 + 1, 
and for every qelP '~ with Iql</3, /f ~ and q are compatible, then p and q are 
compatible. 

Proof. The proof is by induction on a. For a = 0 this is just Lemma 8 of Section 
1. For a limit it is easy. From now on assume the lemma is true for ~. 

Define for x, y e 2 ~, x is lexicographically less than y iff 

3n W n  < n (x(m) = y(m) and x ( n ) <  y(n)). 

This is the lexicographical order. For C c_ 2" a nonempty dosed set let Xc be the 
lexicographically least e lement  of C. 

Claim 1. Let (7 be a term in ~'~ and poelP ° with IPol < [3 + 1 such that poll-"C is a 
nonempty closed subset of 2 '° ' ' .  Suppose for every G IP °-generic with poe G, and 
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s~2<~(M[G]~"[s]n(7=O '' if[ ~q~G,  Iql</3, and ql~-"[s]nC=fl"). Then 
IxcI (p,,) </3 + ~. 

Proof. First we show that given any p e l P "  with p ~ p . ,  if s ~ 2  <~, 

p l l - " [s ]nCT~O",  then there exist 13~lP" compatible with p, l#l < /3 + l, and 
/3 tl-"[s] N (7# O". Let p' be as from Lemma 25 for p. By using Lemma 23 obtain/3 

compatible with p,~3>~p', /~>Po, and 1#1</3+1. I claim i~ lk" [ s ]n~?#O" .  Sup- 
i,ose not then there exists G IP°-generic, f ie  G, and M [ G ] e " [ s ] O d ? = O " .  So 
there exists q ~ G, [q[ </3, and q IF "'Is] N d" = 0".  But then since q is compatible with 
/~ it is compatible with p' and hence with p, contradiction. In order  to show 
Ixcl ( p . ) < / 3 + l  it suffices to show for every P~>Po and n ~ o  there exist / ~ e ~  

compatible with p, 1/31 < 13 + 1, and there exists s ~ 2" such that/3 Ik"Xc t n = s".  So 
given p and n find r>~ p and s ~ 2" such that r l k"Xc tn  = s".  We have just shown 
there exists ~ compatible with r with 1~1</3+1 and f t k " [ s ] n C # 0 " .  Let  G be 
P" -gener ic  containing r and ~. For each t e 2 ~ ~ with m + 1 ~< n and for all k < m 
(t(k) = s(k)) and t(m) < s(m), choose q, ~ G with [~.1 </3 and q, It-"[t] n C = 0". 
(There are only finitely many such t). Choose q ~ G with Iql </3 + 1, q I> ~, and 
q 1> q, for each such t (q exists by Lemma 23). Then q I k " x c l n  = s". 

For p and q compatible define p U q Ik"0"  to mean that for every r, if r ~> p and 
r>~q, then r lk"0" .  For r a P~ term for an e lement  of 2 ~ and pEIP", define 
C(~-, p) a IP ~ term so that for any G which is P~-gener ic  (it need not contain p) 

C~;(~,P) = n {D~:there exist q ~ G ,  Iql</3, [? l (q)</3 ,  q l k " ÷ ~ 2  ~' ' ,  p and o are 
compatible, and p Uqlk"~-6D÷"}.  D is a universal 11~ subset of 2 " x 2  °' 
(VK ~ 11~ 3x ~ 2 ~ K =D~ ={y :(x, y)~ D}). 

Claim 2. Let ~ be gi,Jen by Lemma 25 for p ~ iP ''~ (i.e. for all q ~ IP" if Iql< /3, then if 
q and () are compatible, then q and p are compt~tible). Then f) and C('r, p) satisfy the 
hypothesis of Claim 1 for p. and (7. 

Proof.  Suppose M[G] ¢''[s] n C(r,  p) = O". By compactness there exists n < ~, 
q, 6G,  "q for i<~t  wi~h [q~]</3 and Ir~[(qi)</3 so that pUq~lk" 'c6DT'" and 

M [ G ] ~ " N  {D,. : i < n } N [ s ] = f l " .  Let ÷ be a term for an e lement  of 2 ~ so that 
D~ = n {Dr, : i < n} and q ~ G with q ~ q, for i < n and Iq[ </3. (÷ can be chosen so 
that t41 (q)</3  assuming some nice properties of D). Since q and 0 are compati-  
ble. q and p are compatible and q U p II-"r ~ D÷". Since M[G]~"D÷ n [ s ] =  O" by 

compactness the~e exists m c ~o so that if t = ÷Gt m then for every x _~ t, x 6 2 °, 
D ~ N [ s ] = ~ .  Since I÷l(q)</3 there exists ~ > q  an e lement  of G, IO[</3, and 

Ik"÷ I m = t"; hence ~] Ik"[s] N C(r,  p) = ~". The fact that 0 Ik"C(~-, p) 7 ~ O" fol- 
lows from this since if not there exists q compatible with ~3, Iql </3, and q tl-"[O] n 
C(~-, p ) =  ~". But then q is compatible with p contradiction. 

We now return to the proof of the a + 1 step of Lemma 25. 

Assume p c P  '~ +~ is nice. Let  (s~, r~) for i <  n be all (s, r ) ~  p(a)  with Is[/> 1 and 
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let ~ = (~'o, ~'~ . . . . .  ~-,_~) (where ( . . . . . .  ):(2'°)" ~ 2 °' is some recursive coding). 
Let  ~ I~ be as given from Lemma 25 for p I,.  Let  ~ be the lexicographical least 
e lement  of C(~,pI~) .  By Claim 1 and 2 I~'l(t~I,,)</3+!. Now let 

(~(a) = {(s, t) ~ p ( a ) :  Isl = 0} t3 ((s,, rD: i < ,:', 

(?t = (~'I~ . . . . .  rt,~_ 0). Since 0tt-"C(~, p~) is included in 1-[~<, [s~.]",/~ is a condition, 
and p are compatible,  also 1~1</3÷ 1. N o ~  suppose q~P"+~ compatible with 

~, [ql</3, and q and p are not  compatible.  Let  G be P~-gener ic  with/3 I~ and q I~ 
elements  of G and M[G]~"O(a) and q (a )  are compatible" .  If we think of p(a) as 
a s tatement  about ? i.e. p(a)(~), then O(a)=p(a)(~'t). Since p and q are 
incompatible but p,~ and q,  are compatible ( p I ~ U q l , ) ~ " p ( a )  and q(a) are 
incompatible".  D(~) -~"p (a ) (q )  and q(a )  are incompatible" is a I1'~' s tatement with 
parameters from q(a) about ?. Thus we conclude that M [ G ] ~ " p ( a ) ( ~ ' )  and q(a)  
are incompatible",  contradiction. This concludes the proof of Lemma 25. 

From now on let P = P ' %  

Lemma 26. Suppose [.~[ = O, B(v) is a ~'r~ predicate,/3 ~ 1, with parameters from M, 
and p~lP is such that pl~-"B('r)"; then there exists q ~  compatible with p, 
Iq[ ( H ) < / 3  and q I~-"B(~)". 

Proof .  The proof is by induction on /3. 
Case 1, [3 = 1. 
Suppose p tb"3n R(x  I n, T I n)"  for R recursive and x ~ M. Let G be P-gener ic  

with p e G .  Choose n~o~ and s~2"  so that M[G]~"R( In ,  TIn)  and r l n = s  ''. 
Choose q ~ G with Iqt = 0 and q I~- TIn = s". 

Case 2. /3 is a limit ordinal. 
If pl~-"3nB(n,z)",  then 3/5>~p /~I~-"B(n,,T)" and B(no, v) ~ for 3~</3, so 

apply induction hypothesis to /5. 
Case 3. /3 + 1. 
Suppose p Ib"3n B(n,  r ) "  where B(n, v) is 11~ with parameters from M. Choose 

r ~ p and no~ to so that rl~-"B(no, ~)". By Lemma 25 there is q compatible with 
r, Iq[</3 + 1, and for every s, Isl </3, if q and s are compatible, then r and s are 
compatible, ql~-"B(no,~')" because if not, then there is q'>~q such that 
q'!b"B(no, T)", and so by induction there is s with [sl</3 compatible with q'  and 
s fb"B(n0, T)"; but then s is compatible with r, contradiction. 

