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{. Introduction

For any separable metric space X and « with 1<a <o, define the Borel
classes T3 and 0. Let 2 be the class of open sets and for > 1 32 is the class of
countable unions of elements of |J {II3:B<a} where Mi={X-A:AcX)}
Hence ) =open = G, II{ = closed = F, 35 = F,, 119 = G4, etc. Note that 32 =), =
set of all Borel in X subsets of X. The Baire order of X (ord (X)) is the least
o < w; such that every Borel in X subset of X is 32 in X. Since the Borel subsets
of X are closed under complementation we could equally well have defined
ord (X) in terms of T} in X or A2=TI2N3? in X. Note also that for X <R (the
real numbers) ord (X) is the least « such that for every Borel set A inR there is a

> in R set B such that ANX=BNX. Also note that ord (X)=1 iff X is
discrete, ord (Q)=2 where Q is the space of rationals, and in general for X a
countable metric space ord (X)=<?2 since every subset of X is Z3(F,) in X.

It is a classical theorem of Lebesgue (see [11]) that for any uncountable Polish
(separable and completely metrizable) space ord (X)= w;. The same is true for
any uncountable analytic (£]) space X since X has a perfect subspace (see [11])
and Borel hierarchies relativize.

The Baire order problem of Mazurkiewicz (see [19]) is: for what ordinals «
does there exist X R such that ord (X)=«. Banach conjectured (see [29]) that
for any uncountable X <R the Baire order of X is ;. In Section 3 we review the
classically known results of Sierpinski, Szpilrajn, and Poprougeako. We show that
it is consistent with ZFC that for cach « =< w, there is an X <R with ord (X) = «. In
fact, we prove a theorem of Kunen’s that CH implies this. We also show that
Banach’s conjecture is consistent with ZFC.

Given a set X and R a family of subsets of X (R < P(X)) define for every
aswm; R, € P(X) as follows. L2t Ry=R and for each >0 if « is even (odd)
let R, be the family of countable intersections (unions) of elements of
U {Rg : B <a}. Generalizing Mazurkiewicz's question Kolmogorov (see [8]) asked:
for what ordinals « does there exist X and R < P(X) such that « is the least such
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that R, = R,,.. Kolmogorov’s question can be generalized by replacing P(X) by an
asbitrary o-algebra (a countably complete boolean algebra). In Section 2 we
prove that for any @ < w, there is a complete boolean algebra with the countable
chain condition which is countably generated in exactly o steps. This answers a
question of Tarski who had noticed that the boolean algebras Borel(2*) modulo
the ideal of meager sets and Borel(2) modulo the ideal of measure zero sets are
countably generated in exactly one and two steps respectively (see [4]). Theorem
12 which is due to Kunen shows that the same answer to Kolmogorov’s problem
(every a < w,) follows from the solution of Tarski’s problem.

Let R={A XB:A, B<2*}. In Section 4 we show that for any e. 2sa<w,, it
is consistent with ZFC that « is the least ordinal such that R, is the set of all
subsets of 2* x2“, This answers a question of M~uldin [1].

For asw, a set X<2* is a Q, set iff every subset of X is Borel in X and
ord (X) = a. It is shown that it is consistent with ZFC that for every a < w, there
is a Q, set. In Section 4 we also show that there are no Q,, sets. However, we do
show that it is corsistent with ZFC that there is an X < 2* with ord (X)= w, and
every X-projective set is Borel in X, This answers a question of Ulam [31, p.10].

Also in Section 4 we show that it is relatively consistent with ZFC that the
universal X} set is not in R,, confirming a conjecture of Mansfield {13] who had
shown that the universal 3! set is never in the o-algebra generated by the
rectangles with X} sides.

Given R ¢ P(X) let K(R) (the Kolmogorov number of R) be the least a such
that R, =R,. It is an exercise to show that tor «=0,1, or 2 there is an
R c P{0, 1}) with K(R)=«a.

Proposition 1. Given R< P(X) then (a) if R is finite or X is countable, then
K(R)=<2. and (b) there exists S < P(Y) such that cardinality of $ and Y is <2
and K(R)=K(S§).

Proef. (a) Note

U ﬂ U Aa,ﬁfy: m U U Aﬂ.f((x).y

ey BBy v v fraasB, @< an v v,

If R is finite or X countable, then M., .5, can always be taken to be a countable
intersection,

(b) Let V, be the sets of rank less than «. Choose « a limit ordinal of
uncourtable cofinality so that R, X € V... Let (M, €) be an elementary substructure
of (V,, &) containing R and X such that M* ¢ M and |M|<2™, Now let Y=
XNMand S={ANY:AeRNM].

Mazurkiewicz’s problem is equivalent to Kolmogorov’s problem for R a
countable field of sets (that is closed under finite intersection and complementa-
tion).
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Proposition 2. (Sierpinski [23] also in [30]). Given R < P(X) a countable field of
sets there exists Y <2 such that K(R)=ord(Y). (That is we may reduce to
considering subsets Y of 2* and relativizing the usual Borel hierarchy on 2* to Y.)

Proof. Let R={A, :necw} and define F: X — 2 by Flx)(n)=1iff xe A,. Put
Y=F'X.

Define K={B:2<B <w, and there is X € »” uncountable with ord (X)=g}.
What can K be?

Proposition 3. K is a closed subset of w,.

Proof, Given A< w” and ncow define nA={xcw*:x(J)=n and Jyec A Vn
(x(n+D=y(a). If X={J),..nX, then it is readily seen that ord(X)=
sup{ord (X,,):ne o}

Note that K is the same set of ordinals if we replace »” by R the real numbers
or 2*. This is true for R because if X <R and R— X is not dense, then X contains
a nonempty interval, hence ord (X) = w,; but R—- X dense means we may as well
assume X 3 irrationals = w®,

In the definition of K(R)=w for R < P(X) we ignored the possibility that the
hierarchy on R might have exactly w levels. i.e. R, = |J {R, :n <w} but for all
n<w R,#R,,. In fact a Borel hierarchy of length less than w, must have a top
level.

Proposition 4. If R<c P(X) is a field of sets, A is a countable limit ordinal, and
R, = U {R, :a <A}, then there is @ < X such that R, =R

an *

Proof. Using the proof of Proposition 2 we can assume X < 2* for some « and
R={[s]NnX:3D e[k]"*(s€2P)} where [s]={(fe2" :f extends s}. For each A in
R, there is T < « countable such that for any f and g in X if /| T=g[ 7T, then
fe A iff ge A, In this case we say T supports A. Choose T < « countable so that
for any D& T finite and s: D - 2 if ord (X N[s]) = A, then for any o <A there is
an Acls]lin R,,,— R, such that T supports A. By taking an autchomeomorph-
ism of 2 we may assume T=w. Define L to be fse2ord ([s]NnX)=A}.

Claim. For any s in L there are t and { in L incompatible extensions of .

Proof. Without loss of generality assume s ={ and there is fe2” such that for
cvery se L scf. For each n < define ¢, in 2" by t,(m)=f(m) for m <n and
t,(r)=1~f(n). Then [flUl {{t.]: n <w} is a disjoint union covering 2*. If there
is a Bo<A such that for all n<e ord ([, ]NX)<B,. then for all A in R,
supported by w A is in Ry .. This is because A N[f}=0 or X N[fl< A. But this
contradicts the choice of w.
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On the other hand, if there is no such bound B,, choose Z, = [t,] with Z, € R,
so that for every B <A there is n <o with Z, ¢ R,. But then {J {Z, :n <o} is not
in |J {Ra:B <A} This proves the claim and this last argument also proves the
proposition from the claim.

Remark. If R P(X) and R, =J{R,:n<w} and there is no<w such that
{X-A:AeR}<R,, then there is n, <w such that R, = R,, . Willard [32] shows
that for any o <, there are R and X with R = P(X) such that « is the least
ordinal such that {X-A:A eR}cR..

1. Some basic definitions and lemmas

For T< 0™ T is a well-founded tree iff T is a tree (if t 2s&¢ T, then re T) and
is well-founded (for any fe w® there is an n <w such that f{n¢ T). For seT
define |s|y (the rank of s in T) by sl =sup {{t|/r +1:scte T}. Often we drop T
and let |s|=|s|;. T is normal of rank a means that:

(a) T is a well-founded tree;

(b) 19l=a (P is the empty sequence);

() (seTand |s|>0)— Vi<w (s"ieT);

(d) (seTand |s|=B+1)— (Vi<w (s ~il=B));

(e) (se T and |s|=A where A is a limit ordinal) = (VB <A {i:|s ~ij< B} is finite
and Vi<w |s"i|=2).

Note that for any n <w the tree ©™" is normal of rank n. If @, for n <w are
strictly increasing to « (or «, = where a=f+1) and for each n<w T, is
normal of rank a, =2, then T={@}U{n "s:n<w and se T,} is normal of rank a.
We often use T, to denote some fixed normal tree of rank a. Let M be the ground
model of ZFC. Working in M for any a <, and Y X < w* define the partial
oxder P, (Y, X) (the order is given by inclusion). Fix some T normal of rank a.
peP (Y, X) iff pc(T—{#H>x(XUw=*) and (1) through (5) hold.

(1) p is finite.

(2) {s[=0 implies that if (s, x)& p, then x € @™ and if (s, y)€p, then x =y. (So
if T*={seT:{s|=0}, then p (T**x(XUw=*)) is a function from a finite subset
of T* into w=*)

(3) If |s|>0 and (s, x)e p, then xe X.

(4) If s and s~ie T and x £ X, then not both (s, x) and (s i, x) are in p, or if
{s~i|=0, there is no k € w such that both (s, x) and (s i, x| k) are in p.

(5) If s of length one and (s, x)€ p, then x is not in Y.

Let G be P (Y. X)-generic over M. Working in M[{G] define for each se T,
I, € 0. For |s}=0, let

1

G, ={xew*:Ftcw"1cxand {(s, O} e G}.
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For |s]>0, let G, = {0” — G,-;:i < w}. Note that for each se T, G, eII{,.
Lemma 5. For each x in X and s in T—{0} with |s}>0[x e G, iff {(s, x)}c G].

Proof. Case 1. {s|=1. (This is the argument from almost-disjoint-sets forcing.)

If xeG,, then x¢ G-, forall icw. Hence forall k and i in w (s™i, x| k)¢ G.
Let D={p:(s,x)ep or there exist k and i such that (s~i,x[k)ep}. D is dense
since if (s, x) ¢ p if we let {x,, x5...., x,} S X be all the elements of v mentioned
in p other than x, we can choose k sufficiently large so that x| k# x; [ k for all
i=<n. Also we can choose j sufficiently large so that (s ~j) is not mentioned in p
and then pU{(s~jx[kl}e@.(Y,X)ND). Since GND is non-empty and
x¢ G, -, all i; we conclude that (s, x)e G.

