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Introduction

The Mizohata–Takeuchi conjecture – I
Let S be a (compact) piece of nice smooth hypersurface in Rn with a nice measure dσ. Let
g ∈ L2(S,dσ). We consider weighted inequalities of the form

∫
Rn
∣ĝdσ(x)∣2w(x)dx ≲ sup

T
w(T )∫

S
∣g∣2dσ

with the sup taken over some family of eccentric tubes.

Such an inequality acts as a rectilinear structure detector in ∣ĝdσ∣2: it tells us something
about the shape and location of the set where this function is large, not just its size (as do
classical Fourier restriction estimates).

Usually we take the family of tubes to be all doubly-infinite tubes of cross-sectional
diameter 1, (1-tubes). The corresponding inequality is often referred to as the
Mizohata–Takeuchi conjecture (following Vega). But we will also be open to other
functionals of w involving eccentric tubes of perhaps different sizes.

If we let w = χBR and we consider 1-tubes then supT w(T ) ∼ R and the MT conjecture in
this case is just the Agmon–Hörmander trace inequality (Plancherel’s theorem).
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The Mizohata–Takeuchi Conjecture – II
Let S denote a nice smooth hypersurface in Rn with a suitable surface measure σ.

Conjecture (MTV)
For all w ≥ 0 we have

∫
Rn
∣ĝdσ(x)∣2w(x)dx ≲ sup

T
w(T )∫

S
∣g∣2dσ

where the sup is taken over all 1-tubes T in Rn with T ⊥ supp g.

All presently understood examples are consistent with this.

A purely L2 − L2 inequality: Fairly accessible with lots of standard tools available ...?

Curvature is not mentioned here, so this conjecture should be more straightforward than
those for Fourier extension operator which are curvature-dependent. Indeed, if S is a
piece of hyperplane for example, it is easily seen to be true, and that supT w(T ) <∞ is
necessary. Equally plausible variants suggest themselves for S of general dimension. A
flexible and basic conjecture in the spirit of the Agmon–Hörmander trace inequality?
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A Stein-like conjecture

Conjecture (MTV)
For all w ≥ 0 we have

∫
Rn
∣ĝdσ(x)∣2w(x)dx ≲ sup

T
w(T )∫

S
∣g∣2dσ

where the sup is taken over all 1-tubes T in Rn with T ⊥ supp g.

One could go a step further and speculate that we have the even stronger inequality

∫
Rn
∣ĝdσ(x)∣2w(x)dx ≲ ∫

S
∣g(ξ)∣2 sup

T∥N(ξ)
w(T )dσ(ξ)

where the sup is taken over all 1-tubes T in Rn whose direction is parallel to the normal
direction N(ξ) to S at ξ. (The map w ↦ supT∥N(ξ)w(T ) is the Kakeya maximal function.)

This stronger, Stein-like conjecture has its roots in the parallel universe of inequalities for
the disc multipliers, for which Stein conjectured L2-weighted control by the Nikodym
maximal function.
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MTV and multilinear restriction

Stein’s conjecture + Kakeya conjecture Ô⇒ restriction conjecture.

Similarly, the Mizohata–Takeuchi conjecture + (true) endpoint Multilinear Kakeya Theorem
Ô⇒ endpoint Multilinear Restriction.

...One more reason for wanting the MTV conjecture to be tue.
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Context for MT – the Stein–Tomas estimate
The Stein–Tomas theorem provides a point of reference for MT. Suppose now that S is
compact and has nonvanishing curvature. Then we have

∥ĝdσ∥
L

2(n+1)
n−1 (Rn)

≲ ∥g∥2.

This is equivalent, by Hölder’s inequality and its reverse, to

∫ ∣ĝdσ∣2w ≲ (∫
Rn

w
n+1

2 )

2
n+1

∫ ∣g∣
2

for all g and all nonnegative w .

But this is a far cry from the MT conjecture because the functionals

(∫
Rn

w
n+1

2 )

2
n+1

and sup
1−tubesT

w(T )

are very non-comparable.