Now let us prove the first part of Theorem 22. Let  G be P-gener ic  over  M. We  
claim M [ G ] ~ " f o r  every X c_ 2 °, and ~ < to~ if IXI = tot, then ord (X)>~ a + 1'% But  
since any such X is in some M[Go] for /3<to2, we may as well assume X ~ M ,  
txo = a + 1, and we must show M[G]g"ord (X) >/a  + 1". Let  G~) be the l l  ° set 
created by G fqP,,,(0, 2 ̀0 f3 M). Suppose that M [ G ] ~ " t h e r e  is K a ~ set such that 
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K N X = G~o~ N X " .  Let  • be a term for the parameter  of K. Choose p e G such 
that p ~"Vz  s X (x s K iff z ~ G,~y ' .  By Lemma 24 there exists H in M countable 

so that [r[(H,¢)=[pI(H)=O. Let z ~ X - H .  Define l ~ s ~  by 0 (0 )=  
p(0)U{((0), z)} and 0 ( a ) =  p(a) for a > 0 .  Since /) says z ~ Gto), 01k"z ~ K " .  By 
Lemma 26 there exists q compatible with /~, Iq ! (H)</3 ,  and q l k " z e K " .  By 
Lemma 23 there exists t~ with [t~(H)</3, ~l~q, and t~>p. Since [(0)[~o=a, 
((0), z) ¢ t~(0), there exists m e to such that r defined by r(0) = q(0) U {((0, m), z)} 

and r(a)=~l(a) for a > 0  is a condition. But this is a contradiction since rlk 

"~z ~ G~o) iff z ~ K) and z ~ K and z¢  Gto/ ' .  
Now we prove the second sentence of Theorem 22. Let  X = U {X~ :/3o ~< ct < to 

and a a successor} where each X~ is a set of to~ product generic Cohen reals. Let  
M~=M[X]. Define in Mo the partial order  IP ~ for 3'~to~ so that P~*~ = P ~  * O~ 
where Q~ is a term denoting: 

Case 1. ~ , ( 0 ,  Mo[G.,]A2 ~) or 
Case 2. Pa(Y~,Xe U F) where Yv is a Borel subset of Xa in M,,[Gv] and 

F = {x e 2 ~ : x eventually zero}. 
Case 1 is done cofinally in to2 and Case 2 is doae  in such a way as to insure: 

M ~ , [ G J ~ " F o r  every successor ordinal /3 with / 3 ~ / 3 < t o ~  and Y Borel  in X~ 
there is a 3' such that Y = Y~". First we show that essentially the same arguments 
as before show that M o [ G j ~ : " F o r  every X ~ 2 ~ uncountable ord (X)/>/3o". This 
will not use that the X~ are made up of Coiaen reals, hence any of the 
intermediate models would serve as the ground model.  So suppose Case 1 occurs 
on the first step, Y ~ M,, is uncountable,  /3,, = 3" + I,  and Mo[G~.]~"Y n G,~, = 

Y N J  for some J ~ , ~  . Given L g to: define PL as follows. 
For a ~ L :  
Case 1. PT' +~ = P ~ * P ~ . ( ~ ,  M [ G L ] N 2  ~) where G L is P~'-generic over  Mo. 

Case 2. P~+~ =PT.*IP3(Y,~-F, X~ U F) (where we assume L has the property 
that when Case 2 happens for ct ~ L then Y), is a Borel subset of Xt~ coded by 
some term z~ in P~'). 

For a ~ L :  

Ilz~_ +~ = ~ *  (singleton partial order). 

Note that by using c.c.c, of P ~  we can find L ~ to2 countable,  so that the Borel 
code for the above J is a P~~ term and L has the property ment ioned under Case 
2. For a a limit ~_ is the direct limit of ( ~ : / 3  < a ) .  

Lemma 271. If N ~_ M is a model of ZFC and G is Pa(O, N n 2 ~) generic over N, 
then G NP~(O, M N 2 ~') is IPB(0, M n 2 ~) generic over M. 

1 I would like to thank the referee for suggesting this proof of Lemma 27 and thus eliminaling the 
need for Lemma 28, A similar argument is utilized by J, Truss, "Sets having calibre ~L", in: Logic 
Colloquium 76, Studies in Logic, Vol. 87 (North-Holland, Amsterdam, 1977), 
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Proof. It is sufficient to  show that if A ~ M and A is a maximal antichain in 
~ ( 0 ,  M A 2  °') (wl~ere /3 < to~) ,  then A is also a maximal antichain in Po(0, N f3 
2 ~) for any N ~ M which is a transitive model of ZFC. But by c.c.c. (in M), A is 
countable in M, so this result is immediate by absoluteness of I1~ predicates. 

Gi~.,~n any G P~-gener ic  let G L be the subset of l ~  generated by the rank zero 
conditions in G. The preceding lemma enables us to prove: 

Lemma 29. For any a if G, is ff~'~-generic over Mo, then G~ is P~-generic over Mo. 

Proof. This is proved by induction on a. For c~ + 1 ¢~ L it is immediate. For 
a + 1 ~ L Case 1 is handled by Lemma 27 and the product lemma. Case 2 is easy 
as Pt~(Y,,-F, X~ U F) is the same partial order in either case. For ct limit ordinal 
let A ~_p~' be dense, we show {q ~P~ :zip ~ A, p <~q} is dense in P~. If q ~P~, then 
q ~ P a for some/3 < a. Let za9 = {pl/3:p e A}, then 3~ is dense in P~. Hence if G~ 
is P~-generic with q e G,,  then since G~; is P~-generic it meets /l~ _ say at p I/3. 
But then q and p are compatible. 

Define for H c 2 °' IP[ (H), ['r[ (H, p) for p 617~_ and ¢ a ~ ' - t e r m  for a subset of ~o 
by induction on a. 

Case 1. ~ + ~  = ~  *~, , (0,  M[GT~]O2~). 

IPl (H) = max {IP I ~/I (H), [P(3')[ (/4, p 13~)} (same as before). 

Case 2. IP "~+~ =P~ *~e (Y~-F ,X ,~UF) .  

IP[ ( H ) =  max {Ipla  I (H), Islr, :x¢  H (s, x)~ p(a)). 

[rl (H. p) is defined as it was just before Lemma 23. Lemma 23 is easily proven 
since in Case 2 we have a lattice. Lemma 24 is also easily proven if in addition H 
is taken with the property that Vx ~ H Va ~ L {p :lpl (H) = 0} decides "x 6 Y~" 
whenever Case 2 happens at stage a. Lemma 25 can be proven for/3 </30 by the 
same argument in Case 1 and by the argument of Theorem 34 in Case 2. Lemraa 
26 follows and so does the claim that Mo[G~,~]~"Kc_{/3 :/3o~</3<to~} ''. 

Next we show Mo[G~]~"ord (X~) =/3 for each /3 successor /3o~ </3 < to~". If 
not, then again we can reduce to some L ~R2 countable; and since each X~ is 
present in Mo, we can relabel L so that for some/3 < to~ and/3~ with/3o<~/3~ < to~, 
Mo[G~]~"ord (Xm)</31" for G o II~-generic over Mo, and on some step before 
we force with Pm(O,X~,UF). Suppose X = { x , : c t < t o l }  and Mo= 
M[{(a, x~) : ct < to1}]. Given H ~_ ~Ol, H ~ M let /2/= {(a, x~) : a ~ H}. Define 1 ~  
M[ff/] for each a </3. 