If x£ G,, then x € G, -, for some i. Hence there exist k such that (s~i,x [ k)e G
so (s, x)¢ G by clause (4).

Case 2. |s|>1.

If xe G, then x¢ G,-; for all i, and hence by induction (s i, x)¢ G for all i.
Let D={p:(s,x)ep or there exist i such that (s~i,x)ep}. D is dense hence
(s, x)eG.

If x¢ G, then (s, x)e G for some i (by induction). Hence (s, x)¢ G by clause
4).

Corollary 6. G,NX =Y (a=2).

Proof. If xc Y, then for every n, ((n), x)¢ G (by clause 5). Hence by Lenima 5
for every n,x¢ G, and so x€ G,. If x¢ Y, then {p: there exists n such that
((n), x)e p} is dense hence there exists n such that x € G,,, (by Lemma 5) so
x¢ Gy.

Remarks: (1) P,(Y, X) is trivial (the empty set).

(2) P (Y, X) has nothing to do with X and Y and is isomorphic as a partial
order to the usual Cohen partial order for adding a map from o to w.

(3) P,(Y, X) is another way of viewing Solovay’s “‘almost-disjoint-sets forcing”

(see [6]).
Lemma 7. P (Y, X) has the countable chain condition.

Proof. Suppose by way of contradiction that there exist F included in P (Y, X) of
cardinality N, of pairwise incompatible conditions. Since there are only countably
many finite subsets of T, we may assume there exist H < T—{@} finite so that
every p € F is included in H X (X U 0™*). We may also assume that for every pe F
and ge F and se H with |s|=0 and te 0™ that [(s,)e p iff (5, 1) q]. Now let
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(x5 : B<N)) be all the elements of X occurring in members of F. For each p in F
let p*: G, — P(H) be defined by G, ={B :there exists s, (5, x3) e p} and for B G,
p*(B)={s:(s, xg) e p}. {p*:pe F} is a family of N, incompatible conditions in the
partial order Q, where Q = {p :domain of p is a finite subset of X, and range of p is
P(H)}, ordered by inclusion. Since it is well-known that @ has the countable chain
condition we have a contradiction.

Remarks: (1) If P =P,(Y, X) for any a, X, and Y, then P is absolutely c.c.c.
That is to say if P e ME“ZFC”, then ME*P has c.c.c.”. It follows that the direct
sum of any combination of the P,’s has the c.c.c.

(2) We assume the fact that ierated c.c.c. forcing is c.c.c. (Solovay-
Tennenbaum [26]) and occasionally use notation and facts from [26].

I would like to prove next an heuristic proposition. Roughly, if we add a generic

9 set, then it will not be £Y. This is a special case of more difficult arguments
later with generic IIY sets.

Define P a partial order: p P iff p is a finite consistent set of sentences of the
form “[s]= G,”, “x¢ G,”, or “xe N,.. G, (where s € 0~ and x € w*). Order
P by inclusion. Any G P-generic determines a I} set N, G,.

Proposition. If G is P-generic over M (transitive countable model of ZFC), then

M[GlE“VFe FU(FH M+ G, OM)”.

nE®

Proof. Suppose not and let pe G and C, be names such that pl-+C, is closed”
and such that

pkelJ C,NM={ G, NM".

nEW new

It is easily seen that P has c.c.c. (see the proof of Lemma 7). Thus working in M
we can find Q<P countable such that for any é P-generic, ne€ w, and s € 0=, if
M[GIF“[sINC,=§", then 3qe ON G such that qIt*“[s]N C,=0". Since Q is
countable, we can find z € @ M1 not mentioned in p or any condition in Q.
Since

pU{ze N G"}!F“ze uc,”

new new
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we can find fie w and p=p and not mentioning z so that

puU {z e N G,,}li'“ze C.”,

neEw

because the only other way to mention z is “z¢ G,,”. By taking m large enough
pU{z¢ G} will be consistent, and since it extends p it forces “z¢ C;”. Let G be
P-generic with pU{z¢G;} in G. Let kew and qeGNQ be so that
glF{zlk]INC;=@". But pUqU{z e ), c. G.} is consistent because ge Q and
so doesn’t mention z. This is a contradiction since qlF“z¢ C,” and

pu {“z el G,,”}H—“z eC;”.

Define for FS w* and peP =P,(Y, X),
Ip} (F)=max ({js|: there is x¢ F with (s, x)< p}).
This is called the rank of p over F.

Lemma 8. For all =1 and peP there is pcP compatible with p and |p| (F)<
B +1 so that for any q P with |g| (F)< B, if p and q are compatible, then p and q
are compatible.

Proof. First find an extension p,=p so that for all (s, x)ep and i<w if ls|=A isa
limit ordinal and |s~i|<g+1<A (there are only finitely many such s7i), then
there is a j<w such that (s~i™j, x)€ p,. Now let p={(s,x)ep,:|s|<B+1 or
x € F}. We check that p has the requisite property. Suppose p and q are
incompatible, p and q are compatible,and |q| (F)< 8. Since 8 =1 for all (s, x)ep
if [s|=1, then (s, x)& p, hence since p and q are compatible there are s, tc 0™
i<w, and x € @ such thar (s, x)ep, (t,x)eq, and s=t~ior t=s"1I.

Case 1. ff xe For|s|<B+1, then (s, x)e p and so p and q are incompatible.

Case 2. If x¢ F and | =p+1, then by definition of |q| (F)<8, {t|<B. So
t=s"i If |s|]=y+1 for some v, then |t|=+y=p, contradiction. If |s|=A is an
infinite limit ordinal, then by the construction of p, there is j < with (t ™}, x) € p,
and hence (t~j, x)e p and so q and p are incompatible.

3
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2. Boolean algebras

For B a complete boolean algebra, C included in B, and a=1 define 3,(C),
I1,(C):

21(0)={Zs:3gc},

za(c3={§‘,s:s§ U IL(C)} for a>1,

B<a
and
I (C)={~a:ae 3 (C}

Define K(B) to be the least ordinal a such that there exists a countable C
included in B with 3, (C)=B8.

Theorem 9. For each a<w, there exists a complete boolean algebra B with
countable chain condition and K(B) = a.

Proof. For a =0 take B to be any finite boolean algebra. For & =1 wun2 B to be
(P(w). N, U) (or more appropriately the regular open subsets of w* since this
corresponds to Cohen real forcing).

For o,2<a<w,, B will be the complete boolean algebra associated with
N)-forcing. Let P =P _(f, X). Given a partial order P there is a canonical way of
constructing a complete boolean algebra B in which P is densely embedded (see
[5]). Let [p] denote the image of peP under this embedding. If p=gq, then
[pl=[ql For every acB if a +0, then there is a p&P such that [p]<a.

Lemma 10. Suppose F X and C={[pl:peP and |p|{F)=0}. For any =1,
peP, and a in X,(C), if [pl<a. then there is qeP such that |q|(F)<B, q and p
are compatible, and [q]=a.

Proof. The proof is by induction on 8.

Case 1. B=1. Suppose a=Y {{q):qeT?} for some I'c C. If [p]<a, then for
some gel, p and q are compatible.

Case 2. 3 a limit ordinal. Suppose a=%{b:bell for some I<
U {Z.(Cy:a < B}. Then there is =p and be I'N 3, (C) for some a <8 so that
[pl=b. Now apply the inductive hypothesis to p.

Case 3. B+1. Suppose [pl<2 {b:beT} for some I'c I1,(C). Choose p=p so
that for some bel, []1<b. By Lemma 8 of Section 1, there exists q compatible
with p with Iq| (F)< B + 1 and for any r with || (F)<, if r and q are compatible,
then r and p are compatible. This q works since if [q]% b, then there exists q,= g
with [q,]=—b. Since ~b € 3,(C) by induction there is q, compatible with g, with
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lq,} (F)< B and [q,]<—b. But then q, would be compatible with [, contradicting
[51<b.

Now if X =w*, for example, the lemma shows that B cannot be generated by a
set of size less than the continuum in fewer than a steps. For suppose D ¢ B has
cardinality less than |w“|, then there exists F2w* with X—F#0@ and D¢
S {lpl:lpl (F)=0}. Let B<a, ze X—F, and se T—{@} with |s}; =B (where T is
the normal a-tree used in the definition of P, (@, X)). [{(s, 2)}] is not in Z;(D).
Because if it were it would be in 3,(C) and so by the lemma there exists g with
lql (F)< B and [q]< [{(s, 2)}]. But since |s|;, =B and z¢ F we know (s, z) ¢ q. Thus
there are n (and m) such that qU{(s "n, z)} (qU{(s " n, z} m) in case |s|; =1) is
in P, but this is a contradiction.

Next we show B is countably generated in a steps. Let C={[p]:|p|({)=0}.

Claim. For all xe X and se T—{B} if |slr =B =1, then [{(s, x)}] is in ().
Proof. If |s|r =1, then

s, oN=TT{-Hs~n xtm}l:n, me o}

If |s|>1, then
s, oM =TT{-Hn 0N newl.

For AeB, -A ={peP:[p]NA =0} If (s, x)ep, then [p]N[{(s~n, x)}]=0 all n.
On the other hand if [p]1N[{(sn, x)}]= for all n, then easily (s, x)ep.

Now for any peP [pl=TH[{(s x)}]: (s, x)e p}, so [ple 3.(C). For any AeB
A=Y{pl:pecA}so Aec3 (C). Thus KB)<o.

We are now ready to consider the case of a=w,. Let P=3,_, P, (@, ®).
Now the complete boolean algebra associated with P does take w, steps to close
(for suitable generators), however, P is not countably generated. So we do as
follows: Let (x,:a <w;) be any set of w, distinct elements of w®. Let *: =% %
0= —> o be a 1-1 map. Let T, be the normal tree of ranka used in the
construction of P, =P,(#, “w). Any G which is P_-generic is determined by
G N{(s,NeP, :|sly, =0 and te @=*}. That is a map v from T%={se T,:|s|l; =0}
to «~“. Now imagine G P-generic and let v, : T¥ — 0~* be the maps determined
by G. Let Y={(*(s, 1))~ x,:v.(s)=1 and @ <w,}. Form in the generic extension
PLy(w® —Y, )= Q (in both cases we mean w* formed in the ground model). The
partial order we are interested in is R=P*Q. P+*Q={(p,q):peP and
plF4qe Q). (p, §)=(p,q) iff (f=p and §=q). pF*“qe Q" just in case whenever
((n), (*(s, )~ x,) is in q, then (s, )€ p(a). Now let B be the complete boolean
algebra associated with R. Since R has the countable chain condition so does B.
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Claim. B is countably generated.