Nevertheless this is the starting point for the first theme...
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Comparing Stein–Tomas with MT

∫ ∣ĝdσ∣2w ≲ (∫
Rn

w
n+1

2 )

2
n+1

∫ ∣g∣
2 (S–T)

∫ ∣ĝdσ∣2w ≲ sup
1−tubesT

w(T )∫ ∣g∣
2 (M–T)

A question: can we replace (∫Rn w
n+1

2 )

2
n+1 in ST by something smaller, featuring

eccentric rectangles, so that the new inequality has more MT-like features?

An observation: interesting weights for MT will be those which satisfy

sup
1−tubesT

w(T )≪ (∫
Rn

w
n+1

2 )

2
n+1

,

or, more informally, such that the mass in any 1-tube is small relative to the total mass.

These turn out to be related considerations.
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Improved localised Stein–Tomas

We have the following MT-esque improvement over Stein–Tomas:

Theorem (AC, Marina Iliopoulou and Hong Wang, 2023/24)

Let n ≥ 2. Suppose S is srtictly convex with nonvanishing curvature. Then

∫
BR

∣ĝdσ∣2w ≲ Rϵ sup
T ∈T

R1/2 ∶ T⊥supp g
(∫

T
w

n+1
2 )

2
n+1

∫
S
∣g∣2.

Local at scale R, and incurs an Rϵ-loss
An improvement since the worst tube T is much smaller than BR: much more
information than Stein–Tomas if w is not concentrated on some T ∈ TR1/2

Sharp: we cannot raise the exponent q = (n + 1)/2; for this q = (n + 1)/2 we cannot
‘narrow’ TR1/2 to consist of tubes of width ≪ R1/2 – just test on g = χS for an
R−1/2-cap S ⊆ S.
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A consequence: MT with power loss

∫
BR

∣ĝdσ∣2w ≲ Rϵ ⎛

⎝
sup

T ∈T
R1/2
∫

T
w(n+1)/2⎞

⎠

2/(n+1)

∫
S
∣g∣2.

This has a simple consequence. Fix T ∈ TR1/2 . Then

∫
T

w
n+1

2 ≤ ∥w∥
n−1

2
∞ w(T ) ≲ ∥w∥

n−1
2
∞ R

n−1
2 sup

S (1×R)
w(S) ≤ R(n−1)/2 ⎛

⎝
sup

S (1×R)
w(S)

⎞

⎠

n−1
2 +1

since wlog w is constant at scale 1, and thus ∥w∥∞ ≤ supS (1×R)w(S). Hence we have

∫
BR

∣ĝdσ∣2w ≲ R
n−1
n+1+ϵ sup

T (1×R)
w(T )∫

S
∣g∣2.

This is an improvement over Agmon–Hörmander which gives exponent 1 on R. Any
exponent < 1 should probably be regarded as nontrivial. (There had been previous explicit
and implicit intermediate improvements (Bourgain, Erdog̃an, C–Seeger, Shayya,
Du–Guth–Ou–Wang–Wilson–Zhang...) in dimensions 2,3).
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Sets with limited tube-occupancy
Some years ago I constructed examples of sets with close to optimal limited tube
occupancy properties as potential sources of interesting examples or indeed
counterexamples to MT. These are sets of ∼ N logN unit squares in an N ×N grid for
which no 1-tube meets more than logN of them.

However, the construction was probabilistic, and I wasn’t able to use them as effective
concrete test cases for MT.

But a couple of years ago in 2022 Larry Guth very cleverly used similar, slightly modified
examples to (rather surprisingly) show that if one is allowed to use only the standard
properties (calculus?) of wave packets, then the inequality

∫
BR

∣ĝdσ∣2w ≲ R(n−1)/(n+1)−ϵ sup
1−tubesT

w(T )∫ ∣g∣
2

fails for every ϵ > 0.

So what about power exactly (n − 1)/(n + 1)? Can we take ϵ = 0 in the CIW theorem?
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Improved improved Stein–Tomas

Theorem (AC, Marina Iliopoulou and Hong Wang, 2023/24)

Let n ≥ 2. Suppose S is strictly convex with nonvanishing curvature. Then

∫
BR

∣ĝdσ∣2w ≲ Rϵ sup
T ∈T

R1/2 ∶ T⊥supp g
(∫

T
w

n+1
2 )

2
n+1

∫
S
∣g∣2.