Case 1. P~[~ =~_~*ll~,,(0, M[G~f]A2").  
Case 2. ~ ' ~ = P ~ , ~ ( ( Y , - F ) A I ? t , ( X ~ A f - I ) U F )  (assuming Y~ is a Borel 

subset of Xe given by the term ¢, in forcing language of P~). 
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Lemma 30. For any o~<<.f3 if G" is P"-generic over Mo, then G~ is P~-generic 
over M[/2/]. 

Proof. The proof is like Lemma 29 except on ~ + 1  under Case 2. ~ =  
~t~(Y~-F,X~UF) in M[X][G"]=M~, ~ , = I ~ ( ( Y , - F ) O / 2 / , ( X ~ f q / S / ) U F ) i n  
M[/g/][G'~]=M,. Again suppose A~M2 is dense in ~:~, we show 
{p~p~:~q~a,q<~p} is dense in P~. Given p~lP~ let p=rU{{s,,,x,,):n<N} 
where x,, ~X,  _/.7/, N<to ,  and r~P2.  Let Q~ be the partial order for adding N 
Cohen reals. By the product lemma {x, : n < N} is O~-generic over M2, and also 
p ~ M:[{x, : n < N}]. Hence if Vq ~ A p and q are incompatible in 

IP3--Pe((Y,~-F)O(HLJ{x,:n<N}), (Xefh(HU{x,~:n<N}))UF), 

tiaen 30 6 O~/5 It-"Vq e / I  p and q are incompatible in I~" .  Choose y,, ~ F for n < N 
so that p,,=rU{(s,,,y,,):n<N}~l~: and Vm<to31)'>~13Vn<N /) ' lb"y,,[,, ,= 
.~,~ I,,". Since ]q  ~ za Po and q are compatible, then as before p and q can be forced 
compatible by an extension of/5. So p and q are compatible in Px and hence in P~. 

Lemma 31. Given ÷ a term in forcing language of P~, if p e ~ p I~-~ "B( r ) "  where 
B(v) is a If,~ predicate with parameters in M[/2/], then ~q ~g~ compatible with p 
such that q I~-~ "B(r)" .  

Proof. Let G be P6-generic over M. with p 6 G .  Then by Lemma 9 G~ is 
P~-generic over M[/S/]. Since XI sentences are absolute and Mo[G]~"B('r)'" we 
have M[IZI][GH]~"B(T) ''. S o 3 q ~ G ,  qlF-p,~"B(r)". But for any G [~-gener ic  
containing q, M[H][G,~]~"B('r)" whence by absoluteness M.[G]~"B(r)". We 
conclude q I~-~a "B(~-)". 

Lemma 32. Given H = X - { z }  where z~X~,~, 3"<~fi. l ~ / 3 < a ,  p~D~, then 
] t )EP  ~, [ / ) [ (M[/ - ) ]N2")</3+l ,  /~ compatible with p, and Vq~-P ~ if 
]ql (M[/g/] M 2 '°) </3, then (/5, q compatible ~ p, q compatible). 

Proof. This is proved by induction on 3'. For 3' limit it is easy, also for 3~+ 1 in 
which Case 1 occurs the proof is the same as Lemma 25. So we only have to do 
3' + l in Case 2. 

p ~P~ *~m(Y~-F, Xa, U F). Extend p(3~) if necessary so that V(s, x)~ p(3") Vi < 
~o if Isl=A infinite limit I s - i l ~ < / 3 + l < A ,  then 3 j<co (s- i - j ;x)~p(3,) .  Let 
tJ(V) = {<s, x)~ p(3'): Is I </3 + 1 or x ¢ z}. If/5 = (/~ 1% ~(3')) were a condition, then 
just as in Lemma 8,/)  would have the required properties. To be a condition we 
need to know that whenever ((n), x)~/~(3') /5 I3'll-"x~ (Yv-F)" .  

Note that none of these x's are equal to z because z ~ X~+~ so ((n), z)E p(3') 
I(n~l = a ~>/3 + 1 so ((n), z) ~/5(3'). Let G be II~-generic containing p 1% and/~ 13'. 
By Lemma 31 - : : l q~P~nG (so IqI(M[H]n2"°)=O) such that VxVn  if 
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<(n) ,x)eO(T) ,  then q l 4 - " x C Y . c - F " .  By Lemma 23, :qpo~q, Or~/ so 
that [Po[ (M[H]  f3 2 °') < /3  + 1. So (Po, 0(T)) works. 

Immediate  from Lemma 32 we get that: If J is any I~ ,~  predicate with 

parameters  (H = X - { z } ,  z c X~+~, and r is in the forcing language of P~) ,  then 
V p ~ P if p II-"z ~ J " ,  then 3q ~ II ~ [ql (M[H]  f3 2 °') </3, q and p are compatible, and 
q It-"z ~ J " .  So we get our result ord (X .+0  = a + 1 in M o [ G j .  

Remark .  Assuming large amounts  of the axiom of determinacy and therefore 
getting more absoluteness in inner models (see [7]) it is easy to produce an inner 
model  N such that N ~ " F o r  every ct < w~ there exist X c 2 '~ such that ord (X) = c~ 

and for every n < to and A IP., A fh X is Borel in X " .  Similar improvements  for 
Theorem 43 are possible. 

4. The ~r-algebra generated by the abstract rectangles 

For any cardinal A let R x = {A × B : A,  B c_ A}. If R~,, (the or-algebra generated 
by R~) ' is the set of all subsets of k ×)t, then X ~12~1 (see [9, 21]). 

Theorem 33. I f  el. < to~ and there is an X ~_ to ~' such that IX[= ,¢~o~ and every 
subset of X of cardinality less than t¢ is I I °  in X, then R~,. = P(K × to). The same is 
true if e ve~  subset of  X of cardinality less than t¢ is ~ , ,  in X. 

Proof. Consider A _c t¢ × t¢ and ~,uppose (a , /3)~ A implies a ~</3. It is enough to 
show such sets are in R,~,, since every subset of t¢ × K can be writ':en as the union 
of a set above the diagonal and a set below the diagonal. Let  T be a normal ao 
tree and T * = { s ~ T : [ s [ T = O } .  For any y :T*- - -~w <~ define G~, as follows. If 
s e T * ,  then G~=[y(s ) ] ,  otherwise G ~ , = N { w O ' - G ~  " :n<o~}.  Let  X =  
{x. : a < K} and for each/3  < t¢ choose /3 so that for all a ((a,/3) 6 A iff x~ 6 G~).  
For s ~ T define B~ c t¢ × K as follows. If s 6 T*,  then B~ = 
I.] { { c t : t ~ x . } x { ~ : y ~ ( s ) = t } : t ~ t o < ~ ' } ,  otherwise B~ = f-) {(K × K ) - B ~ . : n < t o } .  
Clearly Bo = A and Bo is " I I °  ' '  in R~, and so every subset of t¢ × t¢ is " l l °  ' '  'in 

R ~. Note that ( K × t c ) - ( A × B ) = ( ( K - A ) × t c ) U ( K × ( K - B ) )  and thus if ao is 
even (odd), then R~,, is the class of sets "H° ,  ' '  (,,~o ,,) in R ~. By passing to 
complements  if necessary we have that R~,,= P(K × K). The second sentence of 
the theorem is proved similarly. 

Corollary (Kunen [9]; Rao [21]). I f  there is an X ~ 2  ~ such that [Xl=to l ,  then 
R~, = P(tol × toO. 

The converse of this corollary is also true. Suppose R _c P(to0 is a countable 
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field of sets and { (a , [ J ) :a<[3<to~}e{A×B:A ,  BeR}o,,.  Since this set is an- 
tisymetric we conclude that the map given in Proposition 2 is a 1-1 embedding of 

to~ into 2 ". 

Corollary (Kunen [9]; Silver). (MA). If  K = 12% then R~ = P(,¢ x K). 