Proof. The idea is that once you know what the real is gotten by Q you know all the
reals gotten by P — and hence everything, Let C ={[{(®, q)]:|q} (#) =0}. Then C is
countable and generates .

For Cco” and (p, q)€ R define
I(p, @)} {C)=max {|s|y, : there exists x¢ C, (s, x)e pla) and a <w,}

Lemma 11. Given Fc 0® Vpe RVYB=13pe R compatible with p, |p| (F)<B+1
and Yqlq| (F)< B (if p, q compatible, then p, q are compatible).

Proof. This is proved similarly to Lemma 8. Given p=(p,, p;) extend each
pola)<pi(e) as in Lemma 8, then take P=(Po,Ps), P1=p;, Pola)=
{(s, x)e pila):|s|<B+1 or xe& C}. Note that pyl-*p, € Q” because requirements
in Q are decided by rank zero condition in P.

From this lemma it is easily shown as before that K(B)=w,. Since B is
countably generated and has the countable chain condition we have KB)<w,,
hence K(B) = w,.

For any o-complete boolean algebra B the Sikorski-Loomis theorem [25, p.
93] says that B is isomorphic to a o-field of subsets of some X modulo a o-ideal
of subsets of X.

Theorem 12 (Kunen). Va < w, 3X, R with R < P(X) such that K{(R)=a.

Proof. By the Sikorski-Loomis theorem and Theorem 9 we can find R, X,and I
with R < P(X)/T where [ is a o-ideal and « is the least ordinal such that
1{, = Iiu,‘. Define R P(X)by(AeR iff A/lle R). Itis easily shown by induction
on B<w, that (A eR, iff A/l€R,). Hence we have K(R)=q.

Let B, be the complete boolean algebra Borel(2*) modulo the ideal of meager
sets.

Theorem 13. For any a, 1 <a <w,, there is a countable C<B,, which is closed
under finite conjunction and complementation so that a is the least ordinal such that
2(, (C) = BM'

Proof. Let x € w* be arbitrary and B be the complete boolean algebra associated
with P (@, {x}). Note that if |p|(@)=0, then —[p]=Y {{q]:|a}(P)=0 and q is
incompatible with p}. Let C be the closure of {{p]:lpl(#)=0}=C under finite
boolean combinations. Note that since € is closed under finite intersections and
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~[plis in 3,(C) for any p in €, we have that 3,(C)=53,(C) for all 3=1. By
Lemma 10 « is the least such that 3, {C)=B. Since P, (@, {x}) is countable and
separative, B is separable and nonatomic and hence isomorphic to B,,.

Remark. The theorem above is false for o = w, since for any countable C which
generates B,,, at some countable stage every clopen set is generated and after one
more step all of By,.

3. Countably generated Borel hierarchies

A set X 2% is called a Luzin set iff X is uncountable and for every meager
M, MNX is cowntable. The analagous definition with measure zero in place of
meager is of a Sierpinski set [30]. For I a o-ideal in Eorel(2*) say X is I-Luzin iff
[V A eBorel(2”) (|A N X|< 2% iff A € I)]. The following throrem was first proved
by Luzin [12] assuming I is the ideal of meager sets and CH.

Theorem 14. (MA). If I is an w, saturated o-ideal in Borel(2“) containing
singletons, then there exists an I-Luzin set.

Proof. Let k={2|, {A,:a<«k}=1, and {B, :a <x}=Borel(2*)—1I each set re-
peated «-many times. Choose x, for a<«k, so that for every a x, is in
B, -(1J{Az:B<alU{x;:B<a}). Clearly if this can be done, then X=
{xq 1<k} is I-Luzin. If » =w,, then it is trivial, and if MA, then this follows
from [14, Lemma 1, p. 158]

The next theorem was proved by Poprougenko [19] and Sierpinski (see [297]).
Theorem 15, If X <2* is a Luzin set, then ord (X)=3.

Proof. Since every Borel set B has the property of Baire, B = GAM where G is
open and M is meager. But MNX=F is countable hence F,, so BNX=
(GAF)N X showing ord (X) = 3. Now choose s €2~ so that [s]N X is uncounta-
ble and dense in [s]. If D <[s]N X is countable and dense in [s], then D#GNX
for all G e G, so ord (X)=3.

A modern example of a Luzin set arises when one adds an uncountable (in M)
number of product generic Cohen reals X to M a countable transitive model of
ZFC. M[X]F“X is a Luzin set”. See also Kunen [10] for more on Luzin sets and
MA.

In contrast to the boolean algebras Szpilrajn [29] showed:

Theorem 16. If X = 2* is a Sierpinski set, then ord (X)=2.
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Proof. The proof is similar except note that any measurable set is the urion of an
F, set and a set of measure zero.

The following theorem generalizes these classical results using a lemma of
Silver (see [14, p. 162]) that assuming MA every X € 2* with | X}<|2°]is a Q set,
i.e. every subset of X is an F, in X

Theorem 17. (MA). There are uncountable X, Y <2 such that ord (X)=3 and
ord (Y)=2.

Proof. Let X be I-Luzin where I is the ideal of meager Borel sets. For any
meager set M choose F a meager F, with M c F. By Silver’s Lemma there exists
Fy an F, set such that F,NFNX=MNFN X =MNOX. Thus every meager set
intersected with X is an F, set intersected with X and this shows as before
ord (X)= 3. For I the ideal of measure zero sets analagous arguments work.

After I had shown that it is consistent with ZFC that Va<w,3X g o*
ord (X) = a, Kunen showed that in fact CH implies Yo < w, 3X € 0 ord (X) = a.
The following theorem sharpens his result slightly.

Theorem 18. If there exists a Luzin set, then for any a such that 2<a < o, there is
an X <2 such that ord (X)=q.

Prooi. Let Y be a Luzin set with the property that for every Borel set A ¢2¢
{ANY is countable iff A is meager). Such a set always exists if a Luzin set does.
By Thzorem 13 there is a C < By, countable such that C generates B, in exactly
a steps and C is closed under finite Boolean combinations. Let C={[C,}:ne¢ o}
where the C, are Borel subsets of 2* and [C,] is the equivalence class modulo
meager of C,. For x,ye2® define x~vy iff for all n —w (xeC, iff veC,). We
claim that for each x€2* the ~ equivalence class ~{ x is nieager. N..te that any
element of the o-algebra generated by {C, :n<w_ is a vzion of ~ equivalence
classes. If sume ~ equivalence class E is not meager, then there are K, and K,
disjoint nonmeager Borel sets such that E = K,U K. Since {[C,]: n <} gener-
ates By, there are Ly and L, in the o-algebra generated by {C, : n < w} such that
{Lo]=[K,] and [L,]=[K;}. For some i, L; is disjoint from E, but then L, is
meager, contradiction. By shrinking Y if necessary we may assume that for ail
xyeY (x=yiff x~y). Let R={C, N Y:n<w}, then R, contains every counta-
ble subset of Y. It is easily seen that K(R) = ¢, so by Proposition 2, we are done.

Theorem 19. (MA). For any a <w, there is an X < 0 such that o <ord (X)<
a+2.

Proof. For a <w, let P, be the partial order P (9, w*). Let T, be the normal
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tree of rank « used in the definition of P,. T¥={seT,:|sl; =0} If G is
P, -generic, then G is completely determined by the real yg: TF — ™ defined
by yg(s) =t iff {(s, )} € G. Each condition p € P, can be thought of as a statement
about yg. Let C,={ycw”:y codes a map §:TE— 0™ and p(§) is true}. It is
easily seen that for any peP, there is B <a such that C, is T},

Lemma 20. If B, is the complete boolean algebra associated with P, and X, is 0*
with the topology generated by basic open sets {C,:peP,}, then B, is isomorphic to
the boolean algebra of regular open subsets of X,,.

Proof. Given A X, a regular open set let D, ={peP,:C, < A}. The map
A — D, is an isomorphism.

Define I, to the o-ideal generated by II, sets of the form «* — |} {C,:pe D}
where D is a maximal antichain in P.

Lemma 21, « is the least ordinal such that for every Borel A there is a 30 B such
that AABel,.

Proof. Note first that I, is the ideal of meager subsets of X,,. If D is a maximal
antichain in P, then U {C, :pe D} is open dense in X, so every element of I, is
meager in X, If C is closed nowhere dense in X,, then let Q=
{peP:C,NC=¢}. Since Q is open dense in P, we can pick D € Q a maximal
antichain. Thus C< @~ J {C, :pe D} and every meager subset of X, is in L.

Since A is Borel in X there is a regular open set B in X, such that (AAB)el,.
Let Q={peP,:C, < B}. Pick D £ Q an antichain which is maximal with respect
to being contained in Q. Since B is regular open, B=|J {C,:pe D}, so B is %, in
. To see that e is minimal note that for s € T, witn |s}; =B there isno B 3 in
w"” with (C,,AB)e L,.

Now let X ¢ w* be I,-Luzin. Then ord (X)= « since for any A and B Borel in
w® (AABYel, iff (AAB)N X|<|X]). But ord (X)=<a +2 follows from the fact
that for all B in I, there exists C in I, NX) ., with B < C, just as in the proof of
Theorem 17. This concludes the proof of Theorem 19.

Remarks. (1} If V=L, then using the A} well-ordering of L N2” we can get
Xg2* a A} set with ord(X)=a for any a<we,. If X is I} (or 3. then
X =AAM where A is 12 and Me I, so X cannot be I, -Luzin.

(2) A finer index can be given to a set X< w” by considering the classical
Hausdorff difference hierarchies. A set Ccow® is a2 B—1II" set iff there exists
D, e}, for v < B such that the D,’s are decreasing and D, = J,=, D, for A limit
and C=U{D,—D,,,:y<p and vy even}. It is a theorem of Hausdorfi that

Ca=U{B—-11L:B<w,} (see [11, pp. 417, 448]). It is also not hard to show,
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using a universal set argument, that there exists a properly g —TI. set for all
a, B <w,. Accordingly define H(X) to be the lexicographical least pair (a, 8) € @}
such that for any Borel set A there exists B a 8 —TI0 set suchthat ANX=BNX.
If X is a Luzin set (Sierpinski set), then H(X) = (2, 2) (H(X)=(2, 1)). It is casily
shown that in Theorem 22 NE“H(X,.,)=(a+1, 1)”. It is not hard to see that for
C a countable closed set H(C) = (1, @) where a is the Cantor-Bendixson rank of
C.