In fact,

∫
BR

∣ĝdσ∣2w ≲ Rϵ
⎛
⎜
⎝

∑
T ∈T

R1/2 ∶ T⊥supp g
w

n+1
2 (T )∥gT ∥

2
2

⎞
⎟
⎠

2
n+1

∥g∥
2(n−1)

n+1
2 .

where g = ∑T gT is the wave packet decomposition of g at scale R−1/2.

The Rϵ of the second inequality is not entirely removable: very simple number theory
examples for the l2(Z) − L6(T2) extension inequality going back (at least) to Bob
Vaughan’s 1981 book on the Hardy–Littlewood method.
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Vaughan’s example and improved Stein–Tomas?
Vaughan’s example – g with all wave packet coefficients 1 and then w = ∣ĝdσ∣4/(n−1) –
shows we cannot entirely remove the ϵ in the red inequality

∫
BR

∣ĝdσ∣2w ≲ Rϵ
⎛
⎜
⎝

∑
T ∈T

R1/2 ∶ T⊥supp g
w

n+1
2 (T )∥gT ∥

2
2

⎞
⎟
⎠

2
n+1

∥g∥
2(n−1)

n+1
2 .

∫
BR

∣ĝdσ∣2w ≲ Rϵ sup
T ∈T

R1/2 ∶ T⊥supp g
(∫

T
w

n+1
2 )

2
n+1

∫
S
∣g∣2

Passage from the red to the blue inequality is sharp if w(n+1)/2(T ) is roughly constant
over T : and indeed, by direct calculation,

{∫
T
∣ĝdσ∣2(n+1)/(n−1)

}
T

is highly regularly distributed over tubes T , and thus Vaughan’s example also contradicts
ϵ = 0 in the blue inequality. (Emerged in discussions with Po Lam Yung and Zane Li...)
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Context for the CIW result

Theorem (AC, Marina Iliopoulou and Hong Wang, 2023/24)

Let n ≥ 2. Suppose S is strictly convex with nonvanishing curvature. Then

∫
BR

∣ĝdσ∣2w ≲ Rϵ
⎛
⎜
⎝

∑
T ∈T

R1/2 ∶ T⊥supp g
w

n+1
2 (T )∥gT ∥

2
2

⎞
⎟
⎠

2
n+1

∥g∥
2(n−1)

n+1
2 .

where g = ∑T gT is the wave packet decomposition of g at scale R−1/2.

This is very closely related to the refined decoupling theorem of Guth, Iosevich, Ou &
Wang and of Du & Zhang. In fact, we use the refined decoupling theorem to prove it.
Moreover the refined decoupling theorem can be deduced from it. So it is essentially a
reformulation of refined decoupling, presented in an arguably less technical way.

If we could replace Rϵ by (logR)K , by taking w = ∣ĝdσ∣4/(n−1), it would also imply the
(stronger statement lying behind) the improved decoupling theorem of Guth, Maldague &
Wang, and would give a further qualitative marginal improvement to it.
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MT for radial weights – spectral theory in action

Theorem (J.A. Barceló, A. Ruiz & L. Vega, 1997)

If S = Sn−1 and w(x) = w̃(∣x ∣) is radial, then we have

∫
Rn
∣ĝdσ(x)∣2w(x)dx ≲ sup

T
w(T )∫

S
∣g∣2dσ.

where the sup is taken over all 1-tubes T in Rn.

We lose the feature that the sup should be taken over all 1-tubes T in Rn with T ⊥ supp g.
For this, and various other reasons, the proof is not entirely satisfying.
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MTV for radial weights – the set-up for the BRV Theorem

We have a 1-parameter family of hypersurfaces Σr , on each of which the weight w is
constant
The Σr are isotropic dilates by r > 0 of a single fixed hypersurface Σ = Sn−1

The hypersurface S = Sn−1 is spherically symmetric and so L2(S) has the natural
orthonormal basis of spherical harmonics {Yk}

The hypersurfaces S and Σ coincide
For each r > 0, the spherical harmonics are eigenfunctions of the operator

g ↦ ĝdσ(r ⋅)

mapping L2(Sn−1) to itself
The eigenvalue corresponding to Yk is r−(n−2)/2Jk+(n−2)/2(r) = λk ,n(r).