Proof.  If  X is I -Luzin  where I is the ideal of meager  sets, then every subset of X 
of smaller cardinality is ~o in X (see proof of Theorem 17). 

For any a~<to~ Xc_to ~ is a O~ set iff o r d ( X ) = a  and every subset of X is 

Borel in X. 

Theorem 34. I f  M is countable transitive model of ZFC, l ~ < a . < t o ~  "~, and X =  
MNto  ~, then there is a Cohen extension M[G] such that M [ G ] ~ " X  is a Q,,,~ t 
set". 

Remark.  This shows that the Baire order  of the constructible reals can be any 
countable successor ordinal greater than one. In fact the argument  shows that in 
M[G] for any uncountable Y___2 ~ with Y ~ M ,  Y is a Q,,,+I set. Thus, for 
example, if M models V = L, then in M [ G ]  there are 1111 Q,,,.1 set~. In Theorem 
55 we show that it is consistent with ZFC that for every a <to~ there is a Q~ set 

(in that model  the continuum is ~,o,÷1). 

The  proof of Theorem 34. M [ G ]  is gotten by iterated ll~,.,~-forcing. Let K = 
122"1. Suppose we are given IP" for some a < K and Y~ a term in the forcing 
language of P~ for a subset of X ( 0 I F " y , c _ X " ) ,  then let IP "÷~ = P ~  *P  .... ~(Y,, X). 
At  limit ordinals take direct limits. P~ may be viewed as a sub-lower lattice of 
L P .... 1(0, X). We may assume that for every set B c_ X in M[G] (G P~-generic 
over M) there exists a such that Y, =B.  This is because I~ K has c.c.c. It follows 
from Corollary ~ that M [ G ] ~ " o r d  (X)~< a~,+ 1 and every subset of X is Borel in 

X " .  
We assume IP°=P~,,+I(0, X). Let  G~o~ be one of the I I °  set determined by 

G NIP °. We want to show that M[G]~"For every K in ~o ,  K N X #  G~o~ N X " .  To 
this end we make the following definition: For  H_c to~, IPl (H) = max <tsl: there 
exists x6 H (s, x)~  p(a)  for some a < K}. Let  supp (p) = {a < K :p (a )  ~ O}. Given r 
a term in the forcing language of IP ~ denot ing a subset of to, we can find H 
included in to ° and K included in K with the following properties: 

(a) H and K are countable;  
(b) for each n ~ to {p ~IP" :supp (p)G K, IPl (H) = 0}, decides "n  ~ r " ;  
(c) Vx ~ H V~ c K {p ~ IP ~ : supp ( p ) _  K, IP[ (H) = 0} decides "x  E Y~". 
H and K can be found by repeatedly using the c.c.c, of IP ~. 
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Lemma 35. If H and K have property (e), then for any p~P"  and /3 with 
1 ~ [3 < ao, there exists 0 ~ P" compatible with p, 1/~[ (H) </3 + 1, supp (0) ~ K, and 
for any q ~ P" if Iql (H) < [3 and supp ( q) ~ K, then [if ~ and q are compatible, then 
p and q are compatible]. 

ProoL The proof of this is like Lemma 8. Let G be P"-generic  over M with 
p ~ G. Choose Fc_ G finite with the properties: 

(1) Vq e F ([q[ (H) = 0  and supp ( q ) ~  K). 
(2) If ((n), x) ~ p(,~) for some n < co, a ~ K, and x e H (so p I a It-"x ¢ Y="), then 

there is q e F f 3 P  ~ such that q lt-"x¢ Y,".  
(3) If ( s , x )ep (a ) ,  ot~K, and (s(=A is an infinite limit ordinal, and Is~il<~ 

/3 + 1 < 1~, then there is a j e ~o such that {(s - i ~j,  x)} ~ p. 
Now let 16 ~P~ be defined by 

iS(a)= [J { r ( a ) : r e F } U { ( s , x ) ~ p ( ~ ) : l s [ < 3 + l  or x E H }  

when a e K  and 0 ( a ) = 0  for a C K .  Note if ((n) ,x)~O(a),  then x e H  since 
I(n)l = a,,~/3 + 1. By choice of F ~ is a condition and also I~1 (n)<[3 + 1 and is 
compatible with p since/~, p ~ G. It is easily checked as in Lemma 8 that 1~ has the 
required property. 

Lemma 30. Let H and K have properties (b) and (c) for r. Let B(v) be a ~ 
(1 <~/3 <~ cz o) predicate with parameters from M and p 6P~' such that p IF"B(T)". 
Then there exists q ~ P~ compatible with p, Iql (H)</3, q I~-"B(~,)", and supp (q )_  
K. 

Proof. The proof is by induction on g. 

/3= 1: plt-"3nR(n,"r t n,x I n)", x ~ M ,  and R primitive recursive. Let G be 
P-gener ic  over m with p e G .  There exist n e r o  and s e2"  such that 
M[G]~"R(n,  "rl n, x In) and T t n  = s". By property (b) there exists q~  G such 
that q lt-"r I n = s",  supp (q) c K, and [q[ (H) = 0. q does it. 

(3 limit: p Ib"3n B,, (~)", B,  ~ ~ ° ,  /3n <~ /3" Choose r ~ p such that r II-"B, (z)" for 
some n. By induction there exist q such that q I~-"B,(~-)", q is compatible with r 
(and hence with p), and Iql (H)</3 ,  supp (q)___ K. q does it. 

/3 + 1: If p I~-"3n B~ (r)" we could extend p to force B, (7) for some particular n. 
So we may as well assume pli-"B(~-)" where B(v) is Fig with parameter  in Mr. 
Since 1 ~/3 < ao by Lemma 35 there is /~ compatible with p, [151 (H) </3 + 1, etc. 
Then  0 l~-"B(r)" because otherwise there is po~ 0 such that polt-"-~B(r)",  and so 
by induction there is q compatible with Po (hence with lJ) Iql (H)</3, supp (q)_~ K, 
and q It-"--a B(~)". By our assumption on 0, since/5 and q are compatible, p and q 
are compatible, but  p lF"B(~)". 
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We now use Lemma 36 to show that for any G P~-gener ic  over  M, M[G]~"For  
every L a ~ , ,  set (L N X ~- G,~)N X ) "  where Gt,~) is one of the I I °  sets determined 
by G f71t ~ ..... ~(0, X). Suppose not; then let ¢ be a term in forcing language of ~",  L 

a ~Oo set with parameter  ~', and p e G such that p lt-"for every x ~ X, x ¢ L iff 
x ~ G , , " .  Choose H and K with properties (a), (b), and (c) with respect to ¢ and 
also so that supp(p)~_K and I P l ( H ) = 0 .  Since H is countable there exists 
x ~ X - H .  Let r = p U{(0, ((0), x))} (so rlkx ~ G(o)). Since rl t-"x ~ L " ,  by Lemma 
36 there exists q compatible with r, Iq[ ( H ) <  ao, and q I~-"x ~ L " .  Since Iq[ ( H ) <  
ao, ((0), x )¢  q(0). Let  ~ be defined by: 

ci(a) = [ p ( a ) u  q(a) 
/p(o) u q(O) u {((0, m), x)} 

if a > O ,  
otherwise (m sufficiently large 

so that ~(0) is condition). 

c~ It-"x ~ L and x¢ G,)) and (x e L iff x e G , , ) ) ' .  This a contradiction and con- 
cludes the proof of Theorem 34. 

Theorem 37. For any ao a successor ordinal such that 2<~oto<tol, it is relatively 
consistent with ZFC that 12°'1= to2 and ao is the least ordinal such that R~7, = 
P(to~ x to2). 

R,mark .  In Theorem 52 we remove  the restriction that ao is a succes.sor (but the 
continuum in that model  is Ro+0. In [ I ]  it is shown that ao cannot be to~. 