Theorem 22. It is relatively consistent with ZFC that for any uncountable X c2¢
ord (X) = w,. This can be generalized to show that for any successor ordinai B, such
that 2< B,< w,, it is consistent that

{B:3X = 2® uncountable ord (X)=B}={B:B,=B<w,}.

Remark. It is true in the model obtained that for any uncountable separable
metric space X the Borel hierarchy on X has length w,. This is true, since if
|X]|= w,, then since |2°|= w, and X can be embedded into R“, X must be zero
dimensional. But any zero dimensional space can be embedded into 2¢,

To prove Theorem 22 let M be a countable transitive model of ZFC+ GCH.
Choose (e, :A <w,) in M so that for all 8 <, {A:a, =B} is unbounded in w,.
Define P~ for y< v, by induction P’ =P, (¢,2° N M), P**' =P" x Q" where Q"
is a term in +he forcing language of P denoting P, (9, M[G,]1N2*) for any G,
PY-generic cver M and at limits take the direct limit.

Call p<P* nice if it has the following properties for all y<g.

(1) p(v) is a canonical name for p*U{(s, 7):s € F} where p* is a function from
some finite subset of {se T, :|s| =0}, F is some finite subset of {se T, :|s|>0},
and each 7 is forced with value one to be an element of 2.

(2) For each (s,7)ep(y)3r, €2 such that plyk“f,c7” and if (s,7),
(s ~n,7') are in p(y) (or (s~ n, t)ep*), then 1, and t.'(¢) are incompatible.

1t is not hard to see by induction on B that the nice p are dense. For the rest of
the proof we assume all p are nice.

For Q<P and 6 a sentence we say that Q decides 8 iff {peP: thereisa qe Q
such that p=q and (g!F“8” or ql-*“—167)} is dense in P. For any H < 2 define
|p| (H) and {7| (H, p) for pe™®¥ and 7 aP” term for an element of 2* by induction
on vy.

(1) For peP’=P,_ (0, 2* N M) define

Ip] (H) = max {Islr.,:2x€2” ~H (s, x)e p}.
(2) For pe P**! define

ot (HY=max{{p| y|(H), |7l (H, ply):(s, ") e p(v)}.
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(3) For pe P* define
lp} (H) =sup {|p| v|: y<A}.

(4) Define || (H. p) is the least B such that for any ne w {g P : q incompati-
ble with p or |q| (H)=< B} decides “7(n)=0"

P«-=P is not a lattice, however, it does have one similar property:

Lemma 23. Suppose G is P*-generic over M and fori<n<w q,€ G and |q;| (H) <
B, then there is a q& G with |q| (H)<B and q=gq; for all i<n.

Proof. The proof is by induction on «. For « =0 or a a a limit it is easy. So
suppose a=B+1 and Gz xG® where G, is P#-generic over M. Find I'c G,
finite so that for any geI" with |q] (H)<g and for any i and j less than n if
(s, 7)eq(B) and (s "k, 7)€ q,(B) (or {s ™k, t)€ g;(B) where te2=), then there is
reI such that rl-*'7# #(t¢ 7). By induction there is q in G, such that |q| (H) <
B, for all §eTI' g=4, and for all i<n q=gq,| 8. Define g(B) to be equal to
U {g(B):i<n}.

Lemma 24. Given P, a countable subset of P* and Q, a countable set of P terms
for elements of 2°, there exists H countable such that for every pe P, and 1€ Q,
lpl (H) =|7| (H,§)=0.

Proof. This is easy using c.c.c. of P*.
Let {p|=p(H) and || (p)=7|(H, p). for some fixed H.
Lemma 25. For each p cP* and B there exists p e P> compatible with p, |pl<g +1,

and for every qeP= with |q|<B, if p and q are compatible, then p and q are
compatible.

Proof. The proof is by induction on a. For a =0 this is just Lemma 8 of Section
1. For a limit it is easy. From now on assume the lemma is true for a.
Define for x, y € 2%, x is lexicographically less tnan y iff

InVm<n(x(m)=y(m) and x(n)<vn)).

This is the lexicographical order. For C =2 a nonempty closed set let x be the
lexicographically least element of C.

Claim 1. Let C be a term in P* and p,eP° with |po|< B +1 such that p,+“C is a
nonempty closed subset of 2“7, Suppose for every G P -generic with p,e G, and
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se2°(M[GIE“[sINC=¢" iff 3qeG, |q|<B, and q+“[s]INC=@"). Then
Ixcl(po)<B+1.

Proof. First we show that given any peP® with p=p, if se2™
plee[s]N C#¢™, then there exist peP* compatible with p,|p|<B+1, and
pi-IsIN C#¢". Let p’ be as from Lemma 25 for p. By using Lemma 23 obtain P
compatible with p, p=p’, p=p,. and |p|<B+1. I claim p“[s]NC#@". Sup-
nose not then there exists G P-generic, pe G, and M[GIE“[s]NC=¢". So
there exists g € G, |q| < B. and q + *[s]N C =@", But then since q is compatible with
p it is compatible with p’ and hence with p, contradiction. In order to show
Ixcl (poy<B+1 it suffices to show for every p=p, and new there exist ppP*
compatible with p, |p}< B+ 1, and there exists s € 2" such that pl-*“x-tn=5". So
given p and n find r=p and s € 2" such that ri-*“xc [ n=s". We have just shown
there exists 7 compatible with r with |f|<B+1 and FIF“[s]NC#@”. Let G be
P -generic containing r and 7. For each t€2™*! with m +1<n and for all k <m
(t(k)=s(k)) and t(m)<s(m), choose g, € G with |~|<B and qi-"[{INC=0".
(There are only finitely many such t). Choose ge G with |g|<B+1, g=1# and
q=q, for each such t (q exists by Lemma 23). Then gl x.[n=s".

For p and g compatible define pUqi-*‘6"" to mean that for every r, if = p and
r=gq. then riF8”, For r a P* term for an element of 2* and peP®, define
C(r,p) a P* term so that for any G which is P*-generic (it need not contain p)
C%(r, p)= N {D; :there exist qe G, lq|<B, |F|(q)<B, q+*“#€2*”, p and n are
compatible, and pUqlt=reD;”}. D is a universal M} subset of 2“x2¢
(YKen{3Axe2° K =D, ={y:(x, y)e D}).

Claim 2. Let p be given by Lemma 25 for peP* (i.e. for all qeP* if |q| < B, then if
q and p are compatible, then q and p are compatible). Then p and C(r, p) satisfy the
hypothesis of Claim 1 for p, and C.

Proof. Suppose M{G]E“[s]ﬂC(np)=§0". By compactness there exists n<aw,
q.€G, 7 for i<n with |q|<B and |r|(g)<B so that pUgF*reD,” and
MIGIE“N{D, :i<niN[s]=P". Let # be a term for an element of 2* so that
D;=N{D, :i<n}and qe G with q=q, for i <n and |q|<B. (¥ can be chosen so
that || (q) < B assuming some nice properties of D). Since q and p are compati-
ble, g and p are compatible and qU piF7e D,”. Since M[G1E“D; N[s]1=§" by
compactness there exists m € w so that if t=%%m then for every x2t, xe2®
D, Nis]=0. Since |7|(q)<B there exists §=q an element of G,|4l<B, and
GF“#m=1"; hence §+[s]NC(r, p)=0". The fact that pI-“C(t, p)# 9" fol-
lows from this since if not there exists g compatible with 5, |q|< B, and qF<[0]N
C{r,p)=§". But then q is compatible with p contradiction.

We now return to the proof of the a +1 step of Lemma 25.

Assume peP“ "' is nice. Let (s, 7,) for i <n be all (s, 7)€ p(a) with |s|=1 and
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let #=(74, T1,....Tny) (Where (, ,..., }:(2°)" — 2 is some recursive coding).
Let pl, be as given from Lemma 25 for pl,.. Let 7 be the lexicographical least
element of C(%, p[,). By Claim 1 and 2 |#'| (p],) <B+1. Now let

pla)={(s, D e pla):ls| = YU {(s, 7H:i<n!

(# =(7h, ..., 7). Since PI-**C(7, p,) is included in [];-, [, 1", p is a condition,
p and p are compatible, also |p|< B+ 1. Now suppose gP**' compatible with
p.lql< B, and q and p are not compatible. Let G be P*-generic with p], and g1,
elements of G and M[G1F“p(a) and q(a) are compatible”. If we think of p(a) as
a statement about 7 ie. p(a)(7), then p(a)=p(a)(F). Since p and g are
incompatible but p, and q, are compatible (p!,Uql.)E“p(a) and q(a) are
incompatible™. D(7)=“p(a)(7) and g{«) are incompatible” is a I} statement with
parameters from ¢(a) about 7. Thus we conclude that M{G]F*“p(a)(#') and q(a)
are incompatible™, contradiction. This concludes the proof of Lemma 25.

From now on let P =P,

Lemma 26. Suppose |7|=0, B(v) is a £} predicate, B = 1, with parameters from M,
and peP is such that pl--B(7)”; then there exists P compatible with p,
lal (H)<B and qi+*B(7)".

Proof. The proof is by induction on B.

Case 1. B=1.

Suppose pl-=3n R(x [ n, v{n)” for R recursive and x € M. Let G be P-generic
with pe G. Choose n€w and s€2" so that M[GlE“R(In, vl n) and 7ln=s".
Choose ge G with |qg}=0 and glFrln=5".

Case 2. B is a limit ordinal.

If pr“3nB(n, )", then 3p=p pI-B(n,, v} and B(n, v) X for y<B. so
apply induction hypothesis to p.

Case 3. B+1.

Suppose pit“3n B(n, 1) where B(n, v) is I} with parameters from M. Choose
r=p and ny,€ w so that ri-“B(n,, 7). By Lemma 25 there is q compatible with
r,lql<B+1, and for every s,|s|<B, if ¢ and s are compatible, then r and s are
compatible. qF*“B(ny, )" because if not, then there is q'=q such that
q'F“B(ny, )", and so by induction there is s with |s| < compatible with ¢’ and
sit“B(n,, 1)7; but then s is compatible with r, contradiction.