With these observations in place, the argument essentially writes itself...
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Proof of MTV in the radial case via spectral theory
Expand g ∈ L2(Sn−1) into spherical harmonics

g =∑
k

akYk with ∥g∥22 =∑
k
∣ak ∣

2.

So
ĝdσ(rω) =∑

k
ak Ŷk dσ(rω) =∑

k
akλk ,n(r)Yk(ω).

Therefore
∫
Sn−1 ∫

∞

0
∣ĝdσ(rω)∣2w(r)rn−1drdσ(ω)

= ∫

∞

0
(∫

Sn−1
∣∑

k
akλk ,n(r)Yk(ω)∣

2dσ(ω))w(r)rn−1dr

= ∫

∞

0
∑
k
∣ak ∣

2λk ,n(r)2w(r)rn−1dr ≤∑
k
∣ak ∣

2
(sup

k
∫

∞

0
λk ,n(r)2w(r)rn−1dr) .

And...
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Bessel functions
We need to see that for radial weights w

sup
k
∫

∞

0
r−(n−2)Jk+(n−2)/2(r)

2w(r)rn−1dr ≲ sup
T

w(T ) ∼ sup
l
∫

l
wdλ.

It is easy to show that for radial weights,

sup
l
∫

l
wdλ ∼ sup

s>0
∫

∞

s

w(r)r1/2dr
(r − s)1/2

And we know plenty enough about Bessel functions to enable us to conclude that we have

sup
k
∫

∞

0
Jk+(n−2)/2(r)

2w(r)rdr ≲ sup
s>0
∫

∞

s

w(r)r1/2dr
(r − s)1/2

.

Altogether the argument is quite remarkable in how little geometric understanding it gives
us – essentially none. It is entirely unstable under perturbations. Do we only need lines
normal to supp g? ...
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Weights at the other extreme...

Radial weights are “trivial” on concentric spheres but arbitrary with respect to the radii. An
opposite scenario is where the weight is trivial (in some sense) with respect to radii but
arbitrary with respect to the concentric spheres.

Theorem (J. Bennett, AC, F. Soria, A. Vargas, 2006)
Let n = 2. The MTV conjecture holds for arbitrary measures supported on circles
R S1 ⊆ R2 for R ≫ 1. In fact, the stronger Stein-like conjecture holds in this setting.

The proof relies strongly on Fourier Analysis on S1 = T:
g ↦ ĝdσ(R⋅) is given by convolution with eiR cos θ

Littlewood–Paley decomposition of the Fourier coefficients of the convolution kernel
Mollification of the weight on R S1 at certain scales between 1 and R1/2

corresponding to these dyadic pieces.
For R fixed, the most prominent scales occuring in the argument are R1/2, and even more
importantly, R1/3. Tubes of size R1/3 ×R2/3 feature strongly in the argument.
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A more robust approach to the radial case?

Radial weights, by definition, are constant on origin-centred spheres. Working with a large
spatial parameter R and restricting to ∣x ∣ ∼ R, we may assume that w is also constant on
annuli of width ∼ 1. Thus, w is essentially constant on slabs of size 1 ×R1/2 × ⋅ ⋅ ⋅ ×R1/2

which tesselate the annulus and are tangential to origin-centred spheres of radius R.

How far can we get under a (weaker-than-radial) hypothesis such as this? – perhaps with
a family of such slabs tesselating an annular region ∣x ∣ ∼ R but not necessarily being
tangent to spheres? Can we recapture some of the geometry – tubes normal to supp g,
tubes of various eccentricities? What about the Stein variant of the conjecture? Can we
make a connection with the proof of the BCSV result?
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Improved radial MT in dimension two

Theorem (AC, M. Iliopoulou, WIP)

Suppose w is constant on 1-neighbourhoods of spherical caps in ∣x ∣ ∼ R of radius R1/2 in
R2. Then we have

∫
BR

∣ĝdσ(x)∣2w(x)dx ≲ Rϵ sup
R1/3

≤α≤R1/2
sup

T ∈Tα,T⊥S

w(T )
α
∫
S1
∣g∣2dσ.