Proof. Let M be a countable transitive model  of " Z F C + [ 2 ° I  = [2~[ = to2". Let  
X = to '° N M  and define P "  for ct ~<to2 so that p ~ . l  = p ~  *IP,~.,(Y,, X) where Y,~ is 

a P"  term for a subset of X, and at limits take the direct limit. Dovetai l  so that in 
M[Go~] for every Yc_ X such that I YI ~ co~ there axe to2 many a < to2 such that 
Y,~ = Y. By Theorem 33 R ~  = P(to2 × (o2). 

Now comes the difficulty: we must show some subset of to: × to2 is not in R~;'_~. 
For  the remainder of the proof let (As : s ~ to <°) and (B~ : s ~ to<o) be fixed terms 
in the forcing language of P% such that for every s~ to  <'° 0 1 t - " A , ~ X  and 
B ,~ to2" .  For p~_P~'~ define s u p p ( p ) = { a < t o 2 : p ( a ) ~ ) }  and t r a c e ( p ) =  

{ x ~ X : 3 a 3 t ( t , x ) ~ p ( a ) } .  By using the c.c.c, of P~'~ choose for each x ~ X  
countable sets I~ c_ X and J~ g toe so that: 

(1) for each s ~ to<~ {p c ~o,~ : trace (p) ~ I~ and supp (p) ~ J~} decides "x  ~ A~", 
~nd 

(2) for each y ~ I~ and a ~ J~ {p ~ ' : : t r a c e  (p) c I~ and supp (p) ~_ J~} decides 
" y ~  y ".  

Similarly for a <to2 we can pick countable sets I~ _cX and J ,  c_ (o2 having 
propertie~ (1) and (2) with c~, B~, L,  I~ in place of x, A~, I~./~. 

For x ~_ X and a < (o2 let L(x, a)  = (I~ x J~) U (I~ × J~) and define for p ~ P~-, 

IPl (x, a)  = max {IS[Too: (S, U) e p(~/) and (u, "y)¢ L(x, c0}. 
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L e m m a  38, Fix x e X and a < oJ2 and let Ipl = [p[ (x, a). For any [3 >1 1 and p ~ P ' :  
there is a f~ ~ ~'~ with I/~1 </3 + 1,/~ compatible with p, and for any q ~ 1t ~ 0'~/f [ql< [3 
and f~ and q are compatible, then p and q are compatible. 

Proof. The proof  of this is like that  of Lemma 35. Let  po-~ p so that  if (s, x) s p(3') 
with Is[=A a limit ordinal  greater  than/3  and Is~i l<~/3+ 1, then there i s / ' <oJ  so 
that  ( s - i ~ j ,  x )~  Po(~). Let  G be W%-generic with poe G. Choose F c  G finite so 
that  if ((n), u ) e  Po(30 (so po 13~lt-"u~ Y~") and (u, ~/)~ L(x, a) ,  then there is a q e F 
such that  q l l - "u~  Y~". Define /~ by 

1~(~/) = U {q(~/) : q e F} U {(s, u) ~ Po(3'): Is[ < 13 -~ ] or (u, 3,) ~ L(x, a)}. 

For  any wel l - founded tree "F define Cs(T) for s e T as follows. If Isl-t = 0, then 
C~(T) = A~ × B~, otherwise 

C~(f)= U {(x ×,~9-C,-,('P):i< o4. 

Lenuna 39. I f  x ~ X,  a ~ ~o2, T ~ M is a well-founded tree, s ~ T with Isl~. = [3 where 
1 <. [3 <~ n o -  1, and p ~ D °''- such that p II-"(x, a ) ¢  C~ (T)", then there exist q compat- 
ible with p, Iql (x, a ) <  [3, and q I~-"(x, c~)~ C~(T) ' .  

Proof .  The proof  is by induction on [3. 
Case 1. [3 = 1: Suppose 

p l k " ( x , ~ ) ~  U ( A ~ - i x B ~ - i )  ' ' .  
i~¢o 

So there exists i,,~o~ and 0 and ~ elements  of P'% so that ( p U / ~ U ~ ) 6 P  % and 
using (1) above,  

and 

(t, u)~ ~(v)- ,  (u, ~,)~ I. x £  

and 

f~ lk"x~A~-i ," ,  ~ I~-"y ~ B~-~,". 

So/~ U ~ = q does the job.  
Case 2. [3 a limit ordinal: Suppose 

pL~"(x,.)e U C-,(t) 
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where [s[-r =/3. Find q>-p and l o t t o  such that qtl-"(x, y)~  C.,-~.,(T). Let  

Then 

T,,={t ~ ~':s-i.=_ t or t c  s ~i,,}. 

Isl-r=ls~il-r+l<gL and C~(To)=(Xxto2)-C~- i , , (T) ,  

hence q IF "(x, a ) ¢  C~ (To)" where [s iT,, < /3 ;  so by induction hypothesis there exists 
r compatible with q (and hence with p), Ir[ (x, a )< / 3 ,  and rlt-"(x, ~ )~  C~-~,,(T)". r 
does the trick. 

Case 3. /3 + 1: Since /3 + 1 < a o ,  let q be as from Lemma 38. 

Define D ~ X x to2 by D = {(x, a ) :  x c G~'o) where G ~  is one of the I1°._ t sets 
created on the a t h  step. D is II°,_1 in the rectangles on X x t o  2. We want to show 
it is not :E~,,_~ in the rectangles on X x t o ,  in M[Go,,]. 

Define: (x, a)  is free (with respect to (A~ :s 6 to~,o), (B.~ :s c to<")) iff [x¢~ I,, and 
~ ¢ L ] .  

Lemma 40. f f  T c_ to <~ is well-founded and T ~ M, s a T with Js[T ~< a , -  1, (x, a)  
is free, and Y,=O;  then for every p~lP ~'- such that J p l ( x , a ) = 0  it is not the case 
that plF"(x, a ) a  D iff (x, a)f~ C,(T)".  

Preof.  Let  /~ ~ p by defining 0(3') = P(3') for 7 ¢  c~ and O(a) = p(a) t0  {((0), x)}. 
Then OIl-"(x,c~)ED" so by Lemma 39 there exists q compatible with /~, 
lqt (x, a ) <  a,,, and q I~-"(x, a ) ~  Q ( T ) " .  But (x, a)  free implies that (x, a ) ¢  L(x, a)  
so q does not say "x  ~ G~;/ ' .  Thus for a sufficiently large m < to  r defined by 

r(v) = P(V) U q(3') for "V~ a and r(a) = p(a) U q(a)  U {((0, m), x)} is a member  of 
P ' : .  But rl~-"(x, a)¢~ D and (x, a)¢~ C~(T)", a contradiction since r extends p. 

Since the terms (A~ : s ~ w<'°) and (B~ : s ~ to<~) were arbitrary to start with it 
will complete the proof of the theorem to find lots of (x, ct) free. 

The next lemma generalized Kunen [9, p. 74]. 

Lemma 41. Given II,,I < K for t~ < K +, there exists G c_ K + with IG[ = K + and there 
is S with !SI<~K so that for any a , [ 3 ~ G  irene~3, then I ~ n l a  c_S. 

ProoL We can assume I~ ~ K +. 
Define /~,  z~ < K + for a < K + nondecreasing so that: 
(1) V.~ = sup {/~ : a < h} for ,~ limit; 
(2) z~'s are strictly increasing; 

(3) for a a successor and for distinct /3, T < a Iz~ n I~. ~ ~.~; 

(4) if /x~+l>/~, ~, then for any z > z ~  ~ , ~ I ~ N U { I ~ , : / 3 ~ a }  and 
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Let G = {z~ : a  < r +} and S = sup {/x. : a < ~*}. To see that S < ~+ note that for 
any ~x < r+ J{/3 :/xa.~ > txa and/3 < a}J < ~. This is because I~,. t3 (Ixa+t - ixa) ~ 0 for 
all /3 < a  such that t~o+t > V.~. 