Now let us prove the first part of Theorem 22. Let G be P-generic over M. We
claim M[GlE“for every X €2* and a < w, if |X|=w,, then ord (X)=a + 1", But
since any such X is in some M[G,] for B <w,, we may as well assume Xe M,
a,=a+1, and we must show M[G]k“ord (X)=a+1". Let G, be the I set
created by GNP, (@, 2 N M). Suppose that M[G1E*“there is K a £ set such that
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KNX=GuNX". Let 7 be a term for the parameter of K. Choose pe G such
that pE‘“Vze X (xe K iff z€ G,)". By Lemma 24 there exists H in M countable
so that |r|(H,®)=|p|(H)=0. Let zeX-H Define peP by p0)=
p(0)U{((0), 2)} and p(a)=p(a) for @ >0. Since p says ze€ Gy, plF*“ze X”. By
Lemma 26 there exists q compatible with p, |q| (H)<8, and q+“z€ K”. By
Lemma 23 there exists § with |4 (H)<B, §=q. arnd §=p. Since |(0)r, =a,
((0), z)¢ G(0), there exists m € w such that r defined by r(0) = q(0)U{((0, m), z)}
and r(a)=d§(a) for ¢ >0 is a condition. But this is a contradiction since rl-
“fze G iff zeK) and ze K and z¢ G,”.

Now we prove the second sentence of Theorem 22. Let X = {X, :Bosa<w,
and a a successor} where each X, is a set of w, product generic Cohen reals. Let
M,=MI[X]. Define in M, the partial order P~ for y =<, so that P**' =P+ Q,
where Q, is a term denoting:

Case 1. Pg (8, My[G,]1N2*) or

Case 2. Pg(Y,, Xz UF) where Y, is a Borel subset of X; in M,[G,] and
F={xe2®:x eventually zero}.

Case 1 is done cofinally in w, and Case 2 is done in such a way as to insure:
MG, ]k For every successor ordinal B with B,<B<w, and Y Borel in X,
there is a y such that Y =Y_”. First we show that essentially the same arguments
as before show that M[G,, 1F“For every X < 2* uncountable ord (X)= ;. This
will not use that the X, are made up of Cohen reals, hence any of the
intermediate models would serve as the ground model. So suppose Case 1 occurs
on the first step, Y e M, is uncountable, 8,=v+1, and MG, JE“YNG, =
Y NJ for some JeX)”. Given L € w, define P{ as follows.

For acL:

Case 1. Py =Py P, (0, M[GL]N2) where GL is P{-generic over M,

Case 2. Py =P¢ «P,(Y,—F, Xz UF) (where we assume L has the property
that when Case 2 happens for a € L then Y, is a Borel subset of X; coded by
some term 7, in P7).

For a¢ L:

Pt =P¢= (singleton partial order).

Note that by using c.c.c. of P*: we can find L < w, countable, so that the Borel
code for the above J is a ¢’ term and L has the property mentioned under Case
2. For « a limit P¢ is the direct limit of (P¥:8 <a«).

Lemma 27'. If N2 M is a model of ZFC and G is Pe(d, NN 2¥) generic over N,
then G NP4, MN2°) is Pg(B, MN2=) generic over M.

! T would like fo thank the referee for suggesting this proof of Lemma 27 and thus eliminating the
need for Lemma 28. A similar argument is utilized by J. Truss, ““Sets having calibre X,”, in: Logic
Colloquium 76, Studies in Logic, Vol. 87 (North-Hotland, Amsterdam, 1977).
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Proof. It is sufficient to show that if AeM and A is a maximal antichain in
P40, MN2°) (where B<w™), then A is also a maximal antichain in P4(0, NN
2¢) for any N 2 M which is a transitive model of ZFC. But by c.c.c. (in M), A is
countable in M, so this result is immediate by absoluteness of 11} predicates.

Givzn any G P“>-generic let G, be the subset of P, generated by the rank zero
conditions in G. The preceding lemma enables us to prove:

Lemma 29. For any a if G, is P -generic over M, then G, is P¢-generic over M,,.

Proof. This is proved by induction on a. For a+1¢L it is immediate. For
a+1el Case 1 is handled by Lemma 27 and the product lemma. Case 2 is easy
as P,(Y,~F, X, \UF) is the same partial order in either case. For « limit ordinal
let A <Pf be dense, we show {qeP*:3pe 4, p<gq}is dense in P*. If gcP*, then
q €P? for some B<a. Let A; ={p}B:pe A}, then 4; is dense in Pf. Hence if G,
is P~ -generic with q € G,, then since G§ is P§-generic it meets 4, —say at p| 8.
But then q and p are compatible.

Define for H <= 2” |p| (H), |7| (H, p) for peP§ and  a P¢-term for a subset of w
by induction on a.
Case 1. P =P =P, (0, M[G]N2*).

Ipl (H) =max {{p]¥| (H), [p(v)| (H.ply)} (same as before).
Case 2. pe*!=p° #*P(Y,~F, X, UF).
lpl (H) =max {lpl a| (H),|sly, :x¢ H (s, x) € p(a)}.

|7| (H, p) is defined as it was just before Lemma 23. Lemma 23 is easily proven
since in Case 2 we have a lattice. Lemma 24 is also easily proven if in addition H
is taken with the property that Vxe HVae L {p:|p] (H)=0} decides “xe Y,”
whenever Case 2 happens at stage «. Lemma 25 can be proven for g <, by the
same argument in Case 1 and by the argument of Theorem 34 in Case 2. Lemma
26 follows and so does the claim that M[G,, JF“Kc{B:Bo<B<w,}".

Next we shew MG, ]F“ord (X;)=B for each B successor By<B<w,”. If
not, then again we can reduce to some L <N, countable; and since each X, is
present in M,,, we can relabel L so that for some é< w, and B, with B;<3,<w,,
M[GglE“ord (X, )< B, for G5 P®-generic over M, and on some step before B
we force with Py (0, Xz UF). Suppose X={x,;a<w,} and M,=
M[{(a, x,): @ <w,}]. Given HE o, He M let H={a,x,):a € H}. Define Pye
M[H] for each a <.

Case 1. Py =Pg =P, 0, MIGIIN2%).

Case 2. P?,*’=P?,*PB((Y‘,—F)F\FI, (XBHH)UF) (assuming Y, is a Borel
subset of X; given by the term 7, in forcing language of Pg).
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Lemma 30. For any a<f if G is P -generic over M,, then G%y is Pg-generic
over M[H].

Proof. The proof is like Lemma 29 except on a+1 under Case 2. P,=
Pe(Y,~F, X, UF) in M[IX[G*]1=M,, P,=P,(Y.~F)NH,(X,NH)UF) in
M[HIGY)= M,. Again suppose AeM, is dense in P, we show
{peP,:3qed, q=<p} is dense in P,. Given peP, let p=ruU{(s., x,y:n<N}
where x, € X, ~H, N<w, and reP,. Let Qy be the partial order for adding N
Cohen reals. By the product lemma {x, :n < N} is Qy-generic over M,, and also
p € Muf{x, :n <N}]. Hence if Yqe Ap and q are incompatible in

Py=P((Y,—F)N(HU{x,:n <ND, (X N(HU{x, :n <ND)UF),

tien 3p € Qu pi-Vq € Ap and q are incompatible in P, Choose v, € F for n <N
so that py=rU{(s,,y,):n<NleP, and Vm<w3p'=pV¥n<N p'lF=y, |, =
%, [ Since 3q € 4 pyand q are compatible, then as before p and g can be forced
compatible by an extension of p. So p and g are compatible in P, and hence in P ;-

Lemma 31. Given 7 a term in forcing language of P% if pep® plFpg “B(7)” where
B(v) is a X predicate with parameters in M[HY, then 3q cP% compatible with p
such that qlpz “B(r)”.

Proof. Let G be Pé-generic over M, with pe G. Then by Lemma 9 G is
P8 -generic over M[H]. Since $! sentences are absolute and MJG]E“B(7)" we
have M[HTG,;JE“B(1)". So dq€ Gy qlhp, 3 “B(7)”. But for any G P#-generic
containing q, M{H][G,;]F**B(1)" whence by absoluteness M[G1E"B(r)". We
conclude qlrpg “B(T)".

Lemma 32. Given H=X—{z} where zeX,,, vy<f. | sB<q, peP, then
EﬁeP”,A PIIMIHIN2°)<B+1, P compatible with p. and VqeP¥ |f
lal (M[HIN2“)<B, then (p,q compatibie = p, q compatible).

Proof. This is proved by induction on . For + limit it is easy, also for y+1 in
which Case 1 occurs the proof is the same as Lemma 25. So we only have to do
v+1 in Case 2.

pePY =P, (Y,~F, X5, UF). Extend p(y) if necessary so that ¥(s, x)e p(y) Vi <
@ if |s|=A infinite limit |s~i]<B+1<A, then Ji<w (s7i™j x)eply). Let
) ={s,x)ep(y):ls|<B+1or x££z} If p=(p v, ply)) were a condition, then
just as in Lemma 8, p would have the required properties. To be a condition we
need to know that whenever ((n), x)e p(y) plykexg (Y,~F)".

Note that none of these x’s are equal to z because z € Xos1 80 {{n), 2)eply)—
Kn)l=a=B+1s0 (n), z)¢ p(y). Let G be PY-generic containing ply, and ply.
By Lemma 31 3qePiNG (so |q| (M[H]N2“)=0) such that VxVn if
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{n),x)ep(y), then g x¢¥,—F". By Lemma 23, 3p,=q, fplvy so
that |pol (M[HIN2*)< B +1. So {p,, p(v)) works.

Immediate from Lemma 32 we get that: If J is any 3., predicate with
parameters (H = X ~{z}, z€ X,,,, and 7 is in the forcing language of P,,), then
VpeP if plkzeJ”, then 3geP |ql (M[H]N2")< B, q and p are compatible, and
ql-“zeJ". So we get our result ord (X,.;)=a+1 in MJ[G,,]

Remark. Assuming large amounts of the axiom of determinacy and therefore
getting more absoluteness in inner models (see [7]) it is easy to produce an inner
model N such that N F *‘For every ¢ <, there exist X < 2* such that ord (X) =«
and for every n<w and A II}, AN X is Borel in X”. Similar improvements for
Theorem 43 are possible.

4. The o-algebra generated by the abstract rectangles
For aay cardinal A let R* ={A XB:A, Bg A} If R}, (the o-algebra generated
by R*) is the set of all subsets of A XA, then A <[2*| (see [9, 21]).

Theorem 33. If a,<w, and there is an X < w* such that |X|=«=w and every
subset of X of cardinality less than « is 1L, in X, then R% = P(x % k). The same is
true if every subset of X of cardinality less than « is 35, in X.