Moreover, we also have

∫
BR

∣ĝdσ(x)∣2w(x)dx ≲ Rϵ
∫
S1
∣g(ξ)∣2

⎡
⎢
⎢
⎢
⎣

sup
1−tubes T,T∥N(ξ)

w(T )
⎤
⎥
⎥
⎥
⎦

dσ(ξ).

Recall that Tα consists of tubes of dimensions α × α2. Note the sizes of the tubes
featuring (cf. [BCSV]).

The arguments are robust.
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Wave packets and orthogonality properties

We use a standard wave packet decomposition into tubes of size R1/2 ×R.

We have by Plancherel that distinct wave packets ĝT dσ and ĝT ′dσ are (globally)
orthogonal and that

∥ĝT dσ∥22 ∼ R∥g∥22

(consistent with Agmon–Hörmander). But what about a more local orthogonality?

If distinct T and T ′ are both roughly normal to a 1 ×R1/2 × ⋅ ⋅ ⋅ ×R1/2 slab S, then the
corresponding wave packets are orthogonal over S. This can be seen as a consequence
of the interference of the oscillations on the respective wave packets (sinA + sinB =....)

This motivates the approach we take.
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Strategy – I
Break up the annulus ∣x ∣ ∼ R as a sum of disjoint union of 1 ×R1/2 × ⋅ ⋅ ⋅ ×R1/2 slabs S, on
each of which we presume w is roughly constant. So

∫
∣x ∣∼R
∣ĝdσ∣2w ∼∑

S
wS ∫

S
∣ĝdσ∣2 =∑

S
wS ∫

S
∣ ∑
T ∶T∩S≠∅

ĝT dσ∣2.

If distinct wave packets were orthogonal over each such S, we could continue this as

∼∑
S

wS ∫
S
∑

T ∶T∩S≠∅
∣ĝT dσ∣2

and from here routine calculations would lead to

∑
T
∥gT ∥

2
2

w(T )
R(n−1)/2

≤ ∫
S
∣g(ξ)∣2 sup

T⊥N(ξ)

w(T )
R(n−1)/2

dσ(ξ)

– which is far too good to be true anyway. But we want to exploit the orthogonality that we
do have...
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Strategy – II
Consider

∑
S

wS ∫
S
∣ ∑
T ∶T∩S≠∅

ĝT dσ∣2 =∑
S

wS ∫
S
∣∑
k≥0

∑
T ∶T∩S≠∅,⟨T ,S ∼2−k

ĝT dσ∣2

where ⟨T ,S denotes the angle between the tube T and the hyperplane in which S lives.)
The smallest angle occurring is effectively R−1/2 so there are only ∼ logR distinct k ’s,
which we may therefore treat separately.

Consider the term corresponding to k = 0,

∑
S

wS ∫
S
∣ ∑
T ∶T∩S≠∅,⟨T ,S ∼1

ĝT dσ∣2.

Here we have orthogonality of the wave packets involved over each S. and so we may
proceed as before to get a favourable result.

And when 2−k = R−1/2 and n = 2, for each S there is only a single T , so we don’t need
orthogonality at all and can proceed directly to a favourable result.

Intermediate values of 2−k require more thought...
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Intermediate values of the angles
We have a set of slabs S, and a collection of wave packet tubes T such that for each S
and each T we have ⟨T ,S ∼ λ = 2−k for some R−1/2 ≤ λ ≤ 1. Because we are in dimension
two we can do an easy preliminary reduction to the case of g supported in a λ-cap on S1.
And then we redecompose each such g into wave packets at a suitable scale.

R−1/2 ≤ λ ≤ R−1/3: tangential case – we work on sub-balls of BR of radius λ−2 and
re-develop the corresponding parts of g in wave packet decompositions involving tubes of
size λ−1 × λ−2. Such tubes are parallel so orthogonality is automatic.

R−1/3 ≤ λ ≤ 1: transversal case – we work on sub-balls of radius Rλ and and re-develop
the corresponding parts of g in wave packet decompositions involving tubes of size
(Rλ)1/2 ×Rλ. Such tubes are not parallel so orthogonality is not automatic. But we do
have sufficient local orthogonality of the corresponding wave packets.

The fully transversal case λ ∼ 1 works in all dimensions, but it is there that the local
constancy hypothesis on the weight is used maximally.

So we still have plenty of work to do...
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Thanks for coming!
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