Lemma 42. There exists 2~oc_ X and 2£~ ~ toe with I.~oJ = I~,1 =,o2, for every ct ~ ~,  
Y~=O, and for every ( x , a ) ~  2~<,×2~ (x, a)  is free. 

Proof. By Lemma 41 there exists .~oc_ X and S c_ to2 with J~oJ = to2 and JSJ < to. so 
that for every distinct x, y ~ -~o J~ fq Jy c_ S. Since {J~ - S : x ~ -~o} is a disjoint family, 
we can cut down -~o (maintaining ISol- -o ,=)  and find ~ t  c to2 so that I~ , l  = to~, for 
every a e ~ Y,, = 0, and for every x ¢ ~o J~ fh ~ t  = 0. Applying Lemma 41 again 
find Z l G ~  with I~d=to2 and T c X  with ITl<to2 so that for every distinct cz, 
/3 ¢ .Yt I~ fq I~ c T. Since {I,, - T : a  e .~} are disjoint by cutting down ~t  (maintain- 
ing I,~,l = to~) we can assume Z,, defined to be equal to ~ , ~ - ( T  I.J U {I. : a  ~ Z1}) has 
cardinality `02. 2~ and Zt do the job. 

Lemma 42 finishes the proof of Theorem 37. 

Remark.  There is nothing special about  to2 in the above theorem; we could have 
replaced it by any larger cardinal K with K <~ = K. 

Now we turn to a slightly different problem. For X a topological space a set 
A G X" is projective iff it is in the smallest class containing the Borel sets (in the 
product topology on X m for any m ~ to) and closed under  complementat ion and 
projection (B ~ X "  is the projection of C c_ X "+x iff (~ ~ B iff 3x ~ X x ~  ~ C)). 

Theorem 43. I f  M is a countable transitive model of ZFC, then there exists N a 
c.c.c. Cohen extension of M s1~ch that if M fh to~ = X, then N ~ " Every projective set 
in X is Borel and the Borel hierarchy of X has t,J~ distinct levels (ord (X) = toi)". 

This shows the relative consistency of an affirmative answer to a question of 
Ulam [31, p. 10]. Note that since X × X  is homeomorphic to X (take any 
recursive coding function), if for every B _  X x X Borel {x :3y(x, y)~ B} is Borel 
in X, then every projective set in X is Borel in X. 

Proof.  The proof is slightly simpler if we assume that CH holds in M. We give the 
0roof in that case and then later indicate the necessary modifications. In any case 
12o, J M = J2~l N. 

Construct a sequencc M = .~¢/o G Ml c_ • • • G M,~, = N, by iterated forcing so that 
M~+1 is obtained from M~ by l l°+l-forcing.  On the a t h  stage we are presented 
with a term ~'~ in the forcing language of U z~ denoting a real. Then  letting Y~ he 
the projective set (over X) determined by T~ we let P~÷I = P ~ * ~ + ~ ( Y ~ , X ) .  
What  is being done is that at stage t~ we make Y~ a II°÷~ set intersected with X. 
The reason this will work is that after the a t h  stage our  forcing will not  interfere 
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with the Borel hierarchy on X up to the a t h  level. Since this is c.c.e, forcing we 
can imagine that each X-projec t ive  set in N is eventually caught by some % for 
a< to~ .  So it is clear that NIF"Every  X-pro jec t ive  set is Borel  in X " ,  for any 
N = M[G] ,  where G is P'° ,-generic over  M. Define for H c_ X and p ~ IP, IPl (H) = 
max{lslT...,:there exist a< to~  and x ¢ H ,  ( s , x )ep(a)} .  Given r a term in the 
forcing language of IP ~ denoting a subset of to (3 '<  ¢o~), there exists H ~ X such 
that: 

(a) H is countable; 

(b) Vn ~ to, {p ~IP ~ :[Pl (H) = 0} decides "n  ~ i""; 

(c) V/3 < 3, and x ~ H, {p ~ P "  :[p[ (H) = 0} decides "'x ~ Ye". 

Lemma 44. (Write IPl = IP[ (H)). "'Exactly statement of Lemma 38" for P ' .  

Proof.  Extend P<~Po as before. Let  G be P ' - g e n e r i c  with p . e  G. Choose F c  G 
finite so that: 

(1) q e r - - > i q l ( H ) = O ;  
(2) if ((n), x) e po(c~ ) (so p [,, Ik"x ~ y~") ,  then 3q ~ F n P '~ such that q Ik "x  ~ Y." .  
Define 

0(c0 = U {r (a) :r~F}U{(s ,x )ep , , (a ) : lS l , r ,<[J+l  or x e H } .  

0 is a condition because if ((n), x) ~ p(a)  and l(n)lr,.., </3 + 1, then 0 [,  ~ P I,~ (so 
f, [~ Ik"x~ Y,"  as required). 

The r c F take care of such requirements about x e H. The rest of :he proof is 
the same. 

Lemma 45. If  "r, H, 71 are as above, B(v)  is a ~ predicate for some [3 >~ 1 with 
parameter from M, and p e P "  such that pll-"B(~-)", then there is a q~lP ~' 
compatible with p, Iql ( H ) < / 3  and q I}-"B('r)". 

Proof.  The proof is the same as before. 

We can assume that for unboundedly many a < to1 Y~ =0. Let  G,~(G~,,~) be one 
of the I1~,~ sets determined by G NP~+~(0, X) where Y~,=0. 

Claim. M[G]~"for any L ~  ° (LAX=/= G,  A X ) ' .  

Proof. Otherwise let r be a term for a real in the forcing language tP ~ for some 
-/<to~ such that for some L a l~,] set with parameter  ~- and some p ~ P ~  

p Ik"L N X = G~ N X " .  Choose H with propert ies (a), (b), and (c) with respect to ~-, 
and also t r l ( H ) = l ) .  Let  x ~ X - H .  Define r(a)=p(a)U{(O),x)}  and for / 3 ~ a  
r(/3) = p(/3). Note that r Ik"x ~ G,~" hence r lk"x ~ L" .  By Lemma 45 there exists 
q ~ P ~  compatible with r, Iql(H)</3, and q l k " x ~ L " .  Since xf~H we know 
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((0), x) ~ q(a). Define t~ ¢ P'o, by t~(/3) = p(/3) U q(f3) for /3 ~ a and t~(a) = p(a) U 
q(u)O{((0,  n), x)} where n is picked sufficiently large so ~(a)  is a condition. But  
then ~ IF-"x ~ L and x¢ G ,  and (x ~ L iff x e G~)" and this is a contradiction. This 
concludes the proof of Theorem 43. 

When  the cont inuum hypothesis does not  hold in M the construction of N still 
has to1 steps but  at each step we must  take care of all reals in the ground model. 
That  is P " + ~ = P ~  *Q~ where Q~ is a term denoting ~,{IP,+~(H~,X):x~to 'O 
M[G~]} for G P~-generic  over M. This works since all reals in N = M [ G ]  for G 

P'~,-generic over M are caught at some countable stage. 

Remark.  It is easy to see that if V = L there is an X ~ to '° uncountable H~ set 
such that X ~ L and X × X is homeomorphic  to X. Also by absoluteness it is 
possible to make sure that for every A I~2 t in too,, A n X is Borel in X. This family 
of sets includes those obtained by the Souslin operation from Borel sets in X. 

Theorem 46. (MA). 3X ~_ 2 ~" ord (X) = to~ and Y A  ~ 21 in 2 ~ 3B Borel(2 '°) 
A N X = B A X .  

Proof. Let [B be the c.c.c, countably generated boolean algebra of Theorem 9 
with K(B)=  to~. B - B o r e l ( 2 ' ° ) / J  for some J an 001-saturated ~r-ideal i~ the Borel 
sets. 