Proof. Consider A < k Xk and suppose (&, B)€ A implies a <. It is enough to
show such sets are in Ry, since every subset of « X k can be writien as the union
of a set above the diagonal and a set below the diagonal. Let T be a normal «,
tree and T*={se T:|s|{; =0}. For any y:7T*— 0™ define G as follows, If
seT* then G}=[y(s)], otherwise Gi=(1{w”-G{ ":n<el Let X=
{x, <k} and for each B <k choose £ so that for all a ({(a, B)e A iff x_ € G‘j’u).
For seT define B,ckxk as follows, If seT* then B,=
UHaitex,}x{B:ys(s)=t}:te 0™}, otherwise B, = () {(k X«)—B,-, n<w}
Clearly By=A and By is “II2,” in R, and so every subset of x X« is “Il%” in
R*“. Note that (« X&)~ (AXB)={(k—-A)Xk)U(k X{(k—B)) and thus if a, is
even (odd), then R%, is the class of sets “II3 " (“S. ) in R*. By passing to

complements if necessary we have that Rj = P(x X ). The second sentence of
the theorem is proved similarly.

Coroliary (Kunen [9]; Rao [21]). If there is an X <2° such that |X|=w,, then
RY'=Plew, X w,).

The converse of this corollary is also true. Suppose R < P(w,) is a countable
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field of sets and {(a, B):a<B<w,}e{AXB:A, Be R}, Since this set is an-
tisymetric we conclude that the map given in Proposition 2 is a 1-1 embedding of
w, into 2%,

Corollary (Kunen [9]; Silver). (MA). If k =|2“|, then R3=P(ic Xk).

Proof. If X is I-Luzin where I is the ideal of meager sets, then every subset of X
of smatler cardinality is 23 in X (see proof of Theorem 17).

For any a<w, X<w® is a Q, set iff ord (X)=a and every subset of X is
Borel in X.

Theorem 34. If M is countable transitive model of ZFC, 1sa,<w), and X =
M Nw®, then there is a Cohen extension M{G] such that M[G]F“X is a Q,.,

2

set’.

Remark. This shows that the Baire order of the constructible reals can be any
countable successor ordinal greater than one. In fact the argument shows that in
MI[G] for any uncountable Y<2* with YeM, Y is a Q, ., set. Thus, for
example, if M models V =L, then in M[G] there are I} Q,,., sets. In Theorem
55 we show that it is consistent with ZFC that for every a <, there is a Q, set
(in that model the continuum is X, ).

The proof of Theorem 34. M[G] is gotten by iterated II; ,,-forcing. Let k=
[22”]. Suppose we are given P> for some a <« and Y, a term in the forcing
language of P* for a subset of X (BlIF*Y,<X"), thenlet P**' =P~ *P, . (Y,, X).
At limit ordinals take direct limits. P~ may be viewed as a sub-lower lattice of
Y P 1@, X). We may assume that for every set B< X in M[G] (G P~-generic
over M) there exists o such that Y, =B. This is because P“ has c.c.c. It follows
from Corollary € that M[G1F**ord (X) < a,+ 1 and every subset of X is Borel in
X",

We assume P"=P, ,,(, X). Let G, be one of the I, set determined by
G NP°. We want to show that M[G]E*For every K in 2, , KNX# G,NX". To
this end we make the following definition: For H ¢ »®, |p| (H)=max {|s|: there
exists x¢ H (s, x) € p(a) for some a <«}. Let supp (p) ={a <« :pla)#@} Given 7
a term in the forcing language of P* denoting a subset of w, we can find H
included in w* and K included in k with the following properties:

(a) H and K are countable;

(b) for each ne w {peP*:supp (p) K, |p| (H) =0}, decides “ne;

(¢) Vxe HVYae K {peP*:supp (p)= K, |p| (H) =0} decides “xe Y,”.

H and K can be found by repeatedly using the c.c.c. of P*.
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Lemma 35. If H and K have property (c), then for any peP* and B with
1< B <aq, there exists p €P* compatible with p, |p| (H)<B+1, supp ()< K, and
for any qeP* if lq| (H)< B and supp (q) S K, then [if p and q are compatible, then
p and q are compatible].

Proof. The proof of this is like Lemma 8. Let G be P*-generic over M with
p€ G. Choose I'c G finite with the properties:

(1) YqeT (lq| (H)=0 and supp (q) < K).

(2) If (n), x)e p(a) for some n<w,acK,and xe H (so plat*“x¢ Y,”), then
there is g 'NP* such that gl-“x¢ Y,”.

(3) If (s,x)ep(a), acK, and {s{|=A is an infinite limit ordinal, and |5~ i|<
B +1<A, then there is a je w such that {(s~i "}, x)}ep. .

Now let peP* be defined by

pla)= U {rla):re ITU{(s, x)e pla):[s|<B+1 or xe H}

when acK and pla)=0 for a¢ K. Note if ((n),x)ep(a), then xe H since
l(n)j=a,=B+1. By choice of I" p is a condition and also |p|(H)<B+1 and is
compatible with p since §, p € G. It is easily checked as in Lemma 8 that p has the
required property.

Lemma 3u. Let H and K have properties (b) and (c) for 7. Let B(v) be a X
(1=B<ay) predicate with parameters from M and p P such that pl-“B(7)”.
Then there exists q €P* compatible with p, |q| (H)< B, q+*“B(r)”, and supp (q) <
K.

Proof. The proof is by induction on 8.

B=L:pk“AnR{n, 7 [ n,x | n)”, xe M, and R primitive recursive. Let ¢ be
P-generic over m with peG. There exist new and se2" such that
M[GIF“R{n, 7! n,x[n) and 7]n=s". By property (b) there exists ge G such
that gl-““r{n=s", supp (q)< K, and |q| (H)=0. q doss it.

B limit: plF<3n B,(7)", B, X3, B, <B. Choose r=p such that ri-“B, (1)” for
some h. By induction there exist g such that qlF“B,(7)”, q is compatible with r
{(and hence with p), and |q| (H)< B, supp (g) < K. q does it.

B+1: If plk*3n B, (1)” we could extend p to force B, (r) for some particular n.
So we may as well assume pi-“B(r)” where B(v) is II} with parameter in M.
Since 1= <a, by Lemma 35 there is p compatible with p, |p| (H)<g+1, etc.
Then pl*‘B(7)” because otherwise there is p,= p such that poi-“—1B(7)”, and so
by induction there is g compatible with p,, (hence with p) |q} (H) <8, supp () K,
and qi-“=1B(7)”. By our assumption on p, since p and q are compatible, p and q
are compatible, but p-“B(r)".
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We now use Lemma 36 to show that for any G P*-generic over M, M[G]F*For
every L a 3 set (LN X# G, N X)" where Gy, is one of the ﬂﬁu sets determined
by GNP, ., (@ X). Suppose not; then let 7 be a term in forcing language of P*, L
a X%y, set with parameter 7, and pe G such that pl-“for every xe X, xeL iff
x€ G, Choose H and K with properties (a), (b), and (c) with respect to 7 and
also so that supp(p)= K and |p|(H)=0. Since H is countable there exists
x & X—H. Let r=pU{(0, ((0), x))} (so ri-x e G,). Since ri-“xecL”, by Lemma
36 there exists q compatible with r, |q| (H)<a,, and gl-“x e L. Since |q| (H)<
a,, ((0), x)¢q(0). Let § be defined by:

fla)= pla)Uqla) if a>0,
4 p(OYU q(O)U{((0, m), x)} otherwise (m sufficiently large
so that (0) is condition).

dlk“xeL and x¢ G, and (xe L iff xe G,,))”. This a contradiction and con-
cludes the proof of Theorem 34.

Theorem 37. For any a, a successor ordinal such that 2<a,< w,, it is relatively
consistent with ZFC that |2°|= 0, and a, is the least ordinal such that R%: =
P(w, X w,).

Remark. In Theorem 52 we remove the restriction that a, is a successor {but the
continuum in that model is 8, ;). In [1] it is shown that «, cannot ¢ ,.

Proof. Let M be a countable transitive model of “ZFC+|2*|=|2*|=w,". Let
X =w*NM and define P* for a € w, so that P**' =P~ =P, (Y,, X) where Y, is
a P term for a subset of X, and at limits take the direct limit. Dovetail so that in
MI[G, ] for every Y < X such that {Y|<w, there are w, many a < w, such that
Y,=Y. By Theorem 33 R2:= P(w, X w,).

Now comes the difficulty: we must show some subset of @, X, is not in RZz_,.
For the remainder of the proof let (A, :se w™*) and (B, :s < ™) be fixed terms
in the forcing language of P> such that for every sew™ QI-“A,cX and
E.cw,”. For peP“ define supp(p)={a<w,:pla)#0} and trace(p)=
{xeX:3a 3 (t,x)ep(a)}. By using the c.cc. of P*: choose for each xe X
countable sets I, = X and J, € w, so that:

(1) for each se @™ {peP::trace (p) = I, and supp (p)< J,} decides “xe A,”,
and

(2) for each ye I, and aeJ, {peP::trace (p)c I, and supp (p)< J.} decides
“yeY,”.

Similarly for o <w, we can pick countable sets I, € X and J, € o, having
properties (1) and (2) with «, B, I, I, in place of x, A, I. L.

For xe X and a <w, let L{x, a)= (I, xJ,)U(I, xJ,) and define for p eP*,

Ipl (x, @) =max {ls|y, :(s, u)e p(y) and (u. y)¢ L(x, a)}.
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Lemma 38. Fix x€ X and a < w, and let |p|=|p|(x, ). For any B =1 and p eP*:
there is a p e P2 with |p|< B + 1, p compatible with p, and for any qeP“: if |q|< B
and p and q are compatible, then p and q are compatible.

Proof. The proof of this is like that of Lemma 35. Let p,z p so that if (s, x) € p(y)
with [s|=A a limit ordinal greater than 8 and [s~ij< g+ 1, then there is j<w so
that (s~i~j, x) € poly). Let G be P“:-generic with p,e G. Choose I'c G finite so
that if ((n), u)e po(y) (so pol viH“u¢ Y,”) and (u, y)€ L(x, @), then thereisa ge I’
such that gl-“u¢ Y,”. Define p by

pyy=U {gv):qe MTU{(s, W) epy(y):Is|<B-+1 or (u, v)e Lix, a)}.

For any well-founded tree T define CS(’i’) for se T as follows. If Is}+ =0, then
C,(T)= A, X B,, otherwise

C(TY = U {(Xxw)—-C,-(T):i<w}.

Lemma 39. If x& X, a € w,, T € M is a well-founded tree, s € T with |s|; = B where
1sB<a,—1, and peP*: such that plt““(x, a) ¢ C,(T)”, then there exist q compat-
ible with p, |q| (x, a)<B, and ql+“(x, @) ¢ C,(T)".

Proof. The proof is by induction on S.
Case 1. B=1: Suppose

pl(x, @)e U (A,- X B,-)".

iew

So there exists i, w and p and § elements of P“: so that (pUpuUG)eP>: and
using (1) above,

(tuye ply)— (u, v)e [ xJ,
and
(Luyeq(y)—(u, vIel, xJ,
and
plexe A~ gi-“yeB,-.".

So pU G =q does the job.
Case 2. B a limit ordinal: Suppose

pk(x,a)e U C,-(D

t€w
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where |s|+ = 8. Find ¢=p and i,€ o such that ql-*(x, y)e C, -, (T). Let

o

To={teT:s~i,ctortes i)
Then
Isle,=ls"il++1<B, and CJTp)=(Xxw,)—C,-(T),

hence qlF““(x, @) ¢ C.(T;,)” where |s|r, < B; so by induction hypothesis there exists
r compatible with g (and hence with p), |r| (x, @) < B, and ri-*(x,a)e C,-, (T)". r
does the trick.

Case 3. B+1: Since f+1<ay, let g be as from Lemma 38.

Define D< X Xw, by D ={(x, a): x € G, where G%, is one of the M3 _, sets
created on the ath step. D is I3 _, in the rectangles on X X w,. We want to show
it is not £ _; in the rectangles on X X w, in M[G,,.}.

Define: (x, a) is free (with respect to (A, :s€w™*), (B,:s€w™*)) iff [x¢ I, and

aé¢lJ ]

Lemma 40, If T< 0™ is well-founded and Te M, s T with |s|r<a,— 1, (x, a)
is free, and Y, =0; then for every peP*: such that |p|(x, a)=0 it is not the case
that plF(x,a)e D iff (x, )¢ C(T)".

Proof. Let p=p by defining p(y)=p(y) for y#a and p(a)=p(a)U{((0), x)}.
Then pl-“(x,a)e D” so by Lemma 39 there exists q compatible with p,
lq] (x, @) <@y, and qIF“(x, @) ¢ C.(T)”. But (x, «) free implies that (x, )¢ L(x, &)
so ¢q does not say “xe G, Thus for a sufficiently large m <w r defined by
r(y)=p(y)Uq(y) for y#a and r(a)=pla)U qla) U{((0, m), x)} is a member of
Pe:. But rl-*(x, a)¢ D and (x, a)¢ C,(T)”, a contradiction since r extends p.

Since the terms (A, :sew™) and (B, :s€ w™) were arbitrary to start with it
will complete the proof of the theorem to find lots of (x, a) free.
The next lemma generalized Kunen [9, p. 74].

Lemma 41. Given |L|<«k for a <«", there exists G < x” with |G|= k™ and there
is S with |S{<«k so that for any a,Be G if a# 8, then , NI; < S.

Proof. We can assume I, c«”.

Define p,, z, <« for a <«* nondecreasing so that:

(1) wy =sup {p, : <A} for A limit;

(2) z,’s are strictly increasing;

(3) for @ a successor and for distinct 8, y<a I, NI < u,;

@ poi1>He, then for any z>z, p,2LNU{L,:B<e} and
UL, :B<al<S e
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Let G={z,:a<k"'} and § =sup {u, : @ <k*}. To see that § < k™ note that for
any a <k* {B:pa.;> pg and B <ol <«. This is because I, N (g, ~pg) # 9 for
all B <a such that pg. > pg.

Lemma 42. There exists 3,< X and X, S w, with |3y =|2,| = w,, for every a € X,
Y.=@, and for every (x,a)e 2,x X, (x, a) is free.

Proof. By Lemma 41 there exists $,< X and S € w, with |2,|= o, and |S|< w, so
that for every distinct x, y & Y NJ,<8. Since {J, -S:xe Sotisa disjoint family,
we can cut down 2, (maintaining |3,| = w,) and find £, < w, so that |$,|= w,, for
every a € 3, Y, =9, and for every xe 2, J, N3, =9. Applying Lemma 41 again
find 3, 3, with |3,|=w, and T< X with |T|<w, so that for every distinct a,
Be3, I,NI;c T. Since {I, — T:« € 3} are disjoint by cutting down X, (maintain-
ing |2, = w,) we can assume 3, defined to be equal to 3,~(TU U{L, :a €3} has
cardinality w,. X, and 3, do the job.

Lemma 42 finishes the proof of Theorem 37.

Remark. There is nothing special about w, in the above theorem; we could have
replaced it by any larger cardinal k with k™ = «.

Now we turn to a slightly different problem. For X a topological space a set
A € X" is projective iff it is in the smallest class containing the Borel sets (in the
product topology on X™ for any m € w) and closed under complementation and
projection (B = X™ is the projection of Cc X™*' iff (& B iff 3xe X xje O)).

Theorem 43. If M is a countable transitive model of ZFC, then there exists N a
c.c.c. Cohen extension of M such that if M N e* = X, then Nk Every projective set
in X is Borel and the Borel hierarchy of X has w, distinct levels (ord (X)=w,)”.

This shows the relative consistency of an affirmative answer to a question of
Ulam [31, p. 10]. Note that since X xX is homeomorphic to X (take any
recursive coding function), if for every B < X x X Borel {x :3y(x, y) e B} is Borel
in X, then every projective set in X is Borel in X.

Proof. The proof is slightly simpler if we assume that CH holds in M. We give the
proof in that case and then later indicate the necessary modifications. In any case
2™ =2<™.

Construct a sequence M =Myc M, c---< M, =N, by iterated forcing so that
M, ., is obtained from M, by I1%  -forcing. On the ath stage we are presented
with a term 7, in the forcing language of P~ denoting a real. Then letting Y, be
the projective set (over X) determined by 7, we let P**' =P xP__ (Y., X).
What is being done is that at stage « we make Y, a T, set intersected with X.
The reason this will work is that after the ath stage our forcing will not interfere
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with the Borel hicrarchy on X up to the ath level. Since this is c.c.c. forcing we
can imagine that each X-projective set in N is eventually caught by some 7, for
a<w,. So it is clear that NI-"Every X-projective set is Borel in X", for any
N = M[G], where G is P“-generic over M. Define for Hg X and peP, |p| (H) =
max {|sly,  :there exist a <w, and x¢ H, (s, x)e p(a)}. Given 7 a term in the
forcing language of P~ denoting a subset of w (y<w,). there exists H< X such
that:

(a) H is countable;

(b) Yne w, {peP”:|p|(H)=0} decides “ner;

(¢) YB<ty and xe H, {peP":|p| (H)=0} decides “x¢ Y,".

Lemma 44. (Write |p|=|p| (H)). “Exactly statement of Lemma 38" for 1",

Proof. Extend p <p, as before. Let G be P”-generic with p,e G. Choose I'c G
finite so that:
() qe ' |q|(H)=0;
(2} if ((n), x)e pola) (so pl, Fx¢ Y, ). then Ige I'NP™ such that gIF“x¢ Y, ™.
Define

play= U {r(a):re ITU{(s, x)e pola):lsl, <B+1 or xe H}.

f is a condition because if {(n), x)€ p(e) and (ndly,  <B+1, then pl, =pl, (so
BlalFx¢ Y, as required).

The re I take care of such requirements about x € H. The rest of the proof is
the same.

Lemma 45. If 7, H, v are as above, B(v) is a X predicate for some B=1 with
parameter from M, and peP” such that pl-+B(1)", then there is a qeP>
compatible with p, |q| (H)< B and qF*B(7)".

Proof. The proof is the same as before.

We can assume that for urboundedly many @ <o, Y, =0. Let G,(G%,) be one
of the 11, sets determined by G NP, (@, X) where Y, =0.

Ciaim. M{GIF“for any L3’ (LNX# G, NX)".

Proof. Otherwise lct 7 be a term for a real in the forcing language P~ for some
y<w; such that for some L a X set with parameter 7 and some pe P”
piF*LNX=G,NX". Choose H with properties (a), (b}, and (c) with respect to 7,
and also || (H)=0. Let xe X —H. Define r(a)=pla)U{(0), x)} and for B#a
+(B)=p(B}. Note that rlF*x e G, hence rl-“xeL”. By Lemma 45 there exists
qeP” compatible with r, gl (H)<B, and qi-“xeL”. Since x¢ H we know
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((0), x)}¢ g(a). Define geP* by 4(8)=p(B)Uq(B) for B#a and §(e)=pla)V
q{a)U{((0, n), x)} where n is picked sufficiently large so §{«) is a condition. But
then iF“xeL and x¢ G, and (x€ L iff x e G,,)” and this is a contradiction. This
concludes the proof of Theorem 43.

When the continuum hypothesis does not hold in M the construction of N still
has w; steps but at each step we must take care of all reals in the ground model.
That is P**'=P**Q, where Q, is a term denoting ¥ {P,..(H,, X):xcw®”N
MI[G,T for G P*-generic over M. This works since all reals in N =M[G] for G
P“i-generic over M are caught at some countable stage.

Remark. It is easy to see that if V=L there is an X £ @ uncountable IT} set
such that Xe L and X XX is homeomorphic to X. Also by absoluteness it is
possible to make sure that for every A £} in w”, AN X is Borel in X. This family
of sets includes those obtained by the Souslin operation from Borel sets in X.

Theorem 46, (MA). 3X <2 ord (X)=w, and YAeZX] in 2* 3B Borel(2*)
ANX=BNX.

Proof. Let B be the c.c.c. countably generated boolean algebra of Theorem 9
with K@) = w,. B =Borel(2*)/J for some J an w,-saturated o-ideal in the Borel
sets.

Lemma 47. If I is an w,-saturated o-ideal in Borel(2*), then B, ={A <2*:3B
Borel 3Cel (AAB)< C} is closed under the Souslin operation.

For a proof the reader is referred to [11, p. 95].

By Theorem 14 MA implies there is X € 2* a J-Luzin set. For any a < w, there
is A M) so that for every B 3!, (AAB)¢J, hence |(AABYNX]||=[27|, so
ANX#BNX, and thus ord (X)=w,. If A is I}, then by Lemma 47 there is B
Borel and C in J with AAB < C. Since |CNX|<|2¢| by MA 3D ¢ Borel(2*)
(AABYNX=DMNX. So AnNX=(BAD)NX.

This suggests the following question:

Can you have X < 2 such that every subset of X is Borel in X and the Borel
hierarchy on X has w, distinct levels? The answer is no.

Theorem 48. If X =2* and every subset of X is Borel in X, then ord (X)< w;.
Proof. Let X ={x,:a<«}and X, ={x;:8<al.

Lemma 49. If | X|< k. every subset of X is Borel in X, and R, = P(k X ), then
ord (X)< w,.
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Proof. Since every rectangle in X X X is Borel in X X X and Ry, = P{k X k), every
subset of X XX is Borel in X X X, Suppose for contradiction Ya <w,3H, < X
not I, in X. Let H=J, ., {x.} X H,. For some a <w,, H is I in X xX. But
then every cross section of H is 12 in X contradiction.