Lemma 47. I f  I is an tol-saturated or-ideal in Borel(2~°), then B~ = { A t _ 2  ~ :3B 
Borel 3C ~ I (A A B ) ~  C} is closed under the Souslin operation. 

For a proof the reader is referred to [11, p. 95]. 
By Theorem 14 MA implies there is X c_ 2 ~ a J-Luzin set. For any a < tot there 

is A !I~ so that for every B X °, ( A A B ) ¢ J ,  hence I(AAB)NXII=I2'~[, so 
A Cl X ~  B n x ,  and thus ord ( X ) =  to~. If A is ~I ,  then b3 Lemma 47 there is B 
Borel and C in J with AABc_C.  Since ICNXI<I2O'I by MA 3D~Borel(2o ' )  
( A A B ) ~ X = D O X .  So A A X = ( B A D ) N X .  

This suggests the following question: 

Can you have X c 2 ~ such that every subset of X is Borel in X and the Borel 
hierarchy on X has to1 distinct levels? The answer is no. 

Theorem 48. I f  X c_2 ~ and every subset of X is Bocel in X, then ord (X)<¢ol .  

Proof.  Let X = {x, : a < •} and X,~ = {x~, :/3 < a}. 

Lemma 49. I f  IXI <~ K. every subset o[ X is Borel in X, and R~,, = P(• × K), then 
ord ( X ) <  tol. 
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Proof.  Since every rectangle in X × X is Borel in X × X and R~, = P(~ × ~), every 
subset of X × X  is Borel  in X × X. Suppose for contradiction Va < co~ ~H,~ ~_ X 
not !I~ in X. Let  H =  ~ . . . .  {x~}×H,.  For some a <to~, H is I1 ° in X × X .  But 
then every cross section of H is H~ in X contradiction. 

The proof of the theorem is by induction on IX[ = K. 

For K = to~ it follows from Lemma 49 since Rh °, = P(to! ×tot)- 
For cof (K)= to it is trivial. 

For cof (K)>to~: Va < K choose ~ minimal<to~ so that every subset of X~ is 
I I~  in X (we can do this since X .  is I1~ in X some /3< to0 .  Since co f (K)> to !  
there exists a o <  to~ such that for a final segment of ordinal less than K,/3~ = a,~. 
By Theorem 33 R~,, = P(K × ~) so by Lemma 49 ord ( X ) < t o  t. 

For cof (~)=  tot: Let  -~. 1' K for a <to~ be an increasing continuous cofinal 
sequence. 

Lemma 50. 3 / 3 o < t o t V a < t o t X , ,  is 11 ° in X .  

Proof.  If G.G K ×K is the graph of a partial function, then G ~R~  (Rao [21]). 

This is because if f :  D --~ K where D _ K, then viewing x c_ irrational real numbers 
we have: ( f ( a )  =/3) iff (a ~ D and Vr~ Q(r  < xrt~ iff r < x ~ ) )  where Q is the set of 
rational numbers. 

Then D = {(t~,/3) : a < tot/x/3 < rl.} is the complement  in tot × ~ of a countable 

union of graphs of functions from K into tot. Hence  the set U . . . .  {x~} × X~,, is Borel 
in X × X. Say it is Ilg,.  It follows that each X~ is H ° ,, (3~¢ 

For all ,k <tot  le t /3(h)  be minimal so that every subset of X,~ is lle~A~° in X. If 
the hypothesis of Theorem 33 fails, then 3f:to~--~ ~ol increasing so that for all 

h < o~ t /3(f(h))  < / 3 ( f ( h  + 1)). So for all h < to1 there is some Hx ~- X ...... t which is 
o not II~(f~a~ in X. Since every subset of X , f ~  is o in X llt~r~fltt we can assume 

Hx c (X n ...... -X. , ,~) .  Let  H = I.J x<~, HA. Then H is Ii~. in X for some a o <  to t. 
But for each h, H~ = H n (X_. ...... - X~,,~,). so each H~ is 11 ° .,aX~o.~,,+~t in X, contradic- 
tion. This ends the proof of Theorem ,48. 

- - - /  
/ 



On the length of Borel hierarchies 263 

Remark. Kunen  has noted that Theorem 48 may be generalized to nonseparable 
metric spaces. Let ~ be a ~r-discrete basis for X and assume that every subset of 
X is Borel in X. By using ~r-discreteness it is easily seen that 3 ~ g _ ~  ~/3 <~ot so 
that ~ - ~  is countable and V U ~ : ~ o r d ( U ~ / 3 .  But Y = { x ~ X : V U ~ 3  
(x~  U---* U ¢ ~ ) }  is separable and hence by the theorem o r d ( Y ) < o ~ ,  and so 
ord ( X ) <  ~o~. 

As a partial converse of Theorem 33 we have: 

Theorem 51. I f  ~=12~1, ~<~ =K, and R~, = P ( ~ × K ) ,  then there is X ~_2" with 
Ixl = ~ and every subset of X of cardinality less than ~ is II~,, in X. 

Proof. Let Z ,  for a < K be all the subsets of K of cardinality less than ~. Put 
Z = (.J~<~ { a } × Z ,  and W = { ( a , / 3 ) : a < / 3 < ~ } .  Let {A,, :n<~o} be closed under 
finite boolean combinat ions and Z, W~{A , ,  × A,,  :n, m <  ~,)L,,. The map F:  K---* 
2 '~ defined by (F(a)(n) = 1 iff a ~ A~) is 1-1 and the set X = F"~ has the required 
property. 

For any cardinal K let R(~)  be the least/3 < ~o~ such tha~ R~ = P(K × K) or ~o~ if 
no such /3 exists. 

Theorem 52. It is relatively consistent with ZFC that 12°'1 = ¢o~+t, for every n <~o 
R ( ~ 0 . ) = l + n ,  and R(¢oo,+~)=~o. This can be generalized to ~how that for any 

< o~ a limit ordinal it is consistent with ZFC that R([2~[)= A. 

Proot .  Let M~"ZFC+MA+12~]=~oo,÷~ ' '  be countable and transitive. Let K = 
~o~+t and define P~ for a ~  x so that P~+~ = P "  *P2÷e+~(X,, Y,) where Y ~ 2  ~, 
Y~M, IYol-- ,o~.t, and OlF"X~ ~ Y~". At  limits take the direct limit. By dovetail- 
ing arrange that for any G P~-generic over M, M [ G ] ~ " I f  Yc_2 ~, Y ~ M ,  and 
I Yt = ~o~+~ for some/3  < ~o, then every subset of Y is I12.~÷~° in Y". 

As in the proof of Theorem 34 given any ~" a term for a subset of ~o, find in 
M, H _ 2 ~, K c_ K so that: Let  O = {p ~ ~ : supp (p) c K, IPl (H) = 0}: 

(1) Inl~<oJ~,,, IKl~,o~,,. 
(2) Vn ~ ~ 0 0  decides "n  ~ ¢". 
(3) V/3 ~ K Vx ~ H O decides "x ~ X~". 
(4) If a ~ K and ]Y,i ~< o~,, then Y,, ~ H. 

Lemma 53. I f  H, K have property (3), (4) above, then for any p~P~ and/3 with 
1 ~/3 < 2 + / 3 0  there is ~ compatible with p, IPl (H)</3 + 1, supp (1~)~_ K, and for any 
q if Iq l (H)</3 ,  s u p p ( q ) ~ H ,  and ~ and q are compatible, then p and q are 
compatible. 

Proof. The proof of this is just like the proof of Lemma 35. To check that the/~ 
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gotten there is an element  of ~P~, note that if ((n), x)~/3(a) ,  then x e H. Because if 
x¢/-/  and a ~ K ,  then IYol>~to~,,+, because of (4). Say IY~l=~o~+. so ~ " * ' =  
p"  * Ip,+~÷~ (X~, Y,) and [(n)l.r ..... = 2 + ,/1> 2 +/3o i>/3 + 1, but  then it was thrown 
out, contradiction, 

Lemma 54. Suppose H and K have properties (2), (3), and (4) for r ~_ to. Suppose 
1<~/3~<2+/3o and B(v)  is a If,~ predicate with parameters from M, p ~ P "  and 
pl~-"B(r)". Then NqelP ~ compatible with p, [qt (H)<t3,  s u p p ( q ) ~ K  and 
q I~-"B(r)". 

Proof. This follows from Lemma 53 just as in Theorem 34. 

From Lemma 54 we have that: 
(A) For any y c 2 ~ with Y e M  and n with 1~< n ~ to  (IY[=6~,, iff Y is a 

L~2~,-set). We claim that: 
(B) For any n < t o  there are X, Y~2`0 with [ X I = I Y [ =  to,.., so that if U is the 

usual 11,'~+2 set universal for i1,+2° sets, then U N (X x Y) is not ~,+2° m" the abstract 
rectangles on X x Y. 

To prove (B) just generalize the argument  of Theorem 37, for n = 0  the 
argument is the same. Let X c_2 ~ be in M with [Xl=to,,+2. Choose K ~ K ,  
[Kl=to,÷2, and K ~ M ,  so that for any a ~ K  Y,~=X and 011-"X~=0". Let 
Y = { y , ~ : a ~ K }  where y, is the It,',÷2 code (with respect to U) for G ~ .  To 
generalize the argument allow I~, J~, I, ,  J~, to have cardinality <~to,, and also 
whenever 3 , ~ L ( ~ J , )  and IY~i~<to,, then Y.~I~(Y.~cI,~).  

In M[G]  for any n < t o  R(to,,)= 1 +n .  To see this, let Y~_2 ~ with Y e M  and 
IYl=to,.÷~. If X_c Y and [Xl~to,,, then there is Z E M  with IZ[~to,, and X~_Z .  
Because M ~ " M A "  Z is I! ° in Y and since X is o 1112.,, in Z by (A), we have X is 
11~+, in Y. By Theorem 33 R~::~ = P(o~,,÷ 1 x to,+~). By (B) n + 2  is the least which 
will dc.. 

Thus R(to~) = co. To see that R(K) = to let y c  2 ̀0 with Y ~  M [YI = K, and every 
subset Zc_ y such that [ZI<K and Z ~ M  is X~ in Y (see Theorem 17). In M[G] 
every Z_= Y with IZI<K is ~ in Y, so by Theorem 33 R ~ = P ( K  xK). 

Remark.  It is easy to generalize Theorem 52 to show that for any h <to~ a limit 
ordinal and K > to of cofinality co, it is consistent that 12~1---K ÷ and R(K ÷) = A. 

Tl:~eorem 5$. It is relatively consistenl with Z F C  that 
',a) L2~L = o~,÷,, 
(b) for any a < to1 there is a O,~ sel. 
(c) R ( c o , , ) = n + l  for n < t o ,  
(d) R(tox)= X for ~, < to~ a limit ordinal, 
(e) R(to~.÷,~+~) = h + n [or )t < to~ a limit ordinal and n < co. 
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The  proof  of this is an  easy genera l iza t ion of T h e o r e m  52 and  is left  to the  
reader .  

A set U c_ 2 ~ × 2"  is universal  for the  Bore l  sets iff for every B c_ 2 ~ there  exists 
x ~ 2 '~ such tha t  B = U~ ={y  :(y, x ) e  U}, 

T h e o r e m  56. It is relatively consistent with Z F C  that no set universal for the Borel 
sets is in the g-algebra generated by the abstract rectangles in 2 ~ × 2% 

Proof .  Le t  M ~ " Z F C + - - n C H "  and  let  

Le t  G be  O-gene r i c  ove r  M, then  in M[G] there  is no  set U universal  for the  
Bore l  sets in the  ~r-algebra genera ted  by the  rectangles.  Suppose G is given by 

(y~ : T~.+ t "-~ 2<° : a  < cot a n d / 3  < co2) where  T . ,  t is the  normal  a: + 1 tree used in 
the  definit ion of ~ ÷ ~  and  G m~ are the  II ° sets de t e rmined  by y~. T h e n  as before  

we can easily get for  each  a <cot  tha t  V ~ = { ( x , / 3 : x  ~ G " ~  is no t  ~o in the  

abs t rac t  rectangles  on  (2 ~ x co2). Now suppose  such a U exist ed and  were ~o in 

the  abst ract  rectangles  on  2 ~ ×  2 ~. Choose  F :  co2---~ 2 ~ (necessarily 1-1) so tha t  

V/3 < to2Vx ~ 2 ~ ((x,/3) ~ V ~ ~ (x, f(/3)) ~ U). If U is ~o in {A. x B .  : n < co}, then  
V "  is ~o in {A. ×f -1 ( /3 . ) :  n <to},  contradict ion.  

R e m a r k s .  (1) In [9] K u n e n  shows tha t  if one  adds co2 C o h e n  reals to a model  of 
G C H ,  then  no  wel l -order ing  of o~2 is in R ~ .  

(2) In [1] it is shown tha t  if G is a coun tab le  field of sets with  Bore l (2  ~') c Go,, 
the  o rde r  of G is co~. 

In the model  of T h e o r e m  

included in G~. This  can 
{s, : n < co} = T* where  T is 

56 for any coun tab le  G and  c~ < to t  Bore l (2  '~) is not  

be  seen  as follows. Le t  G = { A . : n < t o }  and let  
a normal  a tree.  Define for any y ~ coo and  s ~ T the  

set  G~ as follows. For  s = s. let G~ = A~(.), o therwise  G~ = f"l {co~' - G~,, : n < co}. If 

U = {(x, y):  x ~ GO}, then  U is " I I  ° ' '  in the  abs t rac t  rectangles  and  universal  for  all 

Bore l  sets, cont radic t ing  T h e o r e m  56, 

5. Pro~ems 

Show: 

(1) If IXt = cot, then  X is no t  a O~ set. 

(2) If R= 2 = P(o2  × co2), t hen  there  is n < co with R~ 2 = P(to2 X CO2)' 

(3) If there  exists a Q~ set, then  there  exists a O,, set  for some n < to. 

(4) If R . ~ =  P(co2 x co2) and 12~1 = to:, ~hen 12°,1 :-- to2. 
(5) 2 If there  is a Q2 set  of size to~, then  every  subset  of 2 ~ of size cot is a 0 ~  set. 

2 Answered by WiLliam Fleissner in the negative; cf. "On O-sets" by Fleissner and Miller, Proc, AMS, 
to appear. 
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(6) If X is a O~ se t  a n d  Y is a Qe se t ,  t h e n  2 ~ < a < / 3  imp l i e s  ] X [ < [ Y [ .  

S h o w  c o n s i s t e n c y  of: 

(7) {a  :X~_ 2 '~ o rd  (X)  = a } = { 1 } U { ¢ ~  <~o~ :c~ is even}.  

(8) [2~1 = ~o~ a n d  for  a n y  X ~ 2 "  if IXl=oJ~,  t h e n  X is a 0 7  se t ,  if IxI  = o~=, t h e n  

X is a Q,.+3 set ,  a n d  if IX[ = co~, t h e n  o rd  ( X ) =  ~o~. 

(9) For  a n y  a < ~ w t  t h e r e  is a HI X wi th  o rd  ( X ) = a .  

(10)  For  any  X c _ 2  ~ if IXl~coz  t h e n  t h e r e  is a n  X - p r o j e c t i v e  se t  n o t  Bo re l  in 

X. 

(111 T h e r e  is n o  G c o u n t a b l e  wi th  X I ~  G,~. (Th i s  is a p r o b l e m  of  U l a m ,  s ee  

F u n d .  M a t h .  30 (19381 365 . )  
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