The proof of the theorem is by induction on |X|= «.

For k = w, it follows from Lemma 49 since R%: = P(w, X w,).

For cof (k)= w it is trivial.

For cof (k)> w,: Ya <« choose B, minimal <w, so that every subset of X, is
T in X (we can do this since X, is I} in X some 8 <a,). Since cof (k)>w,
there exists a,< w, such that for a final segment of ordinal less than «, 8, = a,,.
By Theorem 33 R = P(k X«) so by Lemma 49 ord (X)< w,.

For cof (k)=w,: Let n, 1 k for « <w, be an increasing continuous cofinal
sequence.

Lemma 50. 38, <o, Va<w, X, is 3, in X.

Proof. If G-c« X« is the graph of a partial function, then G ¢ R; (Rao [21].
This is because if f: D — k where D < k, then viewing x < irrational real numbers
we have: (f(a) =) iff (a e D and Vre Q(r < x;, iff r <x;)) where Q is the set of
rational numbers.

Then D ={(a, B):a<w;AB <m,} is the complement in w, Xk of a countable
union of graphs of functions from « into w,. Hence the set |, ., {x.} % X, is Borel
in X <X, Say it is I . It follows that each X,_is I .

For all A <, let () be minimal so that every subset of X, is [13,, in X. If
the hypothesis of Theorem 33 fails, then 3f: . — o, increasing so that for all
A <w, B(f(A)) <B(f(A +1)). So for all A <w, there is some H, < X, , which is
not Hgga,, in X. Since every subset of Xy, is My, in X we can assume
Hye(X,, ., X,.). Let H=U), ., H,. Then H is I in X for some a,<w,.
But foreach A, H, = HN(X,,  — X, ).soeach H, is M0 g1 in X, contradic-
tion. This ends the proof of Theorem 48.

—
v

——-D
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Remark. Kunen has noted that Theorem 48 may be generalized to nonseparable
metric spaces. Let B be a o-discrete basis for X and assume that every subset of
X is Borel in X. By using o-discreteness it is easily seen that 3# B A < w, so
that B~ is countable and YUe# ord(Uh<<B. But Y={xeX:YUcB
(xe U— U¢ #)} is separable and hence by the theorem ord (Y)<w;, and so
ord (X) < w,.

As a partial converse of Theorem 33 we have:

Theorem 51. If k =[2*], k™% =k, and Rj = P(k % «), then there is X <2° with

1X|=« and every subset of X of cardinality less than « is Iy in X.

Proof. Let Z, for a <« be all the subsets of « of cardinality less than «. Put
Z=U .« {a}xZ, and W={(a, B):a<B <k}. Let {A, :n<w} be closed under
finite boolean combinations and Z, We{A,xA,,:n, m<wo},. The map F:x —
2¢ defined by (F(a){n)=1iff a € A,) is 1-1 and the set X = F"« has the required
property.

For any cardinal « let R{k) be the least B < w, such that R§ = P(k X k) or w, if
no such B exists.

Theorem 52. It is relatively consistent with ZFC that 2*|=w,, .1, for every n<e
R(w,)=1+n, and R(w,.,\)=w. This can be generalized to show that for any
A < w,; a limit ordinal it is consistent with ZFC that R(|]2*|)= A.

Proof. Let ME“ZFC+MA +12*|=w,.,” be countable and transitive. Let k =
@, ., and define P* for a < < so that P*"'=P* «P,,;,,(X,, Y,) where Y, c2°,
Y. eM, Y= wg 1, and BlF X, < Y,”. At limits take the direct limit. By dovetai-
ing arrange that for any G P*-generic over M, M[G]E“lf Y<2° YeM, and
|Y|=wg.,, for some B <, then every subset of Y is 5. 4., in Y.

As in the proof of Theorem 34 given any 7 a term for a subset of w, find in
M,Hc2* Kck so that: Let Q={peP“:supp (p)c K, Ip| (H)=0}:

(1) |H|< wg,, IK|< g,

(2) Ynew Q decides “net”.

(3) VBe K ¥xe H Q decides “xe X,;”.

(4) H e €K and |Y,|<w,, then Y, c H.

Lemma 53. If H, K have property (3), (4) above, then for any peP* and B with
1< B <2+ B, there is p compatible with p, |p| (H)<B + 1, supp (§) < K, and for any
q if lql(H)<B, supp{gq)< H, and p and q are compatible, then p and q are
compatible.

Proof. The proof of this is just like the proof of Lemma 35. To check that the p
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gotten there is an element of P*, note that if ((n), x) € p(a), then x € H. Because if
x¢ H and a ek, then |Y,|=w,,., because of (4). Say |Y.|=w,,,, so P*'=
P #Paiy1(Xa Yo and [(n)ly,  =2+y=2+B,=B+1, but then it was thrown
out, contradiction,

Lemma 54. Suppose H and K have properties (2), (3), and (4) for 1 < w. Suppose
1<=B=<2+4pB, and B(v) is a X} predicate with parameters from M, peP* and
plk“B(7)". Then 3qeP* compatible with p, |q|(H)<B, supp{(q)s K and
giF<B(r)".

Proof. This follows from Lemma 53 just as in Theorem 34.

From Lemma 54 we have that:

(A) For any Y<2* with YeM and n with 1sn<=ow (|Y|=w, if Y is a
(4 n-set). We claim that:

(B) For any n<w there are X, Y &:2“ with |X|=|Y|=w,., so that if U is the
usual I3, , set universal for I, sets, then U N (X x Y) is not 0., in the abstract
rectangles on XX Y.

To prove (B) just generalize the argument of Theorem 37, for n=0 the
argument is the same. Let X <£2* be in M with |{X|=w,,,. Choose Kk,
|K|=@,.,2, and KeM, so that for any acK Y,=X and @F“X, =0". Let
Y ={y,:ac K} where y, is the H;., code (with respect to U) for G, To
generalize the argument allow I,J,,I,.,J, to have cardinality <, and also
whenever ye J,(yel,) and |Y, <o, then Y, gL (Y, cL,).

In M[G] for any n <w R(w,)=1+n. To see this, let Y& 2* with Ye M and
1Y|=w,,;. If X©Y and |X|<w,, then there is Ze M with |Z|<w, and X< Z.
Because MF“MA” Z is Y in Y and since X is 113, in Z by (A), we have X is

5+ in Y. By Theorem 33 R."3 = P(w,.; X ®,.). By (B) n+2 is the least which
will dc.

Thus R(w,) = w. To see that R(x)=w let Y €2 with Ye M |Y|=«, and every
subset Z < Y such that |Z|<«k and Ze M is 2% in Y (see Theorem 17). In M[G]
every Z= Y with |Z{<«k is 2! in Y, so by Theorem 33 R% = P(k X k).

Remark. It is easy to generalize Theorem 52 to show thau for any A <, a limit
ordinal and k> w of cofinality e, it is consistent that |2*|=«" and R(k*)=A.

Tueerem 55. It is relatively consistent with ZFC that
‘a) !zmt = Wy 41y
b) for any o <, there is a Q, sel.
(©) R(w,)=n+1 for n<w,
(d) R(w,)=A for A <w, a limit ordinal,
{€) R(wy,n1)=A+n for A<w, a limit ordinal and n < w.



On the length of Borel hierarchies 265

The proof of this is an easy generalization of Theorem 52 and is left to the
reader. :

A set U< 2° x2* is universal for the Corel sets iff for every B < 2* there exists
x €2 such that B=U, ={y:(y, x)e UV

Theorem 56. It is relatively consistent with ZFC that no set universal for the Borel
sets is in the o-algebra generated by the abstract rectangles in 2% x2°,

Proof. Let ME“ZFC+ CH” and let

0= Y (I@.0.2nM):e <w,})‘
B<w;

Let G be Q-generic over M, then in M[G] there is no set U universal for the
Borel sets in the o-algebra generated by the rectangles. Suppose G is given by
(ya:TE,,— 2" a<w, and B <w,) where T,,, is the normal a +1 tree used in
the definition of P, and G are the 1] sets determined by y;. Then as before
we can easily get for each a <w,; that V* -“-{(x,B:xeG‘y‘;Z} is not £ in the
abstract rectangles on (2“ X w,). Now suppose such a U existed and were 20 in
the abstract rectangles on 2 x2*. Choose F:w,— 2“ (necessarily 1-1) so that
VE<w,¥xe2® ((x,B)e V* e (x, f(B)e U). If U is 32 in {A, XB, :n<w}, then
V* is 32 in {A, X '(B.): n < w}, contradiction.

Remarks. (1) In [9] Kunen shows that if one adds w, Cohen reals to a model of
GCH, then no well-ordering of w, is in R%:.

(2) In [1] it is shown that if G is a countable field of sets with Borel(2°)= G,,,
the order of G is w,.

In the model of Theorem 56 for any countable G and a <, Borel(2®) is not
included in G,. This can be seen as follows. Let G={A,:n<w} and let
{s,:n<w}=T* where T is a normal « tree. Define for any ye w® and se T the
set Gj as follows. For s =, let G} = A,,,, otherwise G} =] {0 ~G}:n<o} I
U={(x,y):xe G, then U is “T1Y” in the abstract rectangles and universal for all
Borel sets, contradicting Theorem 56.

5. Problems

Show:

(1) If |X|=wy, then X is not a Q, set.

(2) If RY> = P(w, X w,), then there is n <w with R?: = P(w, X w,).

(3) I there exists a Q, set, then there exists a Q, set for some n <.

(4) If Ro2=P(w,Xw,) and |2°|= w,, then [2“| = w,.

(5)% If there is a Q, set of size w,, then every subset of 2¢ of size w, is a Q, set.

2 Answered by William Fleissner in the negative; cf. *On Q-sets™ by Fleissner and Miller, Proc. AMS,
1o appear.
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(6) If X isa Q, set and Y is a Qy set, then 2= <g implies |X|<|Y]

Show consistency of:

(D {a: X2 ord{(X)=al={1}U{a<w,:a is even}.

(8) |2“|= w, and for any X € 2* if |X|= w,, then X is a Q, set, if | X|= w,, then
X is a Q.5 set, and if | X|= w,, then ord (X) = w,.

(9) For any a < w, there is a 11} X with ord (X) = a.

(10) For any X c2* if |X|= w, then there is an X-projective set not Borel in

X.
(11) There is no G countable with £ < G,,. (This is a problem of Ulam, see
Fund. Math. 30 (1938) 365.)